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Abstract. Stochastic differential equations with Poisson driven jumps of ran-
dom magnitude are popular as models in mathematical finance. Strong, or
pathwise, simulation of these models is required in various settings and long
time stability is desirable to control error growth. Here, we examine strong
convergence and mean-square stability of a class of implicit numerical meth-
ods, proving both positive and negative results. The analysis is backed up with
numerical experiments.

1. Introduction. Stochastic differential equations (SDEs) arise in many disci-
plines. In particular, they are used in mathematical finance in order to simulate
asset prices, interest rates and volatilities. Advanced models frequently incorporate
jumps. In the financial setting a key early reference is [21] and up to date treat-
ments can be found in [3, 6]. Jump models also arise in many other application
areas and have proved successful at describing unexpected, abrupt changes of state
[24]. Typically, these models do not admit analytical solutions and hence must be
simulated numerically.

There is extensive literature on the numerical simulation of SDEs without jumps,
and efforts are now being made to bring jump SDEs up a similar level. In [14]
strong convergence and mean-square stability properties were analysed in the case
of Poisson-driven jumps of deterministic magnitude. In this work we extend that
analysis to the case where jump magnitudes are random—a situation that is now
common in financial models [9, 10, 17, 25, 26]. We also give what appears to be
the first stability analysis for this class of jump-SDE simulations, and show that an
A-stability property from the constant jump setting does not generalize.

We emphasize that this work treats convergence in the strong sense. Although
many classical problems in mathematical finance require only weak convergence,
there are important instances where strong convergence is relevant. An interest-
ing recent example is the multi-level Monte Carlo method in [5], where the order
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of strong convergence is a vital ingredient in the error analysis and the resulting
algorithm.

We study fixed timestep methods, rather than jump-adapted methods with pre-
computed jump times embedded within a standard time grid [7, 8, 18, 19, 22]. A
fixed timestep offers advantages when the jump intensity is high [6] and also fits in
with the natural parallelisability of Monte Carlo.

A closely related and more general convergence theory has recently been de-
veloped by Bruti-Liberati and Platen, [2], with related earlier work appearing in
[4, 18, 19, 20]. Our convergence results in section 3 could be derived using their
techniques, which also apply to higher order methods. However, we believe that
our treatment is of independent interest as it is based on the style of analysis in
[16] and hence has potential to be extended to the case of nonlinear coefficients
that are not globally Lipschitz. In this context the use of implicit methods that
can be guaranteed to produce moment-bounded solutions appears to be an essential
ingredient in the error analysis.

2. Preliminaries. We examine the following class of scalar jump SDEs

dX(t) = f(X(t−)) dt + g(X(t−)) dW (t) + h(X(t−), γN(t−)+1) dN(t), (1)

X(0) = X0, for t > 0, where W (t) is a standard 1-dimensional Wiener process;
N(t) is a Poisson process with mean λt; X(t−) := limsրt X(s); and γi, i = 1, 2, . . .
are independent, identically distributed random variables representing magnitudes
for each jump. Our notation is consistent with that in [6, p. 363].

The analysis in [14] deals with the case where γ is a deterministic parameter.
Our aim here is to generalize to the case of random jump sizes, thereby covering a
wider range of models in finance [9, 10, 11, 17, 25]. We assume that for some q ≥ 1
there is a constant B = Bq such that

E

[
|γi|

2q
]
≤ B, (2)

that is, the 2qth moment of the jump magnitude is bounded. In many cases,
including the standard log-normal model, such a B = Bq exists for any q.

We will impose global Lipschitz bounds on f, g and h, that is,

max
((

f(x1) − f(x2)
)2

,
(
g(x1) − g(x2)

)2)
≤ K(x1 − x2)

2 , (3)

(
h(x1, y1) − h(x2, y2)

)2
≤ K

(
(x1 − x2)

2
+ (y1 − y2)

2
)
, (4)

where K is a constant independent of x1, x2, y1 and y2. This implies the linear
growth bounds

max
(
f(x)2, g(x)2

)
≤ L

(
1 + x2

)
, (5)

h(x, y)2 ≤ L
(
1 + x2 + y2

)
, (6)

where L is a constant independent of x and y.
We note for later reference that (1) involves the jump process

γ(t) := γN(t−)+1 =
∑

j

γj+11[τj,τj+1)(t), (7)

where τ0 = 0 and τi, i = 1, 2, . . . are the jump times and 1G denotes the indicator
function for the set G.
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We discretize (1) by extending the definition of the theta method [14] in a natural
way, to get

Yn+1 = Yn+(1−θ)f(Yn)∆t+θf(Yn+1)∆t+g(Yn)∆Wn+h(Yn, γN(tn)+1)∆Nn, (8)

where θ is a fixed parameter. Typically, 0 ≤ θ ≤ 1 , although values outside
this range may also be useful for stochastic problems [12]. Here, Yn ≈ X(tn),
for tn = n∆t, where ∆t is a fixed stepsize, and ∆Wn := W (tn+1) − W (tn) and
∆Nn := N(tn+1) − N(tn) are the Brownian and Poisson increments, respectively.

As in [14], we extend our discrete numerical solution to continuous time. First
we define the step functions

Z1(t) :=
∑

i

Yi1[i∆t,(i+1)∆t)(t),

Z2(t) :=
∑

i

Yi+11[i∆t,(i+1)∆t)(t),

γ̄(t) :=
∑

i

γ(ti)1[i∆t,(i+1)∆t)(t).

We note that Z2(t) is not adapted to the natural filtration that measures W (t) and
N(t), but this will not pose a significant limitation in our analysis. We then define
the continuous-time approximation

Y (t) =Y0 +

∫ t

0

(1 − θ)f(Z1(s)) + θf(Z2(s)) ds +

∫ t

0

g(Z1(s)) dW (s)

+

∫ t

0

h(Z1(s), γ̄(s)) dN(s),

(9)

which interpolates the discrete numerical approximation (8). So a convergence
result for Y (t) immediately provides a result for {Yk}.

A key difficulty that we address in this work is that relative to previous analysis
[14] a new source of error arises from the approximation of γ(t) by γ̄(t). This occurs
because the exponentially distributed jump times do not coincide with the grid
points. Hence there will be small intervals of time where the discretization method
picks up the wrong jump magnitude. Figure 1 shows a graphical representation of
this issue.

We state here two results that are used in our analysis.

Result 2.1 (Young’s Inequality). [23]

ab ≤
q − 1

q
ε1/(q−1)aq/(q−1) +

1

qε
b q, (10)

where a, b, ε > 0 and 1 < q < ∞.

Result 2.2 (Martingale Isometry for Compensated Poisson Process). [4]

For the compensated Poisson process, Ñ(t) := N(t)−λt, which is a martingale, we
have the following isometry

E

∣∣∣∣
∫ b

a

h(Z1(s), γ̄(s)) dÑ (s)

∣∣∣∣
2

= λ

∫ b

a

E|h(Z1(s), γ̄(s))|2 ds. (11)
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Figure 1. Illustration of the exact process γ(t) and the approx-
imation γ̄(t) available to the numerical method, over a timestep
containing a jump.

3. Convergence Analysis. In this section we derive our strong convergence re-
sult, Theorem 3.4. The analysis proceeds in a similar vein to that in [14], with
appropriate extensions to deal with the more general random jump magnitudes.
We have aimed to make this treatment self-contained, while referring to [14] for
some extra details.

We note that for θ 6= 0, an implicit equation determines the numerical solution
in (8). The global Lipschitz condition (3) ensures that a unique solution exists with
probability one for sufficently small stepsizes; see, for example, [15, Lemma A.1].

Throughout our analysis, Ci, Di, i = 1, 2, ... denote generic constants, indepen-
dent of ∆t.

First, we show that the discrete numerical solution has bounded second moments.

Lemma 3.1. Under the above assumptions, there exists ∆t⋆ > 0 such that for all
0 < ∆t ≤ ∆t⋆,

E|Yk|
2 ≤ C1

(
1 + E|X(0)|2

)
, for k∆t ≤ T .

Proof. By construction, we have,

Yk+1 = Y0 +

∫ (k+1)∆t

0

(1 − θ)f(Z1(s))+θf(Z2(s)) ds +

∫ (k+1)∆t

0

g(Z1(s)) dW (s)

+

∫ (k+1)∆t

0

h(Z1(s), γ̄(s)) dN(s).

So, for (k + 1)∆t ≤ T ,

E|Yk+1|
2 ≤ 4E|Y0|

2 + 4E

∣∣∣∣
∫ (k+1)∆t

0

(1 − θ)f(Z1(s)) + θf(Z2(s)) ds

∣∣∣∣
2

+ 4E

∣∣∣∣
∫ (k+1)∆t

0

g(Z1(s)) dW (s)

∣∣∣∣
2

+ 4E

∣∣∣∣
∫ (k+1)∆t

0

h(Z1(s), γ̄(s)) dN(s)

∣∣∣∣
2

.

(12)
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Now, it follows from [14] that

E

∣∣∣∣
∫ (k+1)∆t

0

(1 − θ)f(Z1(s)) + θf(Z2(s)) ds

∣∣∣∣
2

≤ 4T 2L + 4TL∆t

k∑

j=0

E|Yj |
2

+ 2TL∆t E|Yk+1|
2

(13)

and

E

∣∣∣∣
∫ (k+1)∆t

0

g(Z1(s)) dW (s)

∣∣∣∣
2

≤ LT + L∆t

k∑

j=0

E|Yj |
2. (14)

For the jump integral term in (12), we can transform to the compensated Poisson
process and use the martingale isometry (11) to obtain,

E

∣∣∣∣
∫ (k+1)∆t

0

h(Z1(s), γ̄(s)) dN(s)

∣∣∣∣
2

= E

∣∣∣∣
∫ (k+1)∆t

0

h(Z1(s), γ̄(s)) dÑ(s) + λ

∫ (k+1)∆t

0

h(Z1(s), γ̄(s)) ds

∣∣∣∣
2

≤ 2E

∣∣∣∣
∫ (k+1)∆t

0

h(Z1(s), γ̄(s)) dÑ (s)

∣∣∣∣
2

+ 2λ2
E

∣∣∣∣
∫ (k+1)∆t

0

h(Z1(s), γ̄(s)) ds

∣∣∣∣
2

≤ 2λ

∫ (k+1)∆t

0

E
∣∣h(Z1(s), γ̄(s))

∣∣2ds + 2λ2T

∫ (k+1)∆t

0

E
∣∣h(Z1(s), γ̄(s))

∣∣2ds

= 2λ(1 + λT )∆t

k∑

j=0

E
∣∣h(Yj , γ(tj))

∣∣2.

Applying the linear growth bound (6) gives,

E

∣∣∣∣
∫ (k+1)∆t

0

h(Z1(s), γ̄(s)) dN(s)

∣∣∣∣
2

≤ 2λ(1 + λT )∆t L

k∑

j=0

E

(
1 + |Yj |

2 + |γ(tj)|
2
)

= 2λ(1 + λT )∆t L

(
k +

k∑

j=0

E|Yj |
2 +

k∑

j=0

E|γ(tj)|
2

)

≤ 2λ(1 + λT )L

(
T + ∆t

( k∑

j=0

E|Yj |
2 +

k∑

j=0

E|γ(tj)|
2

))
. (15)

Combining (13), (14) and (15) with (12) yields,

E|Yk+1|
2 ≤ 4

[
E|Y0|

2 + 4T 2L + LT + 2λT (1 + λT )L
]

+ 4∆t
[
4LT + L + 2λ(1 + λT )L

] k∑

j=0

E|Yj |
2 + 8LT∆t E|Yk+1|

2

+ 8λ∆t (1 + λT )L
k∑

j=0

E|γ(tj)|
2.
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Now choosing ∆t sufficiently small such that 1 − 8TL∆t ≥ 1
2 , we obtain,

E|Yk+1|
2 ≤ 8

[
E|Y0|

2 + LT
(
4T + 1 + 2λ(1 + λT )

)]

+ 8∆t L
(
4T + 1 + 2λ(1 + λT )

) k∑

j=0

E|Yj |
2

+ 8∆t Lλ(1 + λT )

k∑

j=0

E|γ(tj)|
2.

Assumption (2) implies that each E|γ(tj)|
2 ≤ B1, and hence

E|Yk+1|
2 ≤ 8

[
E|Y0|

2 + LT
(
4T + 1 + 2λ(1 + λT )

)]

+ 8Lλ(1 + λT )B1T

+ 8∆t L
(
4T + 1 + 2λ(1 + λT )

) k∑

j=0

E|Yj |
2.

We may then apply the discrete Gronwall inequality and the result follows.

Next, we show the boundedness of the continuous-time approximation.

Lemma 3.2. There exists ∆t∗ > 0 such that for all 0 < ∆t ≤ ∆t∗,

E sup
t∈[0,T ]

|Y (t)|2 ≤ C2(1 + E|X(0)|2). (16)

Proof. From (9), we have

|Y (t)|2 ≤ 4|Y0|
2 + 4

∣∣∣∣
∫ t

0

(1 − θ)f(Z1(s)) + θf(Z2(s)) ds

∣∣∣∣
2

+ 4

∣∣∣∣
∫ t

0

g(Z1(s)) dW (s)

∣∣∣∣
2

+ 4

∣∣∣∣
∫ t

0

h(Z1(s), γ̄(s)) dN(s)

∣∣∣∣
2

.

Thus, using the Cauchy-Schwarz inequality and the definition of Ñ(s),

E sup
t∈[0,T ]

|Y (t)|2

≤ 4E|Y0|
2 + 4E sup

t∈[0,T ]

∣∣∣∣
∫ t

0

(1 − θ)f(Z1(s)) + θf(Z2(s)) ds

∣∣∣∣
2

+ 4E sup
t∈[0,T ]

∣∣∣∣
∫ t

0

g(Z1(s)) dW (s)

∣∣∣∣
2

+ 4E sup
t∈[0,T ]

∣∣∣∣
∫ t

0

h(Z1(s), γ̄(s)) dN(s)

∣∣∣∣
2

≤ 4E|Y0|
24E sup

t∈[0,T ]

(∫ t

0

ds

∫ t

0

2|f(Z1(s))|
2 + 2|f(Z2(s))|

2 ds

)

+ 4E sup
t∈[0,T ]

∣∣∣∣
∫ t

0

g(Z1(s)) dW (s)

∣∣∣∣
2

+ 8E sup
t∈[0,T ]

(∣∣∣∣
∫ t

0

h(Z1(s), γ̄(s)) dÑ (s)

∣∣∣∣
2

+ λ2

∣∣∣∣
∫ t

0

h(Z1(s), γ̄(s)) ds

∣∣∣∣
2
)

.
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We may now apply the Doob martingale inequality, then Itô and martingale isome-
tries, and lastly growth bounds, to get

E sup
t∈[0,T ]

|Y (t)|2 ≤ 4E|Y0|
2 + 8T

∫ T

0

E
(
|f(Z1(s))|

2 + |f(Z2(s))|
2
)
ds

+ 16E

∣∣∣∣
∫ T

0

g(Z1(s)) dW (s)

∣∣∣∣
2

+ 32E

∣∣∣∣
∫ T

0

h(Z1(s), γ̄(s)) dÑ(s)

∣∣∣∣
2

+ 8λ2T

∫ T

0

E|h(Z1(s), γ̄(s))|2 ds

≤ 4E|Y0|
2 + 8LT

∫ T

0

(
2 + E|Z1(s)|

2 + E|Z2(s)|
2
)
ds

+ 16L

∫ T

0

(
1 + E|Z1(s)|

2
)
ds

+ 32λL

∫ T

0

(
1 + E|Z1(s)|

2 + E|γ̄(s)|2
)
ds

+ 8λ2LT

∫ T

0

(
1 + E|Z1(s)|

2 + E|γ̄(s)|2
)
ds.

Collecting like terms, we obtain

E sup
t∈[0,T ]

|Y (t)|2 ≤ 4E|Y0|
2 + 8LT

(
2T + 2 + λ(4 + λT )

)

+ 8L
(
T + 2 + λ(4 + λT )

) ∫ T

0

E|Z1(s)|
2 ds

+ 8LT

∫ T

0

E|Z2(s)| ds

+ 8Lλ(4 + λT )

∫ T

0

E|γ̄(s)|2 ds.

If we now apply Lemma 3.1 over an interval [0, T +∆t] (as some Z2(t) may extend
beyond T ), the result (16) follows.

The following shows that the continuous-time approximation remains close to
the step functions in a strong sense.

Lemma 3.3. There exists ∆t∗ > 0 such that for all 0 < ∆t ≤ ∆t∗

E sup
t∈[0,T ]

|Y (t) − Z1(t)|
2 ≤ C3∆t

(
1 + E|X(0)|2

)
(17)

and

E sup
t∈[0,T ]

|Y (t) − Z2(t)|
2 ≤ C4∆t

(
1 + E|X(0)|2

)
. (18)
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Proof. Consider t ∈ [k∆t, (k + 1)∆t] ⊆ [0, T ]. In this interval we have

Y (t) − Z1(t) = Y (t) − Yk

=

∫ t

k∆t

(1 − θ)f(Z1(s)) + θf(Z2(s)) ds +

∫ t

k∆t

g(Z1(s)) dW (s)

+

∫ t

k∆t

h(Z1(s), γ̄(s)) dN(s).

So,

|Y (t) − Z1(t)|
2 ≤ 3

∣∣∣∣
∫ t

k∆t

(1 − θ)f(Z1(s)) + θf(Z2(s)) ds

∣∣∣∣
2

+ 3

∣∣∣∣
∫ t

k∆t

g(Z1(s)) dW (s)

∣∣∣∣
2

+ 3

∣∣∣∣
∫ t

k∆t

h(Z1(s), γ̄(s)) dN(s)

∣∣∣∣
2

.

Thus, for each t ∈ [k∆t, (k + 1)∆t], k ∈ N,

sup
t∈[0,T ]

|Y (t) − Z1(t)|
2

≤ max
0≤k≤T/∆t−1

sup
τ∈[k∆t,(k+1)∆t]

{
3

∣∣∣∣
∫ τ

k∆t

(1 − θ)f(Z1(s)) + θf(Z2(s)) ds

∣∣∣∣
2

+ 3

∣∣∣∣
∫ τ

k∆t

g(z1(s)) dW (s)

∣∣∣∣
2

+ 6

∣∣∣∣
∫ τ

k∆t

h(Z1(s), γ̄(s)) dÑ(s)

∣∣∣∣
2

+ 6λ2

∣∣∣∣
∫ τ

k∆t

h(Z1(s), γ̄(s)) ds

∣∣∣∣
2
}

.

By the Cauchy-Schwarz inequality,

∣∣∣∣
∫ τ

k∆t

h(Z1(s), γ̄(s)) ds

∣∣∣∣
2

≤ ∆t

∫ τ

k∆t

|h(Z1(s), γ̄(s))|2 ds.

Therefore, after applying the Doob martingale inequality, we have

E sup
t∈[0,T ]

|Y (t) − Z1(t)|
2

≤ max
0≤k≤T/∆t−1

{
6∆tE

∫ (k+1)∆t

k∆t

|f(Z1(s))|
2 + |f(Z2(s))|

2 ds

+ 12E

∣∣∣∣
∫ (k+1)∆t

k∆t

g(Z1(s)) dW (s)

∣∣∣∣
2

+ 24E

∣∣∣∣
∫ (k+1)∆t

k∆t

h(Z1(s), γ̄(s)) dÑ(s)

∣∣∣∣
2

+ 6∆tλ2
E

∫ (k+1)∆t

k∆t

|h(Z1(s), γ̄(s))|2 ds

}
.
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Then applying Itô and martingale isometries, Fubini’s theorem and the growth
bounds, we have

E sup
t∈[0,T ]

|Y (t) − Z1(t)|
2

≤ max
0≤k≤T/∆t−1

{
6∆tL

∫ (k+1)∆t

k∆t

(
2 + E|Z1(s)|

2 + E|Z2(s)|
2
)

ds

+ 12

∫ (k+1)∆t

k∆t

E|g(Z1(s))|
2 ds + 24λ

∫ (k+1)∆t

k∆t

E|h(Z1(s), γ̄(s))|2 ds

+ 6∆tλ2

∫ (k+1)∆t

k∆t

E|h(Z1(s), γ̄(s))|2 ds

}

≤ max
0≤k≤T/∆t−1

{
6∆tL

∫ (k+1)∆t

k∆t

2 + E|Z1(s)|
2 + E|Z2(s)|

2 ds

+ 12L

∫ (k+1)∆t

k∆t

1 + E|Z1(s)|
2 ds

+ 24λL

∫ (k+1)∆t

k∆t

1 + E|Z1(s)|
2 + E|γ̄(s)|2 ds

+ 6∆tλ2L

∫ (k+1)∆t

k∆t

1 + E|Z1(s)|
2 + E|γ̄(s)|2 ds

}
.

Now, on [k∆t, (k + 1)∆t], Z1 ≡ Yk, Z2 ≡ Yk+1 and γ̄ ≡ γk. So

E sup
t∈[0,T ]

|Y (t) − Z1(t)|
2 ≤ 6∆tL(2∆t + 2 + 4λ + ∆tλ2 + 4λB1 + ∆tλ2B1)

+ 6∆tL(2∆t + 4λ + ∆tλ2)C1(1 + E|X(0)|2)

≤ C3∆t(1 + E|X(0)|2),

showing (17).
A similar analysis gives (18).

We are now in a position to prove our strong convergence result.

Theorem 3.4. Under assumption (2) for some q > 1 and assumptions (3) and
(4), there exists ∆t⋆ > 0 and C5 = C5(q) such that for all 0 < ∆t ≤ ∆t⋆,

E sup
t∈[0,T ]

|Y (t) − X(t)|2 ≤ C5∆t1−
1
q . (19)
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Proof. By construction,

Y (t) − X(t) =

∫ t

0

(1 − θ)
[
f(Z1(s)) − f(X(s−))

]
+ θ
[
f(Z2(s)) − f(X(s−))

]
ds

+

∫ t

0

g(Z1(s)) − g(X(s−)) dW (s)

+

∫ t

0

h(Z1(s), γ̄(s)) − h(X(s−), γ(s−)) dN(s)

=

∫ t

0

(1 − θ)
[
f(Z1(s)) − f(X(s−))

]
+ θ
[
f(Z2(s)) − f(X(s−))

]
ds

+

∫ t

0

g(Z1(s)) − g(X(s−)) dW (s)

+

∫ t

0

h(Z1(s), γ̄(s)) − h(Z1(s), γ(s−)) dN(s)

+

∫ t

0

h(Z1(s), γ(s−)) − h(X(s−), γ(s−)) dN(s).

(20)

Now for any 0 ≤ t̂ ≤ T we have from [14], the bounds

E sup
t∈[0,t̂]

∣∣∣∣
∫ t

0

(1 − θ)
[
f(Z1(s)) − f(X(s−))

]
+ θ
[
f(Z2(s)) − f(X(s−))

]
ds

∣∣∣∣
2

≤ 2TK

∫ t̂

0

E|Z1(s) − X(s−)|2 + E|Z2(s) − X(s−)|2 ds,

(21)

E sup
t∈[0,t̂]

∣∣∣∣
∫ t

0

g(Z1(s)) − g(X(s−)) dW (s)

∣∣∣∣
2

≤ 4K

∫ t̂

0

E|Z1(s) − X(s−)|2 ds (22)

and

E sup
t∈[0,t̂]

∣∣∣∣
∫ t

0

h(Z1(s), γ(s−))−h(X(s−), γ(s−)) dN(s)

∣∣∣∣
2

≤ (8λ + 2Tλ2)K

∫ t̂

0

E|Z1(s) − X(s−)|2 ds

(23)

We also have

E sup
t∈[0,t̂]

∣∣∣∣
∫ t

0

h(Z1(s), γ̄(s)) − h(Z1(s), γ(s−)) dN(s)

∣∣∣∣
2

≤ 2E sup
t∈[0,t̂]

∣∣∣∣
∫ t

0

h(Z1(s), γ̄(s)) − h(Z1(s), γ(s−)) dÑ (s)

∣∣∣∣
2

+ 2λ2
E sup

t∈[0,t̂]

∣∣∣∣
∫ t

0

h(Z1(s), γ̄(s)) − h(Z1(s), γ(s−)) ds

∣∣∣∣
2

≤ 8E

∣∣∣∣
∫ t̂

0

h(Z1(s), γ̄(s)) − h(Z1(s), γ(s−)) dÑ (s)

∣∣∣∣
2

+ 2λ2t̂ E

[∫ t̂

0

|h(Z1(s), γ̄(s)) − h(Z1(s), γ(s−))|2 ds

]
,
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where we have applied the Doob martingale inequality and the Cauchy-Schwarz
inequality.

We may now apply the martingale isometry and then Lipschitz condition (4), to
get

E sup
t∈[0,t̂]

∣∣∣∣
∫ t

0

h(Z1(s), γ̄(s)) − h(Z1(s), γ(s−)) dN(s)

∣∣∣∣
2

≤ 8λE

[∫ t̂

0

∣∣h(Z1(s), γ̄(s)) − h(Z1(s), γ(s−))
∣∣2 ds

]

+ 2λ2TE

[∫ t̂

0

∣∣h(Z1(s), γ̄(s)) − h(Z1(s), γ(s−))
∣∣2 ds

]

≤ 2λ(4 + λT )KE

[∫ t̂

0

|γ̄(s) − γ(s−)|2 ds

]

≤ 2λ(4 + λT )K

(
M̂−1∑

n=0

E

[∫ tn+1

tn

|γ̄(s) − γ(s−)|2 ds

])
, (24)

where M̂ is the smallest integer such that M̂∆t ≥ t̂.
Now the number of nonzero terms in the summation in (24) is a random variable

that is not independent of the summands. To obtain a useful bound we apply
Young’s inequality (10) to get

E

[∫ tn+1

tn

|γ̄(s) − γ(s−)|2 ds

]
= E

[
1{∆Nn≥1}

∫ tn+1

tn

|γ̄(s) − γ(s−)|2 ds

]

≤

(
q − 1

q

)
ε1/(q−1)

E

[
1{∆Nn≥1}

]
+

1

qε
E

[(∫ tn+1

tn

|γ̄(s) − γ(s−)|2 ds

)q
]
.

(25)

To bound the integral under the second expectation in (25), we can apply the
Hölder inequality as follows

(∫ tn+1

tn

|γ̄(s) − γ(s−)|2 ds

)q

=

(∫ tn+1

tn

1 · |γ̄(s) − γ(s−)|2 ds

)q

≤

(∫ tn+1

tn

ds

)q−1 ∫ tn+1

tn

|γ̄(s) − γ(s−)|2q ds

= ∆tq−1

∫ tn+1

tn

|γ̄(s) − γ(s−)|2q ds.

Hence, taking expectations,

E

[(∫ tn+1

tn

|γ̄(s) − γ(s−)|2 ds

)q
]
≤ ∆tq−1

E

[∫ tn+1

tn

|γ̄(s) − γ(s−)|2q ds

]
. (26)

Using (26) in (25), applying Fubini’s theorem and the bound

E

[
|γ̄(s) − γ(s−)|2q

]
≤ 22q−1

(
E

[
|γ̄(s)|2q

]
+ E

[
|γ(s−)|2q

])
,
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which follows from Hölder’s inequality, we find that

E

[∫ tn+1

tn

|γ̄(s) − γ(s−)|2 ds

]

≤

(
q − 1

q

)
ε1/(q−1)

E

[
1{∆Nn≥1}

]
+

∆tq−1

qε
E

[∫ tn+1

tn

|γ̄(s) − γ(s−)|2q ds

]

≤

(
q − 1

q

)
ε1/(q−1)

P
(
∆Nn ≥ 1

)
+

∆tq−1

qε

∫ tn+1

tn

E|γ̄(s) − γ(s−)|2q ds

≤

(
q − 1

q

)
ε1/(q−1)λ∆t +

∆tq−1

qε
22q−1

∫ tn+1

tn

E|γ̄(s)|2q + E|γ(s−)|2q ds

≤

(
q − 1

q

)
ε1/(q−1)λ∆t +

22qB

qε
∆tq.

Then, by choosing ε = ∆t(q−1)2/q and simplifying, we get

E

[∫ tn+1

tn

|γ̄(s) − γ(s−)|2 ds

]
≤

1

q

(
(q − 1)λ + 22qB

)
∆t2−1/q. (27)

Inserting (27) into (24) gives

E sup
t∈[0,t̂]

∣∣∣∣
∫ t

0

h(Z1(s), γ̄(s)) − h(Z1(s), γ(s−)) dN(s)

∣∣∣∣
2

≤ 2λ(4 + λT )K

M̂−1∑

n=0

1

q

(
(q − 1)λ + 22qB

)
∆t2−1/q

=
2λ(4 + λT )K

q

(
(q − 1)λ + 22qB

)
M̂∆t2−1/q

≤
2λ(4 + λT )TK

q

(
(q − 1)λ + 22qB

)
∆t1−1/q, (28)

as M̂∆t ≤ M∆t = T .
Now, using the bounds (21), (22), (23) and (28) it follows from (20) that

E sup
t∈[0,t̂]

|Y (t) − X(t)|2

≤ 4E sup
t∈[0,t̂]

∣∣∣∣
∫ t

0

(1 − θ)
(
f(Z1(s)) − f(X(s−))

)
− θ
(
f(Z2(s)) − f(X(s−))

)
ds

∣∣∣∣
2

+ 4E sup
t∈[0,t̂]

∣∣∣∣
∫ t

0

g(Z1(s)) − g(X(s−)) dW (s)

∣∣∣∣
2

+ 4E sup
t∈[0,t̂]

∣∣∣∣
∫ t

0

h(Z1(s), γ(s−)) − h(X(s−), γ(s−)) dN(s)

∣∣∣∣
2

+ 4E sup
t∈[0,t̂]

∣∣∣∣
∫ t

0

h(Z1(s), γ̄(s)) − h(Z1(s), γ(s−)) dN(s)

∣∣∣∣
2
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That is,

E sup
t∈[0,t̂]

|Y (t) − X(t)|2

≤ 8KT

∫ t̂

0

E|Z1(s) − X(s−)|2 + E|Z2(s) − X(s−)|2 ds

+ 16K

∫ t̂

0

E|Z1(s) − X(s−)|2 ds

+ 32λK

∫ t̂

0

E|Z1(s) − X(s−)|2 ds + 8λ2KT

∫ t̂

0

E|Z1(s) − X(s−)|2 ds

+
8λKT (4 + λT )

q

(
(q − 1)λ + 22qB

)
∆t1−1/q.

Hence,

E sup
t∈[0,t̂]

|Y (t) − X(t)|2

≤ (8KT + 16K + 32λK + 8λ2KT )

∫ t̂

0

E|Z1(s) − X(s−)|2 ds

+ 8KT

∫ t̂

0

E|Z2(s) − X(s−)|2 ds

+
8λKT (4 + λT )

q

(
(q − 1)λ + 22qB

)
∆t1−1/q

≤ 16K(T + 2 + 4λ + λ2T )

∫ t̂

0

E|Z1(s) − Y (s)|2 + E|Y (s) − X(s−)|2 ds

+ 16KT

∫ t̂

0

E|Z2(s) − Y (s)|2 + E|Y (s) − X(s−)|2 ds

+
8λKT (4 + λT )

q

(
(q − 1)λ + 22qB

)
∆t1−1/q.

Lemma 3.3 then gives

E sup
t∈[0,t̂]

|Y (t) − X(t)|2

≤ 16K(T + 2 + 2λ + λ2T )TC3∆t(1 + E|X(0)|2)

+ 16KT 2C4∆t(1 + E|X(0)|2)

+
8λKT (4 + λT )

q

(
(q − 1)λ + 22qB

)
∆t1−1/q

+ 16K(2T + 2 + 4λ + λ2T )

∫ t̂

0

E sup
t∈[0,s]

|Y (t) − X(t−)|2 ds

≤ 16K(2T + 2 + 4λ + λ2T )

∫ t̂

0

E sup
t∈[0,s]

|Y (t) − X(t−)|2 ds

+ D1∆t1−1/q.

The result (19) follows from an application of Gronwall’s inequality.
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3.1. Numerical Test. In this section we give a numerical experiment that corrob-
orates the strong convergence theory. For convenience, we look at the strong end
point error

e∆t := E|YM − X(T )|, where M∆t = T.

From Theorem 3.4 we have
e∆t ≤ C5∆t

1
2
−δ, (29)

where δ = 1/q, for sufficiently small ∆t.
For simplicity, we have chosen the case where f , g and h are multiplicatively

linear; that is, f(X(t)) ≡ µX(t), g(X(t)) ≡ σX(t) and h(γ(t), X(t)) ≡ γ(t)X(t).
We chose the distribution for γ to be log-normal, specifically log Y ∼ N(0.1, 0.01).
In this case all 2qth moments are bounded, so (2) holds for any q. We note that
this type of jump SDE is a standard asset price model in mathematical finance.
We chose drift and volatility parameters of µ = 1.07 and σ = 0.4, and initial value
X(0) = 1. As our numerical method we use the θ = 0 version, that is, the natural
extension of the explicit Euler-Maruyama scheme.

We simulated 20,000 discretized jump-SDE paths over [0, 1] with at discretization
level h = 2−20, retaining the same jump profile for each path. For each sample path,
Euler–Maruyama was applied for four different stepsizes: ∆t = 2q−1h for 1 ≤ q ≤ 4.
We then took the sample mean of the endpoint errors over the sample paths, thus
approximating the strong error e∆t for each stepsize.

If the inequality (29) holds with approximate equality, then taking logs gives

log e∆t ≈ log C +

(
1

2
− δ

)
log ∆t .

10
−6

10
−5

10
−1

10
0

∆t

E
|Y

M
−

X
(T

)|

Figure 2. Strong error plot for jump-SDE Euler-Maruyama ap-
proximation with random jump magnitudes

Figure 2 shows the plot of our approximation to e∆t against ∆t on a log–log
scale (solid line), we have also superimposed a reference slope of one-half (broken
line). The vertical lines give approximate 95% confidence intervals for the sample
means. We can see that there is a good match to the reference line. If we further
assume a power law e∆t = C∆tα for some constants C and α, so that log e∆t =
log C +α log ∆t, we can compute a least squares fit for α. Doing so yields the value
α = 0.6092 with least squares residual of 0.0427. Overall, this is consistent with
our result that the strong error is of order 1

2 − δ for any δ > 0.
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4. Mean-Square Stability. In this section we consider stability issues, extending
the analysis in [14] from a constant jump magnitude to the random case. Through-
out this section, our use of the term stability is always to be interpreted in the
mean-square sense, rather than, for example, pathwise [1].

We consider the linear multiplicative test equation where f(x) = µx, g(x) = σx
and h(x, y) = yx in (1), so that

dX(t) = µX(t−) dt + σX(t−) dW (t) + γ(t)X(t−) dN(t), (30)

assuming X(0) 6= 0 with probability 1. Here µ and σ are constants and we recall
that γ(t) is defined in (7). This problem has explicit solution

X(t) = X(0) exp

((
µ −

1

2
σ2

)
t + σW (t)

)N(t)∏

i=1

(1 + γi).

It can easily be shown that

E




N(t)∏

i=1

(1 + γi)
2


 = eλtE[γ(2+γ)]

and so,

E
[
X(t)2

]
= E

[
X(0)2

]
e(2µ+σ2+2λE[γ]+λE[γ2])t.

Hence, mean-square stability (of the zero solution) in (30) may be characterised by

lim
t→∞

E
[
X(t)2

]
= 0 ⇐⇒ 2µ + σ2 + 2λE[γ] + λE[γ2] < 0. (31)

Next we look at the corresponding mean-square stability property lim
n→∞

E
[
X2

n

]
=

0 for the theta method applied to (30). Following the traditional numerical analysis
viewpoint, our aim is to quantify the range of stepsizes for which the numerical
method matches the SDE.

4.1. Stability of the Theta Method. Applying the theta method (8) to (30)
gives the recurrence

Yn+1 = Yn + ((1 − θ)µYn + θµYn+1)∆t + σYn∆Wn + γnYn∆Nn. (32)

For the implicit case, θ > 0, we require µ∆tθ 6= 1 in order for the method to be well
defined. Rearranging, then squaring and taking expectations of both sides gives

(1 − θµ∆t)2E
[
Y 2

n+1

]
= E

[
Y 2

n

]
E

[
(1 + (1 − θ)µ∆t + σ∆Wn + γn∆Nn)

2
]
.

The Wiener increments satisfy E [∆Wn] = 0 and E
[
∆W 2

n

]
= ∆t, and the Poisson

increments satisfy E [∆Nn] = λ∆t and E
[
∆N2

n

]
= λ∆t(1 + λ∆t). Hence, by the

independence of the increments, we find that

(1 − θµ∆t)2E
[
Y 2

n+1

]
=E

[
Y 2

n

] (
1 + ∆t

(
2(1 − θ)µ + σ2 + λE [γ(2 + γ)]

)

+ ∆t2
(
(1 − θ)2µ2 + 2(1 − θ)µλE[γ] + λ2

E
[
γ2
]))

.

This leads to the mean-square stability characterisation

lim
n→∞

E
[
Y 2

n

]
= 0 ⇐⇒

∆t
(
(1 − 2θ)µ2 + 2(1 − θ)µλE[γ] + λ2

E
[
γ2
])

< −
(
2µ + σ2 + 2λE[γ] + λE

[
γ2
])

.

(33)
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We observe that the right-hand side in (33) appears in the mean-square stability
characterisation for the underlying SDE in (31). It follows immediately from (31)
and (33) that (a) if the SDE is stable then the numerical method will also be stable
for all sufficiently small ∆t, and, conversely, (b) if the SDE is unstable then the
numerical method will also be unstable for all sufficiently small ∆t. However, by
analysing the characterisations more carefully, we can be more precise.

4.2. Euler-Maruyama. Taking θ = 0 in (32) gives the explicit Euler-Maruyama
(EM) method, for which we have the following result.

Lemma 4.1. Suppose E
[
(µ + λγ)2

]
6= 0. Then for the Euler-Maruyama method

applied to (30) we have

1. problem stable ⇒ EM stable for

∆t <

∣∣2µ + σ2 + 2λE[γ] + λE[γ2]
∣∣

E [(µ + λγ)2]
,

2. problem unstable ⇒ EM unstable for all ∆t > 0.

Proof. Both results follow directly from (31) and the θ = 0 case of (33).

We note that this result gives a clean generalization of the stability behaviour for
explicit Euler on determinstic ordinary differential equations and standard SDEs.
However, as we show in the next subsection, moving to a random jump magintude
generally degrades the stability of implicit methods.

4.3. General θ. In [14], which deals with the case of constant jump magnitude, γ,
it was shown that jumps can affect stability in the sense that

1. there exist
{
µ, σ, λ, γ

}
for which the problem is stable and the theta method

is stable for all ∆t > 0, even when 0 < θ < 1
2 ,

2. given any ε > 0, there exist
{
µ, σ, λ, γ

}
for which the problem is unstable,

yet the theta method is stable for all ∆t > ε.
3. if the method is stable for some θ⋆, then it is not true in general that it is

stable for the same parameter set and fixed ∆t for θ > θ⋆.

However, one result that did carry through from the regular SDE case to the
constant jump magnitude case was the A-stability property, for 1

2 ≤ θ ≤ 1, when γ
is positive. Here, A-stability means that “problem stable ⇒ method stable for all
∆t”.

The following result shows that this property fails to hold, in general, when
random jump magnitudes are considered.

Theorem 4.2. The theta method is not A-stable for any θ ∈
[

1
2 , 1
]

for random

jump magnitudes of positive mean. More precisely, there exists
{
µ, σ, λ, γ

}
, with

E[γ] > 0, satisfying the stability condition (31) with the property that for any 1
2 ≤

θ ≤ 1, there exists a finite ∆tθ such that the theta method is unstable for all ∆t >
∆tθ.

Proof. From (31) and (33), it is sufficient to show that there exists some random
variable γ such that

2µ + σ2 + 2λE[γ] + λE
[
γ2
]

< 0

and

(1 − 2θ)µ2 + 2(1 − θ)µλE[γ] + λ2
E
[
γ2
]

> 0
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for all θ ∈
[
1
2 , 1
]
.

Take µ = −0.7, σ = 0.1, λ = 2 and γ to be a random variable such that
E[γ] = 0.2, E

[
γ2
]

= 0.25. In this case, it is easy to see that the problem is
stable by (31) and it then follows that the stability condition in (33) becomes
∆t < 9/(93 − 42θ).

5. Concluding Remarks. Implicit methods are useful both for (a) establishing
existence and convergence on nonlinear problems [16] and (b) obtaining good long
term stability properties [13]. In this work, we have extended previous results on
strong convergence and mean-square stability [14] to the case of jump-SDEs where
the jump magnitude is a random variable. This problem class is now widely used
in mathematical finance.

We showed that under appropriate moment bounds on the jump magnitude, an
implicit theta method gives strong convergence rate arbitrarily close to order 1

2 ,
and our numerical results supported the analysis. On a linear test problem, we
characterised mean-square stability of these methods and, in particular, showed
that an A-stability result for constant jump magnitude is lost in this more general
setting.

There is much scope for further work in the context of random jump magnitudes.
For example, it would clearly be of interest to extend the strong convergence theory
to the case where coefficients are not globally Lipschitz, and to develop and analyse
new methods that maintain the A-stability of the underlying deterministic methods.

REFERENCES

[1] J. Appleby, A. Rodkina and H. Schurz, Pathwise non-exponential decay rates of solutions

of scalar nonlinear stochastic differential equations, Discrete Contin. Dyn. Syst. Ser. B, 6

(2006), 667–696.
[2] N. Bruti-Liberati and E. Platen, On the strong approximation of jump-diffusion processes,

Tech. Rep. QFRC Research Paper 157, University of Technology, Sydney, (2005).
[3] R. Cont and P. Tankov, “Financial Modelling with Jump Processes,” Chapman & Hall/CRC,

Florida, 2004.
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