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Multidimensional partitioning and bi-partitioning: analysis
and application to gene expression data sets
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Eigenvectors and, more generally, singular vectors, have proved to be useful tools for data mining and
dimension reduction. Spectral clustering and reordering algorithms have been designed and imple-
mented in many disciplines, and they can be motivated from several different standpoints. Here we give
a general, unified derivation from an applied linear algebra perspective. We use a variational approach
that has the benefit of (a) naturally introducing an appropriate scaling, (b) allowing for a solution in
any desired dimension, and (c) dealing with both the clustering and bi-clustering issues in the same
framework. The motivation and analysis is then backed up with examples involving two large data
sets from modern, high-throughput, experimental cell biology. Here, the objects of interest are genes
and tissue samples, and the experimental data represents gene activity. We show that looking beyond
the dominant, or Fiedler, direction reveals important information.

Keywords: Data mining dimension reduction; Graph Laplacian; Microarray; Singular value decom-
position; Tumour classification

AMS Subject Classification: 65F15, 92C37

1. Background

Modern technology is responsible for a data deluge that has driven the need for computational
algorithms in data mining and dimension reduction. Many large scale data sets take the form
of a matrix, W , with wij representing some relationship between objects labelled i and j . If
objects i and j come from the same list, then W will be square. For example, wij may be a
correlation coefficient between stock prices [1]. If objects i and j come from different lists,
then W can be rectangular. For example, wij may represent the number of occurrences of word
i in document j [2].

Given its fundamental role in applied matrix analysis, it is not surprising that the singular
value decomposition is an extremely useful tool for summarizing important information from
such data sets. We refer to [3] for a list of areas where the general concept of spectral clustering
has been applied.
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Data mining with singular vectors can be motivated from a number of different directions
and is closely related to ideas in Principle Component Analysis [4, 5], support vector
machines/kernel based methods [6], machine learning [7] and multidimensional scaling [8].
Our main contribution here is to present a simple, unified framework that justifies the approach
while automatically

(a) introducing an appropriate scaling,
(b) allowing for a solution in any desired dimension, and
(c) dealing with both the clustering and bi-clustering issues.

In particular, this work extends that in [3] to allow for bi-clustering of non-square data and for
projecting to arbitrary dimension.

To illustrate the analysis, and in particular to emphasize that more than just the first, or
Fiedler, direction can be important, we also present numerical results on microarray expression
data sets.

Throughout this work we use the following notation:

• ‖ · ‖2 denotes the Euclidean norm,
• a[j ] denotes the j th column of the matrix A,
• 1 denotes the vector in R

N with all elements equal to one.
• I denotes an identity matrix whose dimension is clear from the context,
• 0r×s denotes the zero matrix in R

r×s .

2. Square symmetric case

In this section, we consider the case where W = WT ∈ R
N×N is a square, symmetric matrix

with non-negative elements, wij ≥ 0, and with all wii = 0. Here, there are N objects of interest
and wij = wji represents the pairwise similarity of objects i and j . We take the view that a large
value of wij means that objects i and j are very similar. (Some references use the opposite
convention, taking a large wij to mean very dissimilar, but, of course, a simple transformation
such as wij �→ maxr,s wrs − wij converts that format into ours.)

When N is large, the pairwise similarity data in W represents a vast amount of information.
In order to create a manageable subset of information that can be easily visualized or otherwise
processed, it is necessary to summarize the data. Three typical, and closely related, tasks are:

1. re-order the objects so that objects close together have strong similarity and objects far
apart have weak similarity [9, 10],

2. map each object to a point in a low dimensional space, R
s , so that objects close in

Euclidean distance have strong similarity and objects far apart in Euclidean distance
have weak similarity [11],

3. split the objects into two or more clusters so that objects in the same cluster have strong
similarity and objects in different clusters have weak similarity [12].

In this work we focus on task 2, while noting that a method for task 1 then follows automat-
ically – map into R

1 and use the resulting N numbers to order the objects. Similarly, having
achieved task 2, there are straightforward ways to produce a clustering for task 3 [13, 14].

Now, focusing on task 2, for some s < N our aim is to find vectors {y[1], y[2], . . . , y[N ]}
with each y[j ] ∈ R

s such that the j th object is associated with the vector y[j ]. The idea is
that the relative distance ‖y[i] − y[j ]‖2 reflects the pairwise similarity weight, wij . We began
with (N2 − N)/2 real numbers (that is, the elements of W , allowing for symmetry and a zero
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diagonal) and we hope to reduce this to Ns numbers (in the vectors {y[j ]}Nj=1). Clearly, if N

is large and s � N then this is a significant compression.
Given that ‖y[i] − y[j ]‖2 should be small when wij is large and vice versa, a reasonable

starting point is to consider choosing {y[j ]}Nj=1 to minimize
∑

i

∑
j ‖y[i] − y[j ]‖2

2wij. However,
since this objective function can generally be decreased simply by rescaling y[k] �→ εy[k], we
must incorporate some normalizing constraint. Considering that the kth object gets mapped to
a vector whose first component is y

[k]
1 , we will normalize the two-norm of the vector making

up these components, when scaled by the square root of the corresponding degree; that is, set∥∥∥∥∥∥∥∥∥∥∥∥∥∥

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

√
d1 y

[1]
1√

d2 y
[2]
1

...

...√
dNy

[N ]
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

∥∥∥∥∥∥∥∥∥∥∥∥∥∥
2

= 1.

Here dk := ∑N
r=1 wkr is the degree of object k, that is, the total weight associated with node

k in the corresponding graph. Scaling by
√

dk tends to penalize the ‘promiscuous’ nodes,
forcing them near the origin, and hence away from particular clusters, and stopping them from
dominating in the optimization problem. Another concern is to avoid having all y

[k]
1 equal, so

that all objects are given the same first component. This could be dealt with by a constraint
such as

∑N
k=1 y

[k]
1 = 0. However, we find it more convenient to return to this issue at a later

stage; more precisely, when we move from (6) to (7).
Now, when we consider the second component, the same normalization argument leads to∥∥∥∥∥∥∥∥∥∥∥∥∥∥

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

√
d1 y

[1]
2√

d2 y
[2]
2

...

...,√
dN y

[N ]
2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

∥∥∥∥∥∥∥∥∥∥∥∥∥∥
2

= 1.

Also, we don’t want this vector to ‘overlap’ with the previous vector; that is, we want this
component to contain only new information that is not already contained in the first component.
This means that we need an orthogonality condition

[√
d1 y

[1]
1 ,

√
d2 y

[2]
1 , . . . ,

√
dN y

[N ]
1

]
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

√
d1 y

[1]
2√

d2 y
[2]
2

...

...√
dN y

[N ]
2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
= 0.

Continuing these arguments for all components leads to the constraint YDYT = I . Hence our
optimization problem to define a suitable choice of {y[j ]}Nj=1 is

min
y[i]∈Rs , YDYT =I

N∑
i=1

N∑
j=1

‖y[i] − y[j ]‖2
2wij . (1)
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Note that there is a natural redundancy in this problem. Any solution Y of (1) can be
changed to QY , where Q ∈ R

s×s is orthogonal. Such a transformation doesn’t change the
relative distances, ‖Qy[i] − Qy[j ]‖2

2 = ‖Q(y[i] − y[j ])‖2
2 = ‖y[i] − y[j ]‖2

2, and doesn’t affect
the constraint, (QY)D(QY)T = QYDYTQT = QIQT = I .

2.1 Rewrite and solve

In this subsection, we show that (1) is tractable, having a computationally convenient solution.
First, we note that

s∑
i=1

(YDYT )ii =
s∑

i=1

N∑
k=1

y
[k]
i

2
dk =

N∑
k=1

‖y[k]2‖2
2 dk.

So the constraint YDYT = I implies

N∑
k=1

‖y[k]2‖2
2 dk = s. (2)

Now, since

‖y[i] − y[j ]‖2
2 = (

y[i] − y[j ])T (
y[i] − y[j ]) = ‖y[i]‖2

2 + ‖y[j ]‖2
2 − 2y[i]T y[j ],

we have

N∑
i,j=1

‖y[i] − y[j ]‖2
2wij =

N∑
i=1

‖y[i]‖2
2

N∑
j=1

wij +
N∑

j=1

‖y[j ]‖2
2

N∑
i=1

wij − 2
N∑

i=1

N∑
j=1

y[i]T y[j ]wij

= 2
N∑

i=1

‖y[i]‖2
2di − 2

N∑
i=1

N∑
j=1

y[i]T y[j ]wij .

From (2), the first term on the right-hand side is constant and so the problem (1) is equivalent
to

max
Y∈Rs×N , YDYT =I

N∑
i,j=1

y[i]T y[j ]wij,

which may be rewritten

max
Y∈Rs×N , YDYT =I

trace
(
YWYT

)
.

Setting X = YD(1/2) ∈ R
s×N , this problem becomes

max
X∈Rs×N , XXT =I

trace
(
XD−1/2WD−1/2XT

)
. (3)

Now, suppose D−(1/2)WD−(1/2) has the eigen-decomposition

D−(1/2)WD−(1/2) = U�UT ,

where U ∈ R
N×N is orthogonal and � ∈ R

N×N is diagonal with diagonal elements
given by the eigenvalues, ordered γ1 ≥ γ2 ≥ · · · ≥ γN . Letting Z := XU ∈ R

s×N , the
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constraint XXT = I becomes ZUT UZT = I , that is, ZZT = I , and XD−(1/2)WD−(1/2)XT =
ZUT D−(1/2)WD−(1/2)UZT = Z�ZT . Hence the problem (3) becomes

max
Z∈Rs×N , XXT =I

trace
(
Z�ZT

)
,

which is equivalent to

max
Z∈Rs×N , ZZT =I

N∑
k=1

γk‖z[k]‖2
2, (4)

where we recall our notation that z[k] denotes the kth column of Z.
Now the constraint ZZT = I forces Z ∈ R

s×N to have orthonormal rows and hence given
any feasible Z we may append rows to create an orthogonal matrix[

Z

Ẑ

]
∈ R

N×N.

It follows that Z must have columns of two-norm bounded above by one. Hence, (4) clearly
has a set of solutions given by

Z =
[
L

... 0s×(N−s)

]
, (5)

where L ∈ R
s×s is orthogonal.

Using Y = XD−(1/2) = ZUT D−(1/2), this tells us that

Y = [L...0s×(N−s)]

⎡⎢⎢⎢⎢⎣
u[1]T . . . . . . . . .

u[2]T . . . . . . . . .

. . . . . . . . . . . .

u[N ]T . . . . . . . . .

⎤⎥⎥⎥⎥⎦ D−(1/2) = L

⎡⎢⎢⎢⎣
(D−(1/2)u[1])T . . . . . . . . .

(D−(1/2)u[2])T . . . . . . . . .

. . . . . . . . . . . .

(D−(1/2)u[N ])T . . . . . . . . .

⎤⎥⎥⎥⎦ .

The arbitrary orthogonal factor L is no surprise; it is consistent with the natural redundancy in
the problem that we discussed earlier. Without loss of generality, we can take L = I , to obtain

Y =

⎡⎢⎢⎢⎣
(D−(1/2)u[1])T . . . . . . . . .

(D−(1/2)u[2])T . . . . . . . . .

. . . . . . . . . . . .

(D−(1/2)u[s])T . . . . . . . . .

⎤⎥⎥⎥⎦ . (6)

This result shows that the problem (1) is solved by taking the eigenvectors corresponding
to the s most positive eigenvalues of the scaled matrix D−(1/2)WD−(1/2), and then scaling
these on the left by D−(1/2). The final step of the analysis is to notice that, by construction,
D−(1/2)WD−(1/2) has an eigenvector D(1/2)1, corresponding to the eigenvalue 1. Moreover,
it is known that all eigenvalues of D−(1/2)WD−(1/2) lie in the range [−1, 1], with 1 being a
simple eigenvalue if the graph corresponding to W is connected [15, 16]. It follows that we
may assume that the first row of Y in (6) is 1T , and following the earlier argument about
appropriate constraints, we then ignore this row and take Y to be

Y =

⎡⎢⎢⎢⎣
(D−(1/2)u[2])T . . . . . . . . .

(D−(1/2)u[3])T . . . . . . . . .

. . . . . . . . . . . .

(D−(1/2)u[s+1])T . . . . . . . . .

⎤⎥⎥⎥⎦ . (7)
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Remarks

(i) Our derivation worked directly with the normalized weight matrix, D−(1/2)WD−(1/2). An
alternative is to use the normalized graph Laplacian, D−(1/2)(D − W)D−(1/2), which, of
course, has the same eigenvectors with appropriately shifted eigenvalues [3].

(ii) In this work we are assuming that all weights are non-negative, whence the dominant
eigenvector, D−(1/2)u[1], gives no useful information. However, we point out that this type
of spectral analysis carries through to the case where W has both positive and negative
entries, and here the dominant eigenvector can reveal important patterns in the data [17].

3. Rectangular case

3.1 Data and problem

We now consider the case where W ∈ R
M×N , with M different to N , in general. As with

section 2, we suppose that wij ≥ 0 represents similarity between objects, but now we think
of two separate lists of objects, so that wij relates object i from the first list to object j from
the second list. In section 4 we deal with the case where wij represents the expression level of
gene i in tissue sample j . Following the approach in 2, our aim is to find vectors {p[i]}Mi=1 and
{q[j ]}Nj=1 with each p[i] and q [j ] in R

s and s < min(M, N), such that the ith object in the first
list is associated with p[i] and the j th object in the second list is associated with q [j ]. Then
the arguments that led to (1) can be used to arrive at

min
p[i],qi]∈Rs , PDoutP T =QDinQT =I

M∑
i=1

N∑
j=1

‖p[i] − q [j ]‖2
2wij, (8)

where Dout ∈ R
M×M is the diagonal out-degree matrix, so that (Dout)ii = ∑N

j=1 wij =: (dout)i ,

and Din ∈ R
N×N is the diagonal in-degree matrix, so that (Din)jj = ∑M

i=1 wij =: (din)j .

3.2 Rewrite and solve

To solve (8), we first note that

M∑
i=1

N∑
j=1

‖p[i] − q [j ]‖2
2wij =

M∑
i=1

‖p[i]‖2
2(dout)i +

N∑
j=1

‖q [j ]‖2
2(din)j − 2

M∑
i=1

N∑
j=1

p[i]T q [j ]wij.

Applying the analogues of (2), we see that the first two terms are constant, and so the
problem (8) is equivalent to

max
P∈Rs×M, Q∈Rs×N , PDoutP T =QDinQ

T =I

M∑
i=1

N∑
j=1

p[i]T q [j ]wij,

which may be rewritten

max
P∈Rs×M, Q∈Rs×N , PDoutP T =QDinQT =I

trace
(
PWQT

)
. (9)

Setting A = PD
(1/2)
out ∈ R

s×M and B = QD
(1/2)

in ∈ R
s×N , the problem (9) becomes

max
A∈Rs×M, B∈Rs×N , AAT =BBT =I

trace
(

AD−(1/2)
out WD−(1/2)

in BT
)

. (10)
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Now, suppose D
−(1/2)
out WD−(1/2)

in has the singular value decomposition (SVD)

D
−(1/2)
out WD

−(1/2)

in = U�V T ,

where U ∈ R
M×M and V ∈ R

N×N are orthogonal and � ∈ R
M×N is diagonal with diagonal

elements σ1 ≥ σ2 ≥ · · · ≥ 0. Letting R := AU ∈ R
s×M and S := BV ∈ R

s×N , the constraint
AAT = I becomes RUT URT = I , that is, RRT = I , and the constraint BBT = I becomes
SST = I . Also, AD

−(1/2)
out WD

−(1/2)

in BT = RUT D
−(1/2)
out WD−(1/2)VST = R�ST . Hence the

problem (10) becomes

max
R∈Rs×N , S∈Rs×N , RRT =SST =I

trace
(
R�ST

)
,

which is equivalent to

max
R∈Rs×M, S∈Rs×N , RRT =SST =I

min(M,N)∑
k=1

σkr
[k]T s[k]. (11)

Now, repeating the arguments used to obtain (5), and also invoking the Cauchy-Schwarz
inequality, we find that (11) has a set of solutions given by

R = S =
[
L

... 0s×(M−s)

]
,

where L ∈ R
s×s is orthogonal.

Using P = AD
−(1/2)
out = RUT D

−(1/2)
out , this tells us that

P =
[
L

... 0s×(M−s)

]
⎡⎢⎢⎢⎢⎣

u[1]T . . . . . . . . .

u[2]T . . . . . . . . .

. . . . . . . . . . . .

u[N ]T . . . . . . . . .

⎤⎥⎥⎥⎥⎦

D
−(1/2)
out = L

⎡⎢⎢⎢⎢⎣
(D

−(1/2)
out u[1])T . . . . . . . . .

(D
−(1/2)
out u[2])T . . . . . . . . .

. . . . . . . . . . . .

(D
−(1/2)
out u[N ])T . . . . . . . . .

⎤⎥⎥⎥⎥⎦ .

Similarly, for the same L,

Q = L

⎡⎢⎢⎢⎢⎣
(D

−(1/2)

in v[1])T . . . . . . . . .

(D
−(1/2)

in v[2])T . . . . . . . . .

. . . . . . . . . . . .

(D
−(1/2)

in v[N ])T . . . . . . . . .

⎤⎥⎥⎥⎥⎦ .

Now, as argued in section 2, the orthogonal factor L is arbitrary, and we may take L = I ,
which gives

P =

⎡⎢⎢⎢⎢⎣
(D

−(1/2)
out u[1])T . . . . . . . . .

(D
−(1/2)
out u[2])T . . . . . . . . .

. . . . . . . . . . . .

(D
−(1/2)
out u[s])T . . . . . . . . .

⎤⎥⎥⎥⎥⎦ and Q =

⎡⎢⎢⎢⎢⎣
(D

−(1/2)

in v[1])T . . . . . . . . .

(D
−(1/2)

in v[2])T . . . . . . . . .

. . . . . . . . . . . .

(D
−(1/2)

in v[s])T . . . . . . . . .

⎤⎥⎥⎥⎥⎦ .

(12)
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The result (2) shows that (8) is solved by taking the left and right singular vectors corresponding
to the s dominant singular values of D

−(1/2)
out WD

−(1/2)

in and then scaling these on the left by
D

−(1/2)
out and D

−(1/2)

in , respectively. Just as in section 2.1, the final piece in the analysis is to
notice that D

−(1/2)
out WD

−(1/2)

in has a dominant singular value of σ1 = 1 and the corresponding
first rows, (D−(1/2)

out u[1])T and (D
−(1/2)

in v[1])T , of P and Q in (12), have all entries equal to one.
Hence, we replace (12) by

P =

⎡⎢⎢⎢⎢⎣
(D

−(1/2)
out u[2])T . . . . . . . . .

(D
−(1/2)
out u[3])T . . . . . . . . .

. . . . . . . . . . . .

(D
−(1/2)
out u[s+1])T . . . . . . . . .

⎤⎥⎥⎥⎥⎦ and Q =

⎡⎢⎢⎢⎢⎣
(D

−(1/2)

in v[2])T . . . . . . . . .

(D
−(1/2)

in v[3])T . . . . . . . . .

. . . . . . . . . . . .

(D
−(1/2)

in v[s+1])T . . . . . . . . .

⎤⎥⎥⎥⎥⎦ .

(13)

Remarks

(i) We note that in the non-square matrix, or bi-partite graph, setting of this section there is
no commonly used concept of a graph Laplacian.

(ii) Given a matrix W ∈ R
M×N , its singular vectors are equivalent to eigenvectors of WT W

and WWT . The matrix WT W is essentially measuring correlations between the ith and j th
objects in the first list. Similarly, the matrix WWT is essentially measuring correlations
between the ith and j th objects in the second list. From this viewpoint, the non-square
spectral method could be regarded as
(a) converting to a new, square set of data, by correlating over the objects that are not of

interest and then
(b) applying the spectral method for square data that was derived in section 2.
However, this high-level summary would not lead to the same normalization in gen-
eral, and for this reason we believe that our approach of deriving the solution from first
principles is more satisfactory and illuminating.

4. Gene expression data

We now give some evidence that a combination of more than one singular vector can be
required to reveal important information from real data. We also refer to [18] for further
examples from a cutting edge clinical investigation.

Here, we have used two Affymetrix microarray data sets from [19]: a colon cancer data
set [20] and a prostate cancer data set [21]. In both cases, a tumour sample is always paired with
a normal sample from the same patient. Each data set can be regarded as an array W ∈ R

M×N ,
where wij records the activity of the ith gene in the j th sample. For the colon cancer data set
M = 3697 and N = 44 and for the prostate cancer data set M = 6593 and N = 94.

This data falls into the rectangular setting of section 3, and we are interested in the unsu-
pervised tumour classification problem — can we indentify the group of tumour samples and
the group of normal samples? For this purpose we will use the matrix Q in (13).

Figures 1 and 3 show N − 1 singular values (the first one, σ1 = 1, is omitted) and scat-
ter plots of pairs of the three dominant singular vectors. In figure 1, for the colon cancer
data, we can see a clear separation of the tumour (stars) and normal (circles) samples by the
second, dominant, singular vector. However, the third and fourth singular vectors pick out
further subgroups. These three singular vectors correspond to the triplet of values separated
from the remaining singular values (top left subfigure). The distinct subclusters may reflect
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Figure 1. Colon: tumour (stars) and normal (circles) samples. Singular values σ2, σ3, . . . , σN (top left) and scatter
plots of three pairs of dominant singular vectors.
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Figure 2. Colon: 3D plot.
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Figure 3. Prostate: tumour (stars) and normal (circles) samples. Singular values σ2, σ3, . . . , σN (top left) and scatter
plots of three pairs of dominant singular vectors.
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different origins of the samples (laboratory, experiment) or specific features of the patients.
Unfortunately, such extra details are not available for these data sets, so this issue cannot be
investigated. Figure 2 gives a 3D picture based on the three leading singular values.

Figure 3 shows an example where tumour and normal samples can be distinguished only
by combining singular vectors D

−1/2
in v[2] and D

−1/2
in v[3] — neither singular vector alone gives

a perfect separation. A 3D plot of this prostate data set in figure 4 emphasizes the nonlinear
shape of the two clusters.
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