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The clustering coefficient has been used successfully
to summarise important features of unweighted, undi-
rected networks across a wide range of applications
in complexity science. Recently, a number of authors
have extended this concept to the case of networks
with non-negatively weighted edges. After reviewing
various alternatives, we focus on a definition due to
Zhang and Horvath that can be traced back to ear-
lier work of Grindrod. We give a natural and trans-
parent derivation of this clustering coefficient and then
analyse its properties. One attraction of this version is
that it deals directly with weighted edges and avoids
the need to discretise, that is, to round weights up to
1 or down to 0. This has the advantages of (a) retain-
ing all edge weight information, and (b) eliminating
the requirement for an arbitrary cutoff level. Further,
the extended definition is much less likely to break
down due to a ‘divide-by-zero’. Using our new deriva-
tion and focusing on some special cases allows us to
gain insights into the typical behaviour of this mea-
sure. We then illustrate the idea by computing the
generalised clustering coefficients, along with the cor-
responding weighted degrees, for pairwise correlation
gene expression data arising from microarray experi-
ments. We find that the weighted clustering and de-
gree distributions reveal global topological differences
between normal and tumour networks.

Keywords: bioinformatics, computational graph the-
ory, microarray data, network topology, range depen-
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dent random graph, small world network, Grindrod-
Zhang-Horvath clustering coefficient.

1. Introduction

Many complex data sets have natural represen-
tations as networks. It is accepted that typical
real-life networks are neither random graphs in
the classical Erdös-Rényi sense nor regular lattices
[17,28]. Hence, scientists across a wide range of dis-
ciplines face the tasks of summarising, comparing,
categorising and modelling these data sets in or-
der to extract meaning and order. Various com-
putational quantities have been used to charac-
terise networks; most prominently the concepts of
pathlength, degree and clustering coefficient have
proved extremely useful.

Watts and Strogatz [28] coined the phrase small
world network to describe the commonly occurring
situation where a sparse network is highly clus-
tered (like a regular lattice) yet has small path-
lengths (like a random graph). Since that land-
mark paper, many complex networks have been
analysed and labelled as small worlds. Similarly,
the so-called scale–free property of the degree dis-
tribution [2,17], has become accepted as a hall-
mark of many real data sets, although there is now
some doubt as to its true prevalence [14,19].

Both the small world and scale–free properties
have been widely studied for unweighted, or bi-
nary, undirected networks. In the case of more gen-
eral weighted edges it is of course possible to cre-
ate a binary network by normalising, imposing a
cutoff and rounding to 0 and 1 [21]. However, it is
our tenet that the original weights should be re-
spected where possible. While the concept of de-
gree extends readily from unweighted to weighted
networks, this is not true for the clustering co-
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2 G. Kalna et al. / A Clustering Coefficient for Weighted Networks

efficient. A number of authors have recently at-
tempted to generalise the clustering coefficient to
the case of weighted edges [3,16,18,29], producing
a range of possible definitions.

We present here a natural and transparent
derivation of a clustering coefficient for weighted
graphs. The resulting definition coincides with
those in [8,29] and hence we argue for the use
of this Grindrod-Zhang-Horvath clustering coeffi-
cient as a generalised measure of clustering. We be-
lieve that this measure, along with the correspond-
ing weighted degree distribution, gives an informa-
tive high-level picture that can be used for classify-
ing, comparing and modelling weighted networks,
just as in the unweighted case. We give some ana-
lytical insight into the usefulness of this clustering
coefficient by studying the case of range-dependent
weights, which is relevant in the biological context.
Then we test the definition on an important type
of data arising in computational cell biology: gene
expression microarray data. Many recent methods
for microarray data analysis monitor differences in
the expression of genes under various experimen-
tal conditions: normal/tumour [5], multiclass can-
cers [7,20], treatment/survival [23]. Pair-wise gene
expression correlation has long been used to pre-
dict relationships between genes. Recently, gene
co-expression networks have emerged [27,29] con-
necting genes with high correlation. However, de-
spite the fact that genome-wide gene expression
data sets are available, their full potential is of-
ten not used and information from only a sub-
set of genes, usually with highest variation, is ex-
tracted. Hence, we view these weighted networks
as ideal candidates on which to apply the new clus-
tering coefficient framework. Using available mi-
croarray data we construct two distinct gene co-
expression networks that represent normal and tu-
mour states. We examine weighted clustering coef-
ficients and weighted degree distributions of these
networks with the aim of finding tumour-related
differences. We emphasize that our aim is to char-
acterize overall network topology rather than to
categorize individual genes or samples.

The rest of this article is organised as follows.
In section 2 we start with the binary definition of
clustering coefficient and list some generalisations
that have been proposed for weighted networks. In
section 3 we give a natural derivation that leads to
the Grindrod-Zhang-Horvath definition, and show
how this can be easily computed via matrix prod-

ucts. We then use some simple examples to ex-
plore the properties of this coefficient. In section
4 we give some realistic computations on pairwise
correlation networks arising from microarray data.

2. Clustering Coefficient and its Generalisations

Consider an undirected graph with normalised
weights 0 ≤ wij ≤ 1 between nodes i and j. In the
binary case wij ∈ {0, 1} the clustering coefficient,
or curvature, for node k is defined as

clust(k) :=
t

v(v − 1)/2
, (1)

where v is the number of immediate neighbours of
node k, and t is the number of triangles incident to
node k [21,28]. In words, clust(k) answers the ques-
tion “given two nodes that are both connected to
node k, what is the likelihood that these two nodes
are connected to each other?” It is straightforward
to see that the definition breaks down when v < 2,
that is, node k has less than two immediate neigh-
bours, and otherwise 0 ≤ clust(k) ≤ 1.

Recently, a few different extensions of the clus-
tering coefficient to the general weighted case have
emerged. In [16] the weighted clustering coefficient
for node k is defined as

wclustLF(k) :=

∑

i6=j∈N(k) wij

v(v − 1)
,

where the term
∑

i6=j∈N(k) wij can be seen as the
total weight of relationship in the neighbourhood
N(k) of node k.

Barrat et al.[3] introduced a measure of cluster-
ing that combines topological information with the
weight distribution of the network

wclustB ( k) :=

1

s(v − 1)

∑

i,j

(wki + wkj)

2
aikakjaij .

Here s =
∑

j wkj denotes the weighted degree of
node k and aij is an element of the underlying bi-
nary adjacency matrix. The normalisation factor
s(v − 1) ensures that 0 ≤ wclustB(k) ≤ 1. This
definition of weighted clustering coefficient consid-
ers only weights of edges adjacent to node k but
not the weights of edges between neighbours of the
node k.

Onnela et al.[18] took into account weights of all
edges: adjacent to node k and between-neighbours.
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They considered weights 0 ≤ wij ≤ 1 and replaced
the number of triangles t in (1) with the sum of
triangle intensities

wclustO(k) :=
2

∑

i,j(wikwkjwij)
1/3

v(v − 1)
.

We remark that the three clustering coefficient
definitions above suffer from the drawback that
they require an underlying binary network; if this
is not available as a separate set of data, then pre-
sumably it must be obtained by discretizing the
weighted edges. Hence, as in the case where the
original binary definition is used for weighted net-
works [21], they are dependent upon some thresh-
olding parameter. Further, they break down in the
case where the number of binary neighbours, ν, is
less than 2.

A definition that uses only the network weights
was proposed by Zhang and Horvath [29]

wclustHZ ( k) :=
∑

i6=k

∑

j 6=i,j 6=k wkiwijwjk

(
∑

i6=k wki)2 −
∑

i6=k w2
ki

. (2)

The numerator in (2) was obtained by finding a
lower bound for the denominator, this ensuring
that wclustHZ is in the range [0, 1].

We also mention that rather than one clustering
coefficient per node, Schank and Wagner [22] pre-
sented a single weighted clustering coefficient for
the whole network as

wclustS :=
1

∑

v w(v)

∑

v

w(v)c(v).

Here c(v) is a clustering coefficient for node v and
w(v) a weight function. One possible choice of
weight function is the weighted degree.

3. Weighted Clustering

3.1. Definition and Properties

Some simple algebra allows the binary clustering
coefficient (1) to be rewritten as

clust(k) :=

∑v−1
i=1

∑v
j=i+1 1 × 1 × aij

∑v−1
i=1

∑v
j=i+1 1 × 1

, (3)

where aij = 1 if the pairs of neighbours i and j of
the node k are connected and aij = 0 otherwise.

Consider now an undirected weighted network
of M nodes that is fully connected with weights
0 ≤ wij = wji ≤ 1 between nodes i and j and
wii = 0. Then formula (3) directly extends to the
real value case

wclust(k) :=

∑M
i=1

∑M
j=1 wkiwkjwij

∑M
i=1

∑M
j=1,j 6=i wkiwkj

(4)

giving a natural definition for weighted networks.
We also mention that the same formula was used
in [8] in the context where wij represents the prob-
ability of an edge between nodes i and j in a ran-
dom network model. Closer inspection shows that
the formula (4) has a simple interpretation that is
analogous to that of the binary case:

1

2

M
∑

i=1

M
∑

j=1

wkiwkjwij

is a reasonable measure of the “strength” of trian-
gles that involve node k and

1

2

M
∑

i=1

M
∑

j=1j 6=i

wkiwkj

represents the “strength” of the pairs of neigh-
bours that involve node k. Here, “strength” is
based on geometric (rather than arithmetic) aver-
aging of the relevant weights. It is easy to verify
that (4) retains the property 0 ≤ wclust(k) ≤ 1.
It is also trivial to show that (4) approaches the
binary value (1) if wij ∈ {0, 1} are considered.

Computationally, note that the numerator of (4)
is

M
∑

i=1

wki

M
∑

j=1

wkjwij =
M
∑

i=1

wki(W
2)ki

= (W 3)kk

and the denominator is

M
∑

i=1

M
∑

j=1

wkiwkj −

M
∑

i=1

w2
ki =

(eT wk)2 − ||wk||
2
2 .

Here, (W p)ij denotes the (i, j) element of the pth
power of W ∈ R

M×M , wk ∈ R
M denotes the kth

row (or column) of W and e ∈ R
M denotes the

vector with all elements equal to one. Hence, a
neater representation of (4) is
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wclust(k) =
(W 3)kk

(eT wk)2 − ||wk ||
2
2

, (5)

which shows that the weighted clustering coeffi-
cient can be computed across all nodes in O(M 3)
operations. The formula (5) also makes it clear
that (4) is entirely equivalent to the Zhang-
Horvath definition (2).

Having derived this definition from what we be-
lieve to be a natural and informative viewpoint, we
now attempt to gain further insights by focussing
on particular types of weighted network.

3.2. Limit Forms of Clustering Coefficient

We now zoom to a particular node K of a graph
and explore its weighted clustering coefficient (4)
in specific cases. Starting with a binary network
wij ∈ {0, 1} we replace zero weights with a small
weight 0 < ε � 1 (weak connections) and re-
place unit weights with 1− ε (strong connections).
Thus, we relaxed the binary network to a weighted
fully connected graph. This is an opposite trans-
formation to a binarisation of a weighted network,
when real valued weights below a threshold are
mapped to zero and weights above the threshold
are mapped to one.

(A) In the first case, let node K have m > 1
strong and n > 1 weak connections to other
nodes in the graph. Then there are (a) m(m −
1)/2 strong-strong, (b) mn strong-weak and (c)
n(n − 1)/2 weak-weak neighbour pairs. Let there
be r, s and u strong edges between neighbours
in cases (a), (b) and (c) respectively. It is easy
to show that equation (4), for ε → 0, results in
wclust(K) = 2r/m(m − 1). In words, r strong tri-
angles are built over m(m−1)/2 strong neighbour
pairs. Thus the weighted clustering coefficient (4)
approaches the binary value (1).

(B) In the second case we consider the marginal
setting v = 1: node K has a strong connection,
1−ε, only to one node P and n weak, ε, connections
to all other nodes in a complete graph. Then n out
of all possible neighbour pairs involve the strong
edge between nodes K and P and n(n−1)/2 pairs
are formed by n weak edges adjusted to node K.
Between-neighbour edges will be again strong or
weak. Let there be r strong edges with one end
in node P and s strong edges between “weakly”
connected neighbour nodes of node K. Then from
(4) we get wclust(K) = (rε(1− ε)2 + (n− r)ε2(1−

ε) + sε2(1 − ε) + (n(n − 1)/2− s)ε3)/(nε(1 − ε) +

n(n − 1)ε2/2) . This expression results in r/n for

ε → 0. In words, we can get to r out of n “weakly”

connected neighbours of the node K through the

strong edge KP and strong edges connecting node

P with these r nodes. It is clear that wclust(k) = 1

only if r = n, that means there is a strong edge

between P and all nodes weakly connected to K.

Because wclust(k) = 0 if r = 0, the strong edge

between nodes K and P is the only edge involving

node P . That means this edge would be separated

from the graph in the corresponding discretised

network.

Case B reveals an important advantage of the

generalised definition (4). It continues to provide

useful information in the small ε regime where any

discretization process based on thresholding to a bi-

nary network would result in v = 1 and hence an

undefined clustering coefficient in (1).

3.3. Uniform Weights

Another case where the clustering coefficient

simplifies arises when node K has equal weights

with all other nodes: wKj = w = constant for all

j 6= K. In this case we have

wclust(K) =
w2

∑M
i=1

∑M
j=1 wij

w2
∑M

i=1

∑M
j=1,j 6=i 1

=

∑M−2
i=1

∑M−1
j=1 wij

(M − 2)(M − 1)

and we see that wclust(K) then reflects the average

connectivity between the other nodes in the net-

work. In particular, if all between-neighbour con-

nections are equal, i.e. wij = w = constant for all

i 6= j 6= K, (4) results in

wclust(K) =
w

∑M
i=1

∑M
j=1,j 6=i wkiwkj

∑M
i=1

∑M
j=1,j 6=i wkiwkj

= w.

Generally, the weighted clustering coefficient can

be bounded in terms of the extremal network co-

efficients,

min
i6=j 6=K

(wij) ≤ wclust(K) ≤ max
i 6=j 6=K

(wij).
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Fig. 1. Clustering coefficient (4) of the central node in the
weighted graph defined by (6).

3.4. Range Dependent Weights

The concept of a range-dependent weighted ran-
dom graph, or RENGA, was introduced and an-
alyzed by Grindrod [8]. These graphs were fur-
ther studied by [10] and were used in [13] to pro-
duce test matrices for linear algebra software. The
idea of using a distance metric to induce edges
has proved successful in the modelling of real net-
works, especially in biology [19]. We may adapt
the RENGA idea to the case of non-random range-
dependent weights. Suppose that the nodes are or-
dered −M, . . . ,−1, 0, 1, . . . , M and that the con-
nectivity weight decays as a function of lattice dis-
tance. To be specific, we let

wij = wji = λ|i−j|, (6)

for some λ ∈ [0, 1]. At one extreme, λ ≈ 0, there
are no edges after discretising to a binary net-
work, and hence the traditional clustering coeffi-
cient is undefined. At the other extreme, λ = 1,
all edges are present after discretising to a binary
network, and hence the traditional clustering co-
efficient is 1 for each node. In Figure 1 we use net-
works of size M = 50, 100, 200 and compute the
generalised clustering coefficient (4) for the central
node, k = 0, as λ ranges from 0 to 1. Note that
the definition (4) makes sense for any λ > 0. We
see that the clustering coefficient approaches the
value zero as λ approaches zero from above; this
is perfectly reasonable behaviour. Further, as λ in-
creases away from zero, the clustering coefficient
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Fig. 2. Clustering coefficient of 21 nodes in the weighted
graph defined by (6) for different values of λ.

monotonically increases, and it matches the binary
value of 1 at λ = 1.

Figure 2 shows the clustering coefficient of all
nodes in the case M = 10 for λ = 0.1, 0.4, 0.7
and 0.999. For λ = 0.1 and λ = 0.4 the clustering
coefficient is not monotonic in the nodal distance
from the boundary, and there is a dramatic differ-
ence between the neighbouring nodes at positions
M − 1 and M . The pictures suggest that there is
no M → ∞ “continuum limit” in the sense that
the clustering coefficients do not appear to lie on
a smooth curve. Because of the special structure
of the weights, we are able to investigate this issue
analytically.

Some straightforward analysis produces the for-
mulas

wclust(M) =
λ

∑

k kλ2(k−1)

(1 + λ)
∑

k kλ2(k−1)

≈
λ

(1 + λ)
,

wclust ( M − 1) =
∑

k=1(k + 1)λ2k

1 + (1 + λ)
∑

k(k + 1)λ2k−1
,

wclust ( M − 2) =
∑

k(k + 2)λ2k

1 + (1 + λ)
(

1 +
∑

k(k + 2)λ2k−1
) ,
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Fig. 3. Clustering coefficient of the three marginal nodes
and the central node 0 in the infinite (M → ∞) weighted
graph defined by (6).

wclust ( 0) =

3λ2
∑

k kλ2(k−1)

1 +
∑

k=1 λ2k−1
(

4k + (4k + 1)λ
) .

By summing appropriate geometric series we get,
for fixed 0 ≤ λ < 1, the following formulas and
corresponding ranges of values for the weighted
clustering coefficients in the limit M → ∞

wclust(M) =
λ

1 + λ
,

wclust(M) ∈ [0, 1/2],

wclust(M − 1) =
λ2(2 − λ2)

(1 + λ)(1 + λ − λ2)
,

wclust(M − 1) ∈ [0, 1/2],

wclust ( M − 2) =

λ2(3 − 2λ2)

(1 + λ)(1 + 3λ − 2λ2 − 2λ3 + λ4)
,

wclust(M − 2) ∈ [0, 1/2],

wclust(0) =
λ2(2 + λ2)

(1 + λ2)(1 + λ)2
,

wclust(0) ∈ [0, 3/8].
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Fig. 4. Clustering coefficient: thresholding to weighted and
binary networks.

The limit for the endpoint node, wclust(M), is
exceptional in that, as a function of λ, the expres-
sion has a tangent of slope = 1 at the origin. The
other cases have tangents of slope = 0. We also
note that letting λ → 1 in these expressions does
not reproduce the clustering coefficient value that
arises from inserting λ = 1 into (6). In Figure 3 we
illustrate these effects.

Binarising these networks produces very differ-
ent behaviour. Figure 4 looks at the the case
M = 10 and λ = 0.4 (cf. the upper right picture in
Figure 2). The range of weights appearing in the
network, {λk}, are shown for reference in the up-
per left picture. The lower left and right pictures
show the clustering coefficients when weights be-
low t are mapped to zero and weights above t are
mapped to one, for t = 0.1 and t = 0.001. The
upper right picture, which more closely resembles
the fully weighted version, corresponds to zeroing
weights below t and leaving weights above t un-
changed.

Overall, in analysing the interesting, nontrivial,
range-dependent case (6), we see again that re-
specting the real valued weights can produce a sig-
nificantly different and more meaningful picture,
compared with discretising.

4. Microarray Illustration

We now examine the distribution of the cluster-
ing coefficient (4) in practice, along with that of
the corresponding weighted degree, using pairwise
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Fig. 5. Probability of weighted degree (left) and clustering
coefficient (right). Liver cancer (top), breast cancer (mid-
dle) and lymphoma (bottom): normal (circles) and tumour
(stars).

correlation networks arising from cDNA microar-
ray data. Most importantly, we would like to ex-
plore differences in character of weighted degree
and clustering coefficient distributions of two dif-
ferent networks: normal and tumour.

cDNA microarrays are a genome-scale technol-
ogy used for assessing differential gene expression
[4,24]. Two different samples labeled with different
fluorescent dyes hybridize on the same array. One
sample is prepared from a reference mRNA and the
other from mRNA isolated from the experimental
cells. The common reference, or universal control,
is collected from a pool of cell lines or a mix of
all analysed samples [26,9]. The initial data arising
from cDNA microarray experiments are relative
mRNA levels – experiment to control ratios. The
data from different arrays require complex nor-
malisation prior to comparison. Normalised values
are usually organised in the form of a rectangu-
lar M ×N matrix of log-transformed ratios aij of
i = 1, . . . , M genes in a set of j = 1, . . . , N sam-
ples.

To build weighted networks for further analy-
sis of microarray data a suitable similarity mea-
sure needs to be chosen which produces real value
results and has a reasonable biological interpreta-
tion. We consider the Pearson correlation

cor(i, j) =

∑N
k=1(aik − µi)(ajk − µj)

σiσj
,

where µi and σi are respectively the mean and
the standard deviation of gene i log-ratios, as a
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Fig. 6. Probability of weighted degree (left) and clustering
coefficient (right). Lymphoma: normal (circles) and tumour
(stars). Binary network from threshold = 0.8 (top), thresh-
old P value 0.05 (middle) and weighted network (bottom).

measure of similarity between the gene expression
profiles. This measure, or similar correlation mea-
sures, proved useful for analysing microarray data
in [12,15,21,23,29]. We define pairwise gene simi-
larity weights wij = |cor(i, j)|, for 1 ≤ i, j ≤ M ,
with wij = wji ∈ [0, 1] and wii = 0. A large weight
wij indicates that genes i and j are highly co-
expressed (or anti-expressed). In this representa-
tion the M ×M matrix W denotes the symmetric
weight matrix encoding the strength of connection
between pairs of genes.

Aware of the fact that different numbers of genes
as well as samples in data sets can affect val-
ues of correlation and consequently distort com-
parisons of both weighted degrees and clustering
coefficients, we looked for data consisting of the
same number of normal and tumour samples for
the same set of genes. In this experiment we used
cDNA microarray data for normal and tumour tis-
sues from [6]. Data processing performed by those
authors included filtering of genes with more than
70% missing values or less than 4 observations,
UniGene mapping, and imputation of missing val-
ues. The original data can be downloaded from the
Stanford Microarray Database.

We selected data sets with more than ten sam-
ples in normal and tumour subsets. We present re-
sults for liver cancer (12065 genes, 76 samples),
breast cancer (5603 genes, 13 samples), and lym-
phoma (4615 genes, 31 samples) [5,25,1]. Figure 5
shows the distribution of the weighted cluster-



8 G. Kalna et al. / A Clustering Coefficient for Weighted Networks

ing coefficient (right), and also the distribution of
the weighted degree (left) arising from these data.
Circle-line and star-line represent the distributions
of normal and tumour networks respectively.

We emphasize that our aim is to study the ‘big-
picture’ issue of overall network topology, as op-
posed to the ‘fine-detail’ issue of clustering in-
dividual genes and/or samples [11,15]. Figure 5
reveals global topological differences between the
two network types. We have performed the Kol-
mogorov Smirnov test (kstest2 in MATLAB) on
the weighted degree and weighted clustering co-
efficient values of normal and tumour networks.
The test confirmed that normal and tumour dis-
tributions are highly significantly different (P <
0.001). In general the tumour samples give rise
to smaller and more peakily distributed cluster-
ing and degree. Degree ranges of normals and tu-
mours start from a similar value but the degree
range of tumours is narrower. Large numbers of
genes in normal samples show a high degree of
connection to other genes. Differences in cluster-
ing coefficient distributions are more striking. Dis-
tribution ranges of normal and tumour networks
only partly overlap: most genes in normal networks
have higher clustering coefficient than any gene in
tumour networks. One possible biological interpre-
tation of these results is that the diseased state is
consistent with a breakdown of the control mecha-
nisms that regulate the co-expression of function-
ally related genes. Similar results, supported by
Kolmogorov Smirnov test (P < 0.001), arose when
the matrix |A| was used instead of A. In this case
correlation between genes is based on overall activ-
ity, with over and under expression both regarded
as equally valid evidence of a gene leaving its typ-
ical state.

Given that the weighted clustering coefficient
produces interesting results, it is pertinent to ask
whether careful thresholding to a discretised bi-
nary network [21] can also reproduce these find-
ings. Clearly there is a whole parameterized fam-
ily of such binary networks. In particular, high
thresholding may exclude interesting features of
the networks. For example, when weights above
the threshold of 0.8 are re-set to 1 and the remain-
ing weights are re-set to zero, the clustering coeffi-
cient and weighted degree distributions could not
reveal the differences observed from original net-
works; see Figure 6 top.

For a more systematic approach, P values may
be used to decide on significance of correlation.

Even in this case, however, somewhat arbitrary
thresholds must be imposed. For the lymphoma
networks, suppose we take the view that corre-
lations ≥ 0.355 are significant (corresponding to
P ≤ 0.05) and correlations ≥ 0.456 are highly sig-
nificant (corresponding to P ≤ 0.01). This would
mean that only 18% (12%) of all possible edges
are significant and 8% (< 5%) are highly signifi-
cant in the normal (tumour) lymphoma network,
so that a large amount of data is being discarded.
(Of course, there are computational benefits from
introducing sparsity, but for the network sizes in
these experiments this is not a significant issue.)
In the middle of Figure 6 we plot data for the
P ≤ 0.05 binary networks. Comparing this re-
sult with the resalt from the original weighted
network (bottom part of Figure 6), we see that
very similar topology is revealed. We conclude that
the weighted clustering coefficient approach, which
does not require the use of arbitrary parameters
and does not discard data, automatically produces
results consistent with those arrived at through
experimenting with the parameter-dependent P
value version.

5. Summary

Our aim here was to argue that out of the
possible ways that have been proposed to gen-
eralise the clustering coefficient to the case of a
weighted network, there is one very promising can-
didate; namely the Grindrod-Zhang-Horvath ver-
sion [8,29]. We gave a natural derivation and illus-
trated its behaviour on specific classes of network.
Particular advantages of the definition are:

– It is a true generalisation, collapsing smoothly
to the binary case when edge weights tend to
{0, 1} values.

– It can provide meaningful results in cases
where any type of binary thresholding pro-
duces break-down.

– It reveals natural topological properties of real
networks, and can do this without the need
to specify parameters or discard potentially
useful data.

– For microarray data, the weighted clustering
coefficient coefficient lead to a clear hypothe-
sis about the difference between normal and
cancerous states.
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[3] A. Barrat, M. Barthélemy, R. Pastor-Satorras, and
A. Vespignani, The architecture of complex weighted
networks, PNAS 101 (2004), 3747–3752.

[4] P. Brown and D. Botstein, Exploring the new world
of the genome with dna microarrays, Nature Genet. 21

(1999), 33–37.

[5] X. Chen, S. Cheung, S. So, S. Fan, C. Barry, J. Higgins,
K. Lai, J. Ji, S. Dudoit, I. Ng, M. Van De Rijn, and
P. Botstein, D. Brown, Gene expression patterns in
human liver cancers, Molecular Biology of the Cell 13

(2002), 1929–1939.

[6] J. Choi, U. Yu, O. Yoo, and S. Kim, Differential co-
expression analysis using microarray data and its ap-
plication to human cancer, Bioinformatics 21 (2005),
4348–4355.

[7] T. Golub, D. Slonim, P. Tamayo, C. Huard,
M. Gaasenbeek, J. Mesirov, H. Coller, M. Loh,
J. Downing, M. Caliguri, C. Bloomfield, and E. Lan-
der, Molecular classification of cancer: class discovery
and class prediction by gene expression monitoring,
Science 286 (1999), 531–537.

[8] P. Grindrod, Range-dependent random graphs and
their application to modeling large small-world pro-
teome datasets, Physical Review E 66 (2002), 066702.

[9] G. Hardiman, Microarray platforms - comparisons and
contrasts, Pharmacogenomics 5 (2004), 487–502.

[10] D. J. Higham, Spectral reordering of a range-
dependent weighted random graph, IMA Journal of
Numerical Analysis 25 (2005), 443–457.

[11] D. J. Higham, G. Kalna, and M. Kibble, Spectral clus-
tering and its use in bioinformatics, J.Computat. Appl.
Math. 204 (2007), 25–37.

[12] D. J. Higham, G. Kalna, and K. Vass, Spectral anal-
ysis of two-signed microarray expression data, Mathe-
matical Medicine and Biology 24 (2007), 131–148.

[13] Y. Hu and J. A. Scott, Hsl mc73: A fast multilevel
fiedler and profile reduction code, Technical Report
RAL-TR-2003-036, Rutherford Appleton Laboratory,
Oxfordshire, 2003.

[14] R. Khanin and E. Wit, How scale-free are gene net-
works?, J. Comput. Biol 13 (2006), 810–818.

[15] Y. Kluger, R. Basri, J. Chang, and M. Gerstein, Spec-
tral biclustering of microarray data: coclustering genes
and conditions, Genome Research 13 (2003), 703–716.

[16] L. Lopez-Fernandez, G. Robles, and J. Gonzalez-
Barahona, Applying social network analysis to the
information in cvs repositories, in: Proc. of the
1st Intl. Workshop on Mining Software Repositories
(MSR2004), (2004), pp. 101–105.

[17] M. Newman, The structure and function of complex
networks, SIAM Review 45 (2003), 167–256.

[18] J.-P. Onnela, J. Sarami, J. Kertz, and K. Kaski, In-
tensity and coherence of motifs in weighted complex
networks, Phys. Rev. E 71 (2005), 065103.
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