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Abstract Positive results are derived concerning the long time dynamics of fixed
step size numerical simulations of stochastic differential equation systems with
Markovian switching. Euler–Maruyama and implicit theta-method discretisations are
shown to capture exponential mean-square stability for all sufficiently small time-steps
under appropriate conditions. Moreover, the decay rate, as measured by the second
moment Lyapunov exponent, can be reproduced arbitrarily accurately. New finite-time
convergence results are derived as an intermediate step in this analysis. We also show,
however, that the mean-square A-stability of the theta method does not carry through
to this switching scenario. The proof techniques are quite general and hence have the
potential to be applied to other numerical methods.
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1 Introduction

Stochastic differential equation (SDE) models are now widely used in many applica-
tion areas. Recently, models that switch between different SDE systems according to
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an independent Markov chain have been proposed. These hybrid SDEs are designed
to account for circumstances where an abrupt change may take place in the nature of
a physical process. In particular, important examples arise in mathematical finance,
where a market may switch between two or more distinct modes (nervous, confident,
cautious,…). For examples of such regime switching or Markov-modulated dynamics
models, see, for example [9,18,20] and the references therein.

Generally, hybrid SDEs cannot be solved analytically and hence numerical methods
must be used. Although it is intuitively straightforward to adapt existing SDE methods
to the hybrid case, the traditional numerical analysis issues associated with the resulting
methods have only recently received attention. Finite time convergence analysis of an
Euler–Maruyama type method is given in [20]. In this work, we consider long time
dynamics, and in particular focus on exponential mean-square stability. Our work
therefore builds on the well known and highly informative analysis for deterministic
problems and its more recent extension to SDEs [2,4–8,10,11,14–16].

The issue that we address is: can a numerical method reproduce the stability beha-
viour of the underlying hybrid SDE? In the general nonlinear case for (non-hybrid)
SDEs it is known that Euler–Maryuma cannot guarantee to preserve exponential mean-
square stability, even for arbitrarily small step sizes; see [8, Lemma 4.1]. Hence, in
studying hybrid SDEs, we look for conditions under which positive results can be
derived in the small step size setting. As further motivation for the small step size ana-
lysis, we also point out (in Sect. 6.2) that a mean-square generalization of A-stability,
that is, unconditional numerical stability on stable problems, does not carry through
to the hybrid setting.

Section 2 sets up the hybrid SDE and Euler–Maruyama method. In Sect. 3 we look
at the case of a scalar, linear problem and obtain a precise result. Section 4 then derives
results for nonlinear systems. The analysis in Sect. 4 makes use of two properties of
the Euler–Maruyama method: (a) a finite-time convergence property and (b) a flow
property. To emphasize the generality of the analysis, we show in Sects. 5 and 6 that
the results extend to a class of stochastic theta methods. A by-product of this work is
a finite-time strong convergence analysis of implicit methods for hybrid SDEs.

2 Hybrid SDEs and the Euler–Maruyama method

Throughout this paper, we let B(t) = (B1(t), . . . , Bm(t))T be an m-dimensional
Brownian motion. Also we let r(t) be a right-continuous Markov chain taking values
in a finite state space S = {1, 2, . . . , N } and independent of the Brownian motion
B(·). The corresponding generator is denoted Γ = (γi j )N×N , so that

P{r(t + δ) = j | r(t) = i} =
{

γi jδ + o(δ) : if i �= j,
1 + γi jδ + o(δ) : if i = j,

where δ > 0. Here γi j is the transition rate from i to j and γi j > 0 if i �= j
while γi i = −∑

j �=i γi j . We note that almost every sample path of r(·) is a right
continuous step function with a finite number of sample jumps in any finite subinterval
of R+ := [0,∞).
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Hybrid stochastic differential equations 297

In this paper, we need to work on the probability space with a filtration {F t }t≥0
satisfying the usual conditions (i.e., it is increasing and right continuous while F0
contains all P-null sets). To construct such a filtration, we denote by N the collection
of P-null sets, i.e. N = {A ∈ F : P(A) = 0}. For each t ≥ 0, define Ft = σ(F̄t ∪N ),
where F̄t is the σ -algebra generated by the Brownian motion and the Markov chain,
namely F̄t = σ(B(s), r(s) : 0 ≤ s ≤ t}. In other words, the filtration {Ft }t≥0 we will
work on is the augmentation under P of the natural filtration {F̄t }t≥0 generated by the
Brownian motion and the Markov chain.

We will use | · | to denote the Euclidean norm of a vector and the trace norm of
a matrix. We will denote the indicator function of a set G by IG . For x ∈ R, int(x)

denotes the integer part of x . We let L2
Ft

(Ω; R
n, S) denote the family of Ft -measurable

random variables of the form (ξ, ρ), where ξ is R
n-valued with E|ξ |2 < ∞ and ρ is

discrete and S-valued.
We consider n-dimensional hybrid Itô SDEs having the form

dx(t) = f (x(t), r(t))dt + g(x(t), r(t))d B(t) (1)

on t ≥ 0 with initial data x(0) = x0 and r(0) = r0 such that (x(0), r(0)) ∈
L2

F0
(Ω; R

n, S). We assume that

f : R
n × S → R

n and g : R
n × S → R

n×m

are sufficiently smooth for the existence and uniqueness of the solution (see, e.g.
[13,19]). We also assume that

f (0, i) = 0 and g(0, i) = 0 ∀i ∈ S, (2)

so equation (1) admits the zero solution, x(t) ≡ 0, whose stability is the issue under
consideration.

We now introduce an Euler–Maruyama based computational method, which was
shown in [20] to be strongly convergent. The method makes use of the following
lemma (see [1]).

Lemma 1 Given ∆ > 0, let r∆
k = r(k∆) for k ≥ 0. Then {r∆

k , k = 0, 1, 2, . . .} is a
discrete Markov chain with the one-step transition probability matrix

P(∆) = (Pi j (∆))N×N = e∆Γ. (3)

Given a fixed step size ∆ > 0 and the one-step transition probability matrix P(∆) in
(3), the discrete Markov chain {r∆

k , k = 0, 1, 2, . . .} can be simulated as follows. Let
r∆

0 = i0 and compute a pseudo-random number ξ1 from the uniform (0, 1) distribution.
Define

r∆
1 =

⎧⎪⎨
⎪⎩

i if i ∈ S − {N } such that∑i−1
j=1 Pr∆

0 , j (∆) ≤ ξ1 <
∑i

j=1 Pr∆
0 , j (∆),

N if
∑N−1

j=1 Pr∆
0 , j (∆) ≤ ξ1,

123



298 D. J. Higham et al.

where we set
∑0

i=1 Pr∆
0 , j (∆) = 0 as usual. In other words, we ensure that the proba-

bility of state s being chosen is given by P(r∆
1 = s) = Pr∆

0 ,s(∆). Generally, having

computed r∆
0 , r∆

1 , r∆
2 , . . . , r∆

k , we compute r∆
k+1 by drawing a uniform (0, 1) pseudo-

random number ξk+1 and setting

r∆
k+1 =

⎧⎪⎨
⎪⎩

i if i ∈ S − {N } such that∑i−1
j=1 Pr∆

k , j (∆) ≤ ξk+1 <
∑i

j=1 Pr∆
k , j (∆),

N if
∑N−1

j=1 Pr∆
k , j (∆) ≤ ξk+1.

This procedure can be carried out independently to obtain more trajectories.
Having explained how to simulate the discrete Markov chain, we now define the

Euler–Maruyama (EM) approximation for the hybrid SDE (1). The discrete approxi-
mation Xk ≈ x(tk), with tk = k∆, is formed by simulating from X0 = x0, r∆

0 = r0
and, generally,

Xk+1 = Xk + f (Xk, r∆
k )∆ + g(Xk, r∆

k )∆Bk, (4)

where ∆Bk = B(tk+1) − B(tk). In words, r∆
k defines which of the N SDEs is cur-

rently active, and we apply EM to this SDE. Compared with the numerical analysis
of standard SDEs, a new source of error arises in the method (4); the switching can
only occur at discrete time points {tk}, whereas for the underlying continuous-time
problem (1) the Markov chain can produce a switch at any point in time.

Strong convergence of this EM method was studied in [20]. In this paper, our
emphasis is on (a) analysing mean-square stability and (b) deriving and analysing
appropriate implicit methods.

3 Scalar linear problems

We begin our study with the special but important case of scalar linear hybrid SDEs
of the form

dx(t) = µ(r(t))x(t)dt + σ(r(t))x(t)d B(t), x(0) �= 0 a.s., (5)

on t ≥ 0. Here, to avoid complicated notations, we let B(t) be a scalar Brownian
motion while µ and σ are mappings from S → R. One motivation for studying this
class is that sharp stability results can be derived, allowing for comparison with the
more general nonlinear results that we derive in subsequent sections. However, we
also note that volatility-switching geometric Brownian motion is a realistic model in
mathematical finance [9] and hence the qualitative behaviour of numerical methods
on this model is of independent interest.

It is known that the linear hybrid SDE (5) has the explicit solution

x(t) = x0 exp

⎧⎨
⎩

t∫
0

[µ(r(s)) − 1
2σ 2(r(s))]ds +

t∫
0

σ(r(s))d B(s)

⎫⎬
⎭ . (6)
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Making use of this explicit form we are able to discuss mean square exponential
stability precisely.

As a standing hypothesis, we assume moreover in this section that the Markov chain
is irreducible. This is equivalent to the condition that for any i, j ∈ S, we can find
i1, i2, . . . , ik ∈ S such that

γi,i1γi1,i2 · · · γik , j > 0.

Note that Γ always has an eigenvalue 0. The algebraic interpretation of irreducibility
is rank(Γ ) = N − 1. Under this condition, the Markov chain has a unique stationary
(probability) distribution π = (π1, π2, . . . , πN ) ∈ R

1×N which can be determined
by solving πΓ = 0, subject to

∑N
j=1 π j = 1 and π j > 0 for all j ∈ S. The following

theorem gives a necessary and sufficient condition for the SDE (5) to be exponentially
stable in mean square.

Theorem 1 The second moment Lyapunov exponent of the SDE (5) is

lim
t→∞

1

t
log(E|x(t)|2) =

∑
j∈S

π j (2µ j + σ 2
j ), (7)

where we write µ( j) = µ j and σ( j) = σ j . Hence the SDE (5) is exponentially stable
in mean square if and only if

∑
j∈S

π j (2µ j + σ 2
j ) < 0. (8)

Proof It is well known (see, e.g., [1]) that almost every sample path of the Markov
chain r(·) is a right continuous step function with a finite number of sample jumps in
any finite subinterval of R+ := [0,∞). Hence there is a sequence of finite stopping
times 0 = τ0 < τ1 < · · · < τk → ∞ such that

r(t) =
∞∑

k=0

r(τk)I[τk ,τk+1)(t), t ≥ 0.

For any integer z > 0, it then follows from (6) that

|x(t ∧ τz)|2 = |x0|2 exp

⎧⎨
⎩

t∧τz∫
0

[2µ(r(s)) − σ 2(r(s))]ds

+
t∧τz∫
0

2σ(r(s))d B(s)

⎫⎬
⎭
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= ξ(t ∧ τz) exp

⎧⎨
⎩−

t∧τz∫
0

2σ 2(r(s))ds

+

t∧τz∫
0

2σ(r(s))d B(s)

⎫⎬
⎭

= ξ(t ∧ τz)

z−1∏
k=0

ζk,

where

ξ(t ∧ τz) = |x0|2 exp

⎧⎨
⎩

t∧τz∫
0

[2µ(r(s)) + σ 2(r(s))]ds

⎫⎬
⎭ ,

ζk = exp
{
−2σ 2(r(t ∧ τk))(t ∧ τk+1 − t ∧ τk) + 2σ(r(t ∧ τk))

× [B(t ∧ τk+1) − B(t ∧ τk)]
}

.

Let Gt = σ({r(u)}u≥0, {B(s)}0≤s≤t ), that is, the σ -algebra generated by {r(u)}u≥0
and {B(s)}0≤s≤t . Compute

E|x(t ∧ τz)|2 = E

(
ξ(t ∧ τz)

z−1∏
k=0

ζk

)

= E

{
E

(
ξ(t ∧ τz)

z−1∏
k=0

ζk

∣∣∣Gt∨τz−1

)}

= E

{[
ξ(t ∧ τz)

z−2∏
k=0

ζk

]
E

(
ζz−1

∣∣∣Gt∨τz−1

)}
. (9)

Define

ζz−1(i) = exp
{
−2σ 2

i (t ∧ τz − t ∧ τz−1) + 2σi [B(t ∧ τz) − B(t ∧ τz−1)]
}

, i ∈ S.

By the well-known exponential martingale of a Brownian motion we have
Eζz−1(i) = 1, for all i ∈ S. Then

E

(
ζz−1

∣∣∣Gt∨τz−1

)
= E

(∑
i∈S

I{r(t∧τz−1)=i}ζz−1(i)
∣∣∣Gt∨τz−1

)

=
∑
i∈S

I{r(t∧τz−1)=i}E
(
ζz−1(i)

∣∣∣Gt∨τz−1

)
.
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But, noting that t ∧ τz − t ∧ τz−1 is Gt∨τz−1 -measurable while B(t ∧ τz)− B(t ∧ τz−1)

is independent of Gt∨τz−1 , we have

E

(
ζz−1(i)

∣∣∣Gt∨τz−1

)
= Eζz−1(i) = 1,

whence E

(
ζz−1

∣∣∣Gt∨τz−1

)
= 1. Substituting this into (9) yields

E|x(t ∧ τz)|2 = E

[
ξ(t ∧ τz)

z−2∏
k=0

ζk

]
.

Repeating this procedure implies E|x(t ∧ τz)|2 = Eξ(t ∧ τz). Letting z → ∞ we
obtain

E|x(t)|2 = Eξ(t) = E

⎡
⎣|x0|2 exp

⎡
⎣

t∫
0

[2µ(r(s)) + σ 2(r(s))]ds

⎤
⎦
⎤
⎦ . (10)

Now, by the ergodic property of the Markov chain (see, e.g. [1]), we have

lim
t→∞

1

t

t∫
0

[2µ(r(s)) + σ 2(r(s))]ds =
∑
j∈S

π j (2µ j + σ 2
j ) := γ a.s. (11)

Let ε > 0 be arbitrary. It follows from (10) that

e−(γ−ε)t
E|x(t)|2 = E

⎡
⎣|x0|2 exp

⎡
⎣−(γ − ε)t +

t∫
0

[2µ(r(s)) + σ 2(r(s))]ds

⎤
⎦
⎤
⎦ .

By (11),

lim
t→∞ exp

⎡
⎣−(γ − ε)t +

t∫
0

[2µ(r(s)) + σ 2(r(s))]ds

⎤
⎦ = ∞ a.s.

Hence

lim
t→∞ e−(γ−ε)t

E|x(t)|2 = ∞,

which implies

E|x(t)|2 ≥ e(γ−ε)t for all sufficiently large t.
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So,

lim inf
t→∞

1

t
log(E|x(t)|2) ≥ γ − ε.

Similarly, we can show

lim sup
t→∞

1

t
log(E|x(t)|2) ≤ γ + ε.

Since ε is arbitrary, the assertion (7) follows. 
�
We remark that for a single linear SDE of the form dx(t) = µx(t)dt +σ x(t)d B(t),

where µ and σ are constants, Theorem 1 reproduces the well-known mean-square sta-
bility characterisation 2µ + σ 2 < 0. On this problem class, it is known that certain
implicit methods, such as the trapezoidal rule, have an A-stability type property—they
match the exponential mean-square stability/instability of the SDE for all ∆ > 0
[6,15,16]. In the more general hybrid case (5), Theorem 1 tells us that the same
quantity, 2µ + σ 2 < 0, appropriately averaged over the states of the Markov chain,
determines the stability. Intuitively, even though a numerical method such as the tra-
pezoidal rule can match the stability properties of a single linear SDE for all ∆ > 0, it
is much more demanding to ask a method to maintain this behaviour over all possible
averages, especially those involving a mixture of individually stable and unstable pro-
blems. In Sect. 6.2 we spell out the details of this argument on a particular example,
and show that the A-stability analogue does not hold for a natural trapezoidal method.
This gives further motivation for the focus in this work on the ∆ → 0 regime.

Given a step size ∆ > 0, the EM method (4) applied to (5) gives X (0) = x0 and

Xk+1 = Xk
[
1 + µ(r∆

k )∆ + σ(r∆
k )∆Bk

]
, k ≥ 1. (12)

We then have the following theorem.

Theorem 2 The EM approximation (12) satisfies

lim
n→∞

1

n∆
log

(
E[X2

n]
)

=
∑
j∈S

π j (2µ j + σ 2
j ) + ∆

∑
j∈S

π j

(
1
2 σ

2
j − (µ j + σ 2

j )
2
)

+O(∆2) (13)

as ∆ → 0. Hence, the numerical method matches the exponential mean-square sta-
bility or instability of the SDE, for sufficiently small ∆.

Proof For any integer z, it follows from (12) that

|Xz+1|2 = |x0|2
z∏

k=0

Yk, where Yk = [
1 + µ(r∆

k )∆ + σ(r∆
k )∆Bk

]2
.
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Using the σ -algebra Gt defined in the proof of Theorem 1, we compute

E|Xz+1|2 = E

(
E

[
|x0|2

z∏
k=0

Yk

∣∣∣Gtz

])
= E

(
|x0|2

z−1∏
k=0

Yk E

[
Yz

∣∣∣Gtz

])
.

But

E

[
Yz

∣∣∣Gtz

]

= E

[
(1 + µ(r∆

z )∆)2 + 2(1 + µ(r∆
z )∆)σ(r∆

z )∆Bk + σ 2(r∆
z )∆B2

k

∣∣∣Gtz

]

= (1 + µ(r∆
z )∆)2 + 2(1 + µ(r∆

z )∆)σ(r∆
z )E(∆Bz|Gtz ) + σ 2(r∆

z )E(∆B2
z |Gtz )

= (1 + µ(r∆
z )∆)2 + 2(1 + µ(r∆

z )∆)σ(r∆
z )E(∆Bz) + σ 2(r∆

z )E(∆B2
z )

= (1 + µ(r∆
z )∆)2 + σ 2(r∆

z )∆.

Hence

E|Xz+1|2 = E

(
|x0|2[(1 + µ(r∆

z )∆)2 + σ 2(r∆
z )∆]

z−1∏
k=0

Yk

)
.

We compute furthermore that

E|Xz+1|2 = E

(
|x0|2[(1 + µ(r∆

z )∆)2 + σ 2(r∆
z )∆]

z−2∏
k=0

Yk E

[
Yz−1

∣∣∣Gtz−1

])
.

But, in the same way as before, we can show that

E

[
Yz−1

∣∣∣Gtz−1

]
= (1 + µ(r∆

z−1)∆)2 + σ 2(r∆
z−1)∆.

Hence

E|Xz+1|2 = E

(
|x0|2

[
z∏

k=z−1

[(1 + µ(r∆
k )∆)2 + σ 2(r∆

k )∆]
]

z−2∏
k=0

Yk

)
.

Repeating this procedure we obtain

E|Xz+1|2 = E

(
|x0|2

z∏
k=0

[(1 + µ(r∆
k )∆)2 + σ 2(r∆

k )∆]
)

,

which we re-write as

E|Xz+1|2 = E

{
|x0|2 exp

[
z∑

k=0

log
(
(1 + µ(r∆

k )∆)2 + σ 2(r∆
k )∆

)]}
. (14)

123
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By the ergodic property of the Markov chain, we have

lim
z→∞

1

z + 1

z∑
k=0

log
(
(1 + µ(r∆

k )∆)2 + σ 2(r∆
k )∆

)

=
∑
j∈S

π j log
(
(1 + µ j∆)2 + σ 2

j ∆
)

=
∑
j∈S

π j

(
(2µ j + σ 2

j )∆ + µ2
j∆

2 − 1
2 (2µ j + σ 2

j )
2∆2 + O(∆3)

)
.

Using this in (14) gives the required result (13). 
�

4 Nonlinear systems

To study exponential mean-square stability for EM (4) on nonlinear systems (1), we
find it convenient to extend the numerical method to continuous time. Thus, we let

X̄(t) = Xk, r̄(t) = r∆
k , for t ∈ [tk, tk+1), (15)

and take our continuous-time EM approximation to be

X (t) = x0 +
t∫

0

f (X̄(s), r̄(s))ds +
t∫

0

g(X̄(s), r̄(s))d B(s). (16)

Note that X (tk) = X̄(tk) = Xk , that is, X (t) and X̄(t) interpolate the discrete nume-
rical solution.

Following the standard definition for SDEs, [3,12], we define exponential stability
in mean square for the hybrid SDE and continuous time numerical method as follows.

Definition 3 The hybrid SDE (1) is said to be exponentially stable in mean square if
there is a pair of positive constants λ and M such that, for all initial data (x0, r(0)) ∈
L2

F0
(Ω; R

n, S),

E|x(t)|2 ≤ ME|x0|2e−λt , ∀t ≥ 0. (17)

We refer to λ as a rate constant and M as a growth constant.

Definition 4 For a given step size ∆ > 0, the EM method (16) is said to be expo-
nentially stable in mean square on the hybrid SDE (1) if there is a pair of positive
constants γ and H such that for all initial data (x0, r0) ∈ L2

F0
(Ω; R

n, S)

E|X (t)|2 ≤ HE|x0|2e−γ t , ∀t ≥ 0. (18)

We refer to γ as a rate constant and H as a growth constant.
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Building on Sect. 3, our aim is to find conditions under which the numerical method
reproduces the stability behaviour of the underlying problem, for sufficiently small ∆.
In order to do this, we introduce some conditions and perform preliminary analysis that
establishes second moment boundedness and an appropriate form of strong conver-
gence under a global Lipschitz assumption. The results and proofs in this section are
an extension of those in [8] from the standard SDE case.

Assumption 5 (Global Lipschitz) There is a positive constant K such that

| f (x, i) − f (y, i)|2 ∨ |g(x, i) − g(y, i)|2 ≤ K |x − y|2 (19)

for all (x, y, i) ∈ R
n × R

n × S.

Recalling (2) we observe from this assumption that the linear growth condition

| f (x, i)|2 ∨ |g(x, i)|2 ≤ K |x |2 (20)

holds for all (x, i) ∈ R
n × S.

Let us now present a number of lemmas that will lead to our “if and only if” result.
First, we derive a basic growth bound.

Lemma 2 If (20) holds, then for all sufficiently small ∆ the continuous EM approxi-
mate solution (16) satisfies, for any T > 0,

sup
0≤t≤T

E|X (t)|2 ≤ Bx0,T , (21)

where Bx0,T = 3E|x0|2e3(T +1)K T . Moreover, the true solution of (1) also obeys

sup
0≤t≤T

E|x(t)|2 ≤ Bx0,T . (22)

Proof By (20), we derive from (16) that, for 0 ≤ t ≤ T ,

E|X (t)|2 ≤ 3E|x0|2 + 2T E

t∫
0

| f (X̄(s), r̄(s)|2ds + 2E

t∫
0

|g(X̄(s), r̄(s)|2ds

≤ 3E|x0|2 + 3(T + 1)K

t∫
0

E|X̄(s)|2ds.
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Since the right-hand side term is non-decreasing in t , we have

sup
0≤t≤t1

E|X (t)|2 ≤ 3E|x0|2 + 3(T + 1)K

t1∫
0

E|X̄(s)|2ds

≤ 3E|x0|2 + 3(T + 1)K

t1∫
0

(
sup

0≤t≤s
E|X (t)|2

)
ds,

for any t1 ∈ [0, T ]. The continuous Gronwall inequality [12] hence yields

sup
0≤t≤T

E|X (t)|2 ≤ 3E|x0|2e3(T +1)K T ,

which is the required assertion (21). Similarly, we can show (22). 
�

The next lemma bounds the effect of replacing the right-continuous Markov chain
by the interpolant of the discrete time Markov chain.

Lemma 3 If (20) holds, then for all sufficiently small ∆, X̄(t) in (15) obeys

E

T∫
0

| f (X̄(s), r(s)) − f (X̄(s), r̄(s))|2ds ≤ βT ∆ sup
0≤t≤T

E|X̄(t)|2 (23)

and

E

T∫
0

|g(X̄(s), r(s)) − g(X̄(s), r̄(s))|2ds ≤ βT ∆ sup
0≤t≤T

E|X̄(t)|2 (24)

for any T > 0, where βT = 4K T N [1 + max1≤i≤N (−γi i )].

Proof Let j = int(T/∆). Then

E

T∫
0

| f (X̄(s), r̄(s)) − f (X̄(s), r(s))|2ds

=
j∑

k=0

E

tk+1∫
tk

| f (X̄(tk), r(tk)) − f (X̄(tk), r(s))|2ds (25)
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with, for convenience, t j+1 being redefined as T . By (20), we compute

E

tk+1∫
tk

| f (X̄(tk), r(tk)) − f (X̄(tk), r(s))|2ds

≤ 2E

tk+1∫
tk

[
| f (X̄(tk), r(tk))|2 + | f (X̄(tk), r(s))|2

]
I{r(s) �=r(tk )}ds

≤ 4KE

tk+1∫
tk

|X̄(tk)|2 I{r(s) �=r(tk )}ds

≤ 4K

tk+1∫
tk

E

[
E

[
|X̄(tk)|2 I{r(s) �=r(tk )}|r(tk)

]]
ds

= 4K

tk+1∫
tk

E

[
E

[
|X̄(tk)|2|r(tk)

]
E
[
I{r(s) �=r(tk )}|r(tk)

]]
ds, (26)

where in the last step we used the fact that X̄(tk) and I{r(s) �=r(tk )} are conditionally
independent with respect to the σ -algebra generated by r(tk). But, by the Markov
property,

E
[
I{r(s) �=r(tk )}|r(tk)

] =
∑
i∈S

I{r(tk )=i}P(r(s) �= i |r(tk) = i)

=
∑
i∈S

I{r(tk )=i}
∑
j �=i

(γi j (s − tk) + o(s − tk))

≤
(

max
1≤i≤N

(−γi i )∆ + o(∆)

)∑
i∈S

I{r(tk )=i}

≤ γ̂ ∆, (27)

where γ̂ = N [1 + max1≤i≤N (−γi i )]. So, in (26)

E

tk+1∫
tk

| f (X̄(tk), r(tk)) − f (X̄(tk), r(s))|2ds ≤ 4K γ̂ ∆

tk+1∫
tk

E|X̄(tk)|2ds.

Substituting this into (25) gives

E

T∫
0

| f (X̄(s), r̄(s)) − f (X̄(s), r(s))|2ds ≤ 4K γ̂ ∆

j∑
k=0

tk+1∫
tk

E|X̄(tk)|2ds
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≤ 4K T γ̂ ∆ sup
0≤t≤T

E|X̄(t)|2,

which is the required assertion (23). We can show (24) similarly. 
�
The next lemma shows that EM has strong finite-time convergence order of at

least 1
2 . This basic property was already derived in [20, Theorem 3.1]. However,

Lemma 4 below establishes a ‘squared error constant’ that is linearly proportional
to sup0≤t≤T E|X (t)|2, and clarifies the dependence of C upon T —these features are
important in the subsequent analysis.

Lemma 4 Under (2) and Assumption 5, for all sufficiently small ∆ the continuous
EM approximation X (t) and true solution x(t) obey

sup
0≤t≤T

E|X (t) − x(t)|2 ≤
(

sup
0≤t≤T

E|X (t)|2
)

CT ∆ (28)

for any T > 0, where

CT = 4(T + 1)[βT + K 2T (1 + 2K )]e8K (T +1)T

and βT has been defined in Lemma 3.

Proof We compute from (1) and (16) that, for 0 ≤ t ≤ T ,

E|X (t) − x(t)|2 ≤ 2T E

t∫
0

| f (X̄(s), r̄(s)) − f (x(s), r(s))|2ds

+2E

t∫
0

|g(X̄(s), r̄(s)) − g(x(s), r(s))|2ds

≤ 4K (T + 1)

t∫
0

E|X̄(s) − x(s)|2ds

+4T E

t∫
0

| f (X̄(s), r̄(s)) − f (X̄(s), r(s))|2ds

+4E

t∫
0

|g(X̄(s), r̄(s)) − g(X̄(s), r(s))|2ds

≤ 4K (T + 1)

t∫
0

E|X̄(s) − x(s)|2ds

+4(T + 1)βT ∆

(
sup

0≤t≤T
E|X̄(t)|2

)
, (29)
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where Lemma 3 has been used. Moreover, note

E|X̄(s) − x(s)|2 ≤ 2E|X̄(s) − X (s)|2 + 2E|X (s) − x(s)|2. (30)

Let k = k(s) = int(s/∆), so k∆ ≤ s < (k + 1)∆. It then follows from (16) that

X (s) − X̄(s) = X (s) − Xk = f (Xk, r∆
k )(s − k∆) + g(Xk, r∆

k )(B(s) − B(k∆)).

Thus, for ∆ < 1/(2K ),

E|X (s) − X̄(s)|2 ≤ 2(∆2 + ∆)KE|Xk |2 ≤ (1 + 2K )∆

(
sup

0≤t≤T
E|X (t)|2

)
. (31)

Combining (29)–(31) yields

E|X (t) − x(t)|2 ≤ 8K (T + 1)

t∫
0

E|X (s) − x(s)|2ds

+4(T + 1)[βT + K 2T (1 + 2K )]∆
(

sup
0≤t≤T

E|X (t)|2
)

.

The continuous Gronwall inequality hence implies that, for any t ∈ [0, T ],

E|X (t) − x(t)|2 ≤
(

sup
0≤t≤T

E|X (t)|2
)

4(T + 1)[βT + K 2T (1 + 2K )]∆e8K (T +1)T ,

which is the required assertion. 
�
Using the bounds from Lemmas 2–4, we now derive two results that relate the

exact and numerical stability behaviour. They can be proved by adapting the proofs in
[8, Lemmas 2.4 and 2.5] to allow for the Markovian switching. For completeness, we
give proofs in the Appendix.

Lemma 5 Let (2) and Assumption 5 hold. Assume that the hybrid SDE (1) is expo-
nentially stable in mean square, satisfying (17). Then there exists a ∆� > 0 such that
for every 0 < ∆ ≤ ∆� the EM method is exponentially stable in mean square on the

SDE (1) with rate constant γ = 1
2 λ and growth constant H = 2Me

1
2 λ[1+(4 log M)/λ].

Proof See the Appendix. 
�
The next lemma gives a result in the opposite direction.

Lemma 6 Let (2) and Assumption (5) hold. Assume that for a step size ∆ > 0, the
numerical method is exponentially stable in mean square with rate constant γ and
growth constant H. If ∆ satisfies

C2T eγ T (∆ + √
∆) + 1 + √

∆ ≤ e
1
4 γ T and CT ∆ ≤ 1, (32)
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where T := 1 + (4 log H)/γ , then the hybrid SDE (1) is exponentially stable in mean

square with rate constant λ = 1
2 γ and growth constant M = 2He

1
2 γ T .

Proof See the Appendix. 
�
Lemmas 5 and 6 lead to the following equivalence result.

Theorem 6 Under (2) and Assumption 5, the hybrid SDE (1) is exponentially stable
in mean square if and only if there exists a ∆ > 0 such that the EM method is
exponentially stable in mean square with rate constant γ , growth constant H, step
size ∆ and global error constant CT for T := 1 + (4 log H)/γ satisfying (32).

Proof The result follows almost immediately from Lemmas 5 and 6. 
�
Theorem 6 is a positive result, showing that the underlying problem and the EM

discretisation have equivalent stability behaviour for sufficiently small step sizes.
Lemmas 5 and 6 produce new rate constants that are within a factor 1

2 of the
given ones. From the proofs, it is clear that we could match the rate constants more
closely at the expense of larger growth factors. Our analysis may thus be interpreted
as showing that upper bounds on the second moment Lyapunov exponents of the
exact and numerical processes can be made arbitrarily close. These ideas could be
formalized by copying directly the approach for non-hybrid SDEs in [8], and hence
we omit the details.

5 Generalised results

Theorem 6 applies to the EM method. However, by examining the proofs of Lemmas 5
and 6 we see that the specific form of the numerical method was not exploited—the
results presented there will hold for any numerical method applied to the SDE (1)
as long as the corresponding continuous approximate solution X (t) obeys the strong
convergence property (28) and the “flow property” defined below. This observation
leads to the more general treatment below.

We suppose that a numerical method is available which, given a step size ∆ > 0,
computes discrete approximations Xk ≈ x(k∆), with X0 = x0. We also suppose that
there is a well-defined interpolation process that extends the discrete approximation
{Xk}k≥1 to a continuous-time approximation {X (t)}t∈R+ , with X (k∆) = Xk . We
require the numerical method to obey the following flow property.

Definition 7 The numerical method is said to obey the flow property if for any T that
is a multiple of ∆, the continuous-time approximation X (t) restricted to [T,∞) is
the same as that when the numerical method is applied to the SDE (1) on t ≥ T with
initial data X (T ) and r(T ).

In other words, under the flow property, if we apply the numerical method to the
SDE

dx(t) = f (x(t), r(t))dt + g(x(t), r(t))d B(t) on t ≥ T = n∆,
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with x(T ) = Xn and r(T ) = r∆
n , producing a continuous-time approximation denoted

by Y (t), then X (t) = Y (t) for t ≥ T .
Next, we formalize the required strong convergence condition.

Condition 8 For all sufficiently small ∆ the continuous approximation X (t) satisfies,
for any T > 0,

sup
0≤t≤T

E|X (t)|2 < ∞ (33)

and

sup
0≤t≤T

E|X (t) − x(t)|2 ≤
(

sup
0≤t≤T

E|X (t)|2
)

CT ∆ (34)

where CT depends on T but not on x0, r0 and ∆.

It is useful to remark that Condition 8 guarantees a finite second moment of the
true solution, that is,

sup
0≤t≤T

E|x(t)|2 < ∞, ∀T ≥ 0.

Extending Definition 4 to a more general numerical method in the natural way, we
then have the following general result.

Theorem 9 If Condition 8 holds, then the assertion of Theorem 6 follows for a
numerical method that has the flow property.

Motivated by Theorem 9, in the next section we give a class of methods that have
the flow property and obey Condition 8.

6 Stochastic theta method

6.1 Definition

In this section we introduce the class of stochastic theta methods (STMs) and show that
they fit into the framework of Theorem 9. We note that establishing strong finite-time
convergence (Lemma 10) in this hybrid setting is of interest in its own right.

Given a step size ∆ > 0, with X0 = x0 and r∆
0 = r0 the STM is defined for

k = 0, 1, 2, . . . by

Xk+1 = Xk + [(1 − θ) f (Xk, r∆
k ) + θ f (Xk+1, r∆

k )]∆ + g(Xk, r∆
k )∆Bk, (35)

where θ ∈ [0, 1] is a fixed parameter. Note that with the choice θ = 0, (35) reduces to
the EM method. In this case we have an explicit equation that defines Xk+1. However,
(35) generally represents a nonlinear system that is to be solved for Xk+1 given Xk .
The following lemma concerns the existence of a solution to the implicit equation.

Lemma 7 Under Assumption 5, if ∆ is sufficiently small that ∆θ
√

K < 1, then
equation (35) can be solved uniquely for Xk+1 given Xk, with probability 1.
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Proof Define, for u ∈ R
n

F(u) = Xk + [(1 − θ) f (Xk, r∆
k ) + θ f (u, r∆

k )]∆ + g(Xk, r∆
k )∆Bk .

Then (35) can be written as Xk+1 = F(Xk+1). Using (19), we have

|F(u) − F(v)| = |θ f (u, r∆
k )∆ − θ f (v, r∆

k )∆| ≤ θ∆
√

K |u − v|, ∀u, v ∈ R
n .

By the classical Banach contraction mapping theorem [17], F(u) has a unique fixed
point, which is Xk+1. 
�

6.2 Linear stability of the stochastic theta method

In this subsection we make a slight digression in order to study the linear stability
behaviour of the stochastic theta method. Applied to (5) the method (35) gives

Xk+1 = Xk + (1 − θ)∆µ(r∆
k )Xk + θ∆µ(r∆

k )Xk+1 + σ(r∆
k )Xk∆Bk .

In the case of a single SDE, where N = 1, and µ(1) = µ and σ(1) = σ can be
regarded as constants, if 1 − θ∆µ �= 0 then after rearranging, squaring, and taking
expectations we have

E

[
X2

k

]
=
(

(1 + (1 − θ)∆µ)2 + ∆σ 2

(1 − θ∆µ)2

)
E

[
X2

k−1

]
.

It follows immediately that

lim
k→∞ E

[
X2

k

]
= 0 ⇐⇒ (1 + (1 − θ)∆µ)2 + ∆σ 2

(1 − θ∆µ)2 < 1.

As shown in [6,15,16] we may conclude that for θ ≥ 1
2 the method has the “A-stability”

property

problem stable �⇒ method stable for all ∆,

and for θ = 1
2 we have perfect stability/instability preservation

problem stable ⇐⇒ method stable for all ∆.

For the general hybrid version (5), however, the theta method cannot maintain this
excellent behaviour. For simplicity, consider a two-state (N = 2) problem where
γ12 = γ21 > 0. In this case the stationary distribution has π1 = π2 = 1

2 . If we let
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Fig. 1 Light curves lower 10
paths of |Xk | for the θ = 1

2
method on the stable 2-state
problem (5) with x0 = 1,
γ12 = γ21 = 1, µ1 = −1,
σ1 = 0, µ2 = 0 and σ2 = 1,
using step size ∆ = 4. Dark
curves upper as above with
∆ = 10

0 T
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20

t

X
k||

µ1 = −1, σ1 = 0, µ2 = 0 and σ2 = 2, so that state 1 corresponds to deterministic
exponential decay and state 2 corresponds to exponential Brownian motion, then

2∑
j=1

π j (2µ j + σ 2
j ) = − 1

2 .

So by Theorem 1 we have limt→∞ E[x(t)2] = 0. However, analysis similar to that in
the proof of Theorem 2 shows that for the theta method with θ = 1

2

lim
k→∞ E

[
X2

k

]
= 0 ⇐⇒ 1

2 log

(
(1 − 1

2 ∆)2

(1 + 1
2 ∆)2

)
+ 1

2 log (1 + ∆) < 0,

and the condition on the right simplifies to

(1 − 1
2 ∆)2(1 + ∆)

(1 + 1
2 ∆)2 < 1.

This inequality holds for sufficiently small ∆ (and such behaviour could also be dedu-
ced from the analysis in Sect. 6.3) but fails for ∆ ≥≈ 4.8. In summary, there is a stable
problem of the form (5) for which the θ = 1

2 method loses stability for sufficiently
large ∆, showing that the A-stability property does not carry through.

We illustrate this behaviour in Fig. 1. Note that the vertical axis is scaled logarithmi-
cally. Here, with x0 = 1 we computed 10 paths of the θ = 1

2 numerical solution over
[0, 103]. The light curves (lower) show |Xk | for ∆ = 4 and the dark curves (upper)
for ∆ = 10. The results are consistent with a change from mean-square stability to
mean-square instability.
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6.3 Nonlinear systems

In the remainder of this section, we always let ∆ be sufficiently small for the stochastic
theta method to be well defined. Let us now define the continuous approximation by

X (t) = x0 +
t∫

0

[(1 − θ) f (z1(s), r̄(s)) + θ f (z2(s), r̄(s))]ds

+
t∫

0

g(z1(s), r̄(s))d B(s), (36)

where

z1(t) = Xk, z2(t) = Xk+1 and r̄(t) = r∆
k for t ∈ [k∆, (k + 1)∆).

Note that X (k∆) = Xk , and hence X (t) is an interpolant to the discrete stochastic
theta method solution. We also note that z1(k∆) = z2((k − 1)∆) = Xk .

It is clear that the stochastic theta method defined in this way has the flow property.
Working towards a proof that Condition 8 is satisfied, we now develop some second
moment bounds.

Lemma 8 Under (20), for all sufficiently small ∆ (< 1/(2 + 2K ) at least), the conti-
nuous approximation X (t) defined by (36) satisfies

sup
0≤t≤T

E|X (t)|2 ≤ αT E|x0|2, ∀T ≥ 0, (37)

where αT = 3 + 12K (T + 1)e2(3+4K )(T +1).

Proof It follows from (35) that

E|Xk+1|2 = E|Xk |2 + 2E

(
X T

k [(1 − θ) f (Xk, r∆
k ) + θ f (Xk+1, r∆

k )]∆
)

+E
∣∣[(1 − θ) f (Xk, r∆

k ) + θ f (Xk+1, r∆
k )]∆ + g(Xk, r∆

k )∆Bk
∣∣2.

By the elementary inequalities

2uT v ≤ |u|2 + |v|2 and |(1 − θ)u + θv|2 ≤ |u|2 + |v|2, ∀u, v ∈ R
n,

as well as (20), we then compute

E|Xk+1|2 ≤E|Xk |2+∆E

[
((1 − θ)2+θ2)|Xk |2 + | f (Xk, r∆

k )|2 + | f (Xk+1, r∆
k )|2)

]

+2E

(
| f (Xk, r∆

k )|2∆2 + | f (Xk+1, r∆
k )|2∆2 + |g(Xk, r∆

k )|2|∆Bk |2
)
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≤ E|Xk |2 + ∆E

[
|Xk |2 + K |Xk |2 + K |Xk+1|2)

]

+2KE

(
|Xk |2∆2 + |Xk+1|2∆2 + |Xk |2∆

)

≤ E|Xk |2 + (2 + 3K )∆E|Xk |2 + (1 + K )∆E|Xk+1|2, (38)

where we have noted that 2K∆ < 1. Let M be any positive integer such that M ≤
int(T/∆) + 1. Summing the inequality above for k from 0 to M − 1, we obtain

E|X M |2 ≤ E|X0|2 + (2 + 3K )∆

M−1∑
k=0

E|Xk |2 + (1 + K )∆

M−1∑
k=0

E|Xk+1|2

≤ E|x0|2 + (3 + 4K )∆

M−1∑
k=0

E|Xk |2 + (1 + K )∆E|X M |2.

Noting that (1 + K )∆ ≤ 1/2, we have

E|X M |2 ≤ 2E|x0|2 + 2(3 + 4K )∆

M−1∑
k=0

E|Xk |2.

Using the discrete Gronwall inequality (see, for example, [12]) and recalling that
M∆ ≤ T + 1, we obtain

E|X M |2 ≤ 2E|x0|2e2(3+4K )∆M ≤ ᾱT E|x0|2,

where ᾱT = 2e2(3+4K )(T +1). Recalling the definitions of z1(t) and z2(t) we see

sup
0≤t≤T

E|z j (t)|2 ≤ ᾱT E|x0|2, j = 1, 2. (39)

It can be shown easily from (36) and (20) that, for 0 ≤ t ≤ T ,

E|X (t)|2 ≤ 3E|x0|2 + 3K (T + 1)

t∫
0

[E|z1(s)|2 + E|z2(s)|2]ds.

By (39) we have

E|X (t)|2 ≤ [3 + 6K ᾱT (T + 1)]E|x0|2, ∀t ∈ [0, T ],

which is the required assertion (37). 
�
Lemma 9 Under (20), for all sufficiently small ∆ (< 1/(4 + 6K ) at least),

E|Xk+1|2 ≤ 2E|Xk |2, ∀k ≥ 0.
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Proof It follows from (38) that

E|Xk+1|2 ≤ E|Xk |2 + 1

2
E|Xk |2 + 1

4
E|Xk+1|2

and hence the assertion follows.

Lemma 10 Under (20), for all sufficiently small ∆ (< 1/(4 + 6K ) at least), the
continuous approximation X (t) defined by (36) satisfies

sup
0≤t≤T

{
E|X (t) − z1(t)|2 ∨ E|X (t) − z2(t)|2

}
≤ 2(K + 1)∆ sup

0≤t≤T
E|X (t)|2, (40)

for all T > 0.


�
Proof Given any 0 ≤ t ≤ T , let k = int(T/∆), so k∆ ≤ t < (k + 1)∆. It follows
from (36) that

X (t) − z1(t) = [
(1 − θ) f (Xk, r∆

k ) + θ f (Xk+1, r∆
k )
]
(t − k∆)

+g(Xk, r∆
k )[B(t) − B(k∆)], (41)

and

z2(t) − X (t) = [
(1 − θ) f (Xk, r∆

k ) + θ f (Xk+1, r∆
k )
]
((k + 1)∆ − t)

+g(Xk, r∆
k )[B((k + 1)∆) − B(t)]. (42)

By (20) and Lemma 9, we compute from (41) that

E|X (t) − z1(t)|2 ≤ 2∆2 K (E|Xk |2 + E|Xk+1|2) + 2∆KE|Xk |2
≤ (6∆2 K + 2∆K )E|Xk |2
≤ (2K + 1)∆ sup

0≤t≤T
E|X (t)|2,

where we have used the condition that 6∆K < 1. Similarly, we can show the same
upper bound for E|z2(t) − X (t)|2 and hence the assertion (40) follows. 
�
Lemma 11 If (20) holds, then for all sufficiently small ∆,

E

T∫
0

|ϕ(z1(s), r(s)) − ϕ(z1(s), r̄(s))|2ds ≤ βT ∆ sup
0≤t≤T

E|z1(t)|2 (43)

and

E

T∫
0

| f (z2(s), r(s)) − f (z2(s), r̄(s))|2ds ≤ βT ∆ sup
0≤t≤T

E|z2(s)|2 (44)

for any T > 0, where ϕ is either f or g and βT is defined in Lemma 3.
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Proof Assertion (43) can be proved in the same way that Lemma 3 was proved because
z1(t) is an Ft -adapted step process like X̄(t). However, z2(t) is not Ft -adapted so
assertion (44) requires a more careful treatment.

Let j = int(T/∆). Then

E

T∫
0

| f (z2(s), r̄(s)) − f (z2(s), r(s))|2ds

=
j∑

k=0

E

tk+1∫
tk

| f (Xk+1, r(tk)) − f (Xk+1, r(s))|2ds, (45)

with t j+1 being now set to T . By (20), it is easy to show that

E

tk+1∫
tk

| f (Xk+1, r(tk)) − f (Xk+1, r(s))|2ds

≤ 2K

tk+1∫
tk

E

[
|Xk+1|2 I{r(s) �=r(tk )}

]
ds. (46)

But, by the Markov property,

E

[
|Xk+1|2 I{r(s) �=r(tk )}

]

=
∫
Rn

∑
i∈S

E

[
|Xk+1|2 I{r(s) �=i}

∣∣Xk = x, r(tk) = i
]

P{Xk = dx, r(tk) = i}.

Given that Xk = x and r(tk) = i , we see from (35) that

Xk+1 = x + [(1 − θ) f (x, i) + θ f (Xk+1, i)]∆ + g(x, i)∆Bk, (47)

whence Xk+1 depends on ∆Bk which is independent of the Markov chain. In other
words, Xk+1 and I{r(s) �=i} are independent given Xk = x and r(tk) = i . Hence

E

[
|Xk+1|2 I{r(s) �=r(tk )}

]
=
∫
Rn

∑
i∈S

E

[
|Xk+1|2

∣∣Xk = x, r(tk) = i
]

×P{r(s) �= i
∣∣Xk = x, r(tk) = i}P{Xk = dx, r(tk) = i}.

(48)
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We compute that

P{r(s) �= i
∣∣Xk = x, r(tk) = i} = P{r(s) �= i, Xk = x, r(tk) = i}

P{Xk = x, r(tk) = i}
= P{r(s) �= i, Xk = x |r(tk) = i}

P{Xk = x |r(tk) = i} . (49)

Noting that given r(tk) = i , the events r(s) �= i and Xk = x are independent, we have

P{r(s) �= i, Xk = x |r(tk) = i} = P{r(s) �= i |r(tk) = i}P{Xk = x |r(tk) = i}.

Putting this into (49) and then recalling (27) we obtain

P{r(s) �= i
∣∣Xk = x, r(tk) = i} = P{r(s) �= i |r(tk) = i} ≤ γ̂ ∆. (50)

Using this in (48) yields

E

[
|Xk+1|2 I{r(s) �=r(tk )}

]
≤ γ̂ ∆

∫
Rn

∑
i∈S

E

[
|Xk+1|2

∣∣Xk = x, r(tk) = i
]

P{Xk = dx, r(tk) = i}
= γ̂ ∆E|Xk+1|2.

Substituting this into (46) implies

E

tk+1∫
tk

| f (Xk+1), r(tk)) − f (Xk+1), r(s))|2ds ≤ 2K γ̂ ∆2
E|Xk+1|2.

Using this in (45) we obtain

E

T∫
0

| f (z2(s), r̄(s)) − f (z2(s), r(s))|2ds ≤ 2K γ̂ ∆2
j∑

k=0

E|Xk+1|2

≤ 2K T γ̂ ∆ sup
0≤t≤T

E|z2(t)|2,

which is the required assertion (44). 
�
We are now in a position to establish Condition 8.

Theorem 10 Under (2) and Assumption 5 the stochastic theta method defined by (35)
with continuous extension (36) satisfies Condition 8. Since this method also has the
flow property, Theorem 9 applies.
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Proof The bound (33) is given by Lemma 8. Hence, it remains to show (34).
It follows from (1) and (36) that for any 0 ≤ t ≤ T ,

X (t) − x(t) =
t∫

0

((1 − θ)[ f (z1(s), r̄(s)) − f (x(s), r(s))]

+θ [ f (z2(s), r̄(s)) − f (x(s), r(s))]) ds

+
t∫

0

(g(z1(s), r̄(s)) − g(x(s), r(s))) d B(s).

We hence compute that

E|X (t) − x(t)|2 ≤ 2T E

t∫
0

(
| f (z1(s), r̄(s)) − f (x(s), r(s))|2

+| f (z2(s), r̄(s)) − f (x(s), r(s))|2
)

ds

+2E

t∫
0

|g(z1(s), r̄(s)) − g(x(s), r(s))|2ds

≤ 4T KE

t∫
0

(
|z1(s) − x(s)|2 + |z2(s) − x(s)|2

)
ds

+4KE

t∫
0

|z1(s) − x(s)|2ds + J (T )

≤ J (T ) + 8K (2T + 1)

t∫
0

E|X (s) − x(s)|2ds

+8K (T + 1)

t∫
0

(
E|X (s) − z1(s)|2 + E|X (s) − z2(s)|2

)
ds

≤ J (T ) + 8K (2T + 1)

t∫
0

E|X (s) − x(s)|2ds

+32K (K + 1)(T + 1)T ∆ sup
0≤t≤T

E|X (t)|2,

where Lemma 10 has been used in the last step while

J (T ) := 4T E

T∫
0

(
| f (z1(s), r̄(s)) − f (z1(s), r(s))|2

123



320 D. J. Higham et al.

+| f (z2(s), r̄(s)) − f (z2(s), r(s))|2
)

ds

+4E

T∫
0

|g(z1(s), r̄(s)) − g(z1(s), r(s))|2ds.

But, by Lemma 11

J (T ) ≤ 4(T + 1)βT ∆

(
sup

0≤t≤T
E|z1(t)|2

)
+ 4TβT ∆

(
sup

0≤t≤T
E|z2(t)|2

)
.

However, clearly

sup
0≤t≤T

E|z1(t)|2 ≤ sup
0≤t≤T

E|X (t)|2

while, by Lemma 9,

sup
0≤t≤T

E|z2(t)|2 ≤ 2 sup
0≤t≤T

E|z1(t)|2.

So

J (T ) ≤ 4(3T + 1)βT ∆

(
sup

0≤t≤T
E|X (t)|2

)
.

We therefore have

E|X (t) − x(t)|2 ≤ C̄T ∆

(
sup

0≤t≤T
E|X (t)|2

)

+8K (2T + 1)

t∫
0

E|X (s) − x(s)|2ds,

where C̄T = 4(3T + 1)βT + 32K (K + 1)(T + 1)T . An application of the continuous
Gronwall inequality gives a bound of the form

E|X (t) − x(t)|2 ≤
(

sup
0≤t≤T

E|X (t)|2
)

CT ∆,

where CT = C̄T e8K (2T +1)T . Since this is true for any t ∈ [0, T ], the result follows.

�
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7 Discussion

Our aim in this work was to give some rigorous justification for the numerical simu-
lation of regime switching SDE models. We have added to the existing literature [20]
by (a) showing that nonlinear exponential mean square stability can be preserved for
small step sizes and (b) showing that stable, convergent implicit methods exist. The
numerical analysis of this important problem class is still in its infancy, and hence
many open equations remain regarding issues such as: quantifying the benefits of
implicitness, searching for analogues of A-stability and deriving customized methods
for particular applications.

A Appendix: Proofs of Lemmas 5 and 6

Proof of Lemma 5 Set T = [int(4 log M/(λ∆)) + 1]∆, so that 4 log M/λ ≤ T ≤
4 log M/λ + 1 and

Me−λT ≤ e− 3
4 λT . (51)

For any α > 0,

E|X (t)|2 ≤ (1 + α)E|X (t) − x(t)|2 + (1 + 1/α)E|x(t)|2. (52)

So, using Lemma 4,

sup
0≤t≤2T

E|X (t)|2 ≤ (1 + α) sup
0≤t≤2T

E|X (t)|2C2T ∆ + (1 + 1/α)ME|x0|2.

For ∆ sufficiently small, this rearranges to

sup
0≤t≤2T

E|X (t)|2 ≤ (1 + 1/α)ME|x0|2
1 − (1 + α)C2T ∆

. (53)

Now, taking the supremum over [T, 2T ] in (52), using Lemma 4 and the bound (53),
and also the stability condition (17), gives

sup
T ≤t≤2T

E|X (t)|2 ≤ sup
T ≤t≤2T

E|X (t)|2 ≤ R(∆)E|x0|2, (54)

where

R(∆) := (1 + α)(1 + 1/α)

1 − (1 + α)C2T ∆
C2T ∆M + (1 + 1/α)Me−λT .

Taking α = 1/
√

∆ and using (51) we see that for sufficiently small ∆

R(∆) ≤ 2
√

∆C2T M + (1 + √
∆)e− 3

4 λT .
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By taking ∆ sufficiently small we may ensure that

R(∆) ≤ e− 1
2 λT , (55)

which, in (54), gives

sup
T ≤t≤2T

E|X (t)|2 ≤ e− 1
2 λT

E|x0|2 ≤ e− 1
2 λT sup

0≤t≤T
E|X (t)|2.

Now, let x̂(t) be the solution to the SDE (1) for t ∈ [T,∞) with the initial value
x̂(T ) = X (T ) and with the Markov chain starting from r(T ) at t = T (so no change
in the Markov chain); that is,

dx̂(t) = X (T ) +
t∫

T

f (x̂(s), r(s))ds +
t∫

T

g(x̂(s), r(s))d B(s), t ≥ T . (56)

This is the same as the SDE (1) except the time is switched by T , so shifting (17) we
obtain

E|x̂(t)|2 ≤ ME|X (T )|2e−λ(t−T ), ∀t ≥ T . (57)

On the other hand, (16) gives

X (t) = X (T ) +
t∫

T

f (X̄(s), r̄(s))ds +
t∫

T

g(X̄(s), r̄(s))d B(s), t ≥ T . (58)

Since T is a multiple of ∆, we see that X (t) on t ≥ T is the continuous EM approximate
solution to equation (56). Hence, applying Lemma 4 and the time shift, we have that

sup
T ≤t≤3T

E|X (t) − x̂(t)|2 ≤
(

sup
0≤t≤T

E|X (t)|2
)

C2T ∆, ∀t ≥ T . (59)

Then, analogously to (54), we have

sup
2T ≤t≤3T

E|X (t)|2 ≤ R(∆)E|X (T )|2.

Continuing this approach and using (55) gives

sup
(i+1)T ≤t≤(i+2)T

E|X (t)|2 ≤ e− 1
2 λT

E|X (iT )|2, for i ≥ 0,
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and hence

sup
(i+1)T ≤t≤(i+2)T

E|X (t)|2 ≤ e− 1
2 λT e− 1

2 λT sup
(i−1)T ≤t≤iT

E|X (t)|2

...

≤ e− 1
2 λT (i+1) sup

0≤t≤T
E|X (t)|2. (60)

With α = 1/
√

∆ in (53), for sufficiently small ∆ we see that

sup
0≤t≤T

E|X (t)|2 ≤ 2ME|x0|2. (61)

From (60) and (61) we have

sup
(i+1)T ≤t≤(i+2)T

E|X (t)|2 ≤ e− 1
2 λT (i+1)2ME|x0|2

= 2Me
1
2 λT

E|x0|2e− 1
2 λT (i+2)

≤ 2Me
1
2 λT1E|x0|2e− 1

2 λT (i+2),

where T1 = 1 + (4 log M)/λ ≥ T , and the result follows. 
�

Proof of Lemma 6 Using Lemma 4 and (18) we have, for any α > 0,

sup
T ≤t≤2T

E|x(t)|2 ≤ sup
T ≤t≤2T

(1 + α)E|X (t) − x(t)|2 + (1 + 1/α)E|X (t)|2 (62)

≤ (1 + α) sup
T ≤t≤2T

E|X (t) − x(t)|2 + (1 + 1/α) sup
T ≤t≤2T

E|X (t)|2

≤ (1 + α)C2T ∆ sup
0≤t≤2T

E|X (t)|2 + (1 + 1/α) sup
T ≤t≤2T

E|X (t)|2

≤ (1 + α)C2T ∆HE|x0|2 + (1 + 1/α)HE|x0|2e−γ T

≤
[
(1 + α)C2T ∆eγ T + (1 + 1/α)

]
HE|x0|2e−γ T . (63)

Taking α = 1/
√

∆ gives

sup
T ≤t≤2T

E|x(t)|2 ≤
[
C2T eγ T (∆ + √

∆) + 1 + √
∆
]

HE|x0|2e−γ T . (64)

Since e− 3
4 γ T H ≤ e− 1

2 γ T , using (32) we then have

sup
T ≤t≤2T

E|x(t)|2 ≤ e− 3
4 γ T HE|x0|2 ≤ e− 1

2 γ T
E|x0|2 ≤ e− 1

2 γ T sup
0≤t≤T

E|x(t)|2. (65)

123



324 D. J. Higham et al.

Now let X̂(t) for t ∈ [T,∞) denote the continuous EM approximation that arises
from applying the EM method with initial data x(T ) and r(T ) at time t = T . Then,
analogously to (65),

sup
2T ≤t≤3T

E|x(t)|2 ≤ e− 1
2 γ T sup

T ≤t≤2T
E|x(t)|2.

Continuing these arguments we may show that

sup
iT ≤t≤(i+1)T

E|x(t)|2 ≤ e− 1
2 γ T sup

(i−1)T ≤t≤iT
E|x(t)|2, i ≥ 1,

and so,
sup

iT ≤t≤(i+1)T
E|x(t)|2 ≤ e− 1

2 γ iT sup
0≤t≤T

E|x(t)|2. (66)

Now, using (32),

sup
0≤t≤T

E|x(t)|2 ≤ sup
0≤t≤T

E|X (t) − x(t)|2 + sup
0≤t≤T

E|X (t)|2

≤ (CT ∆ + 1)HE|x0|2
≤ 2HE|x0|2.

In (66) this gives

sup
iT ≤t≤(i+1)T

E|x(t)|2 ≤ e− 1
2 γ (i+1)T e

1
2 γ T 2HE|x0|2,

which completes the proof. 
�
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