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This paper introduces an important area of computational cell biology where complex, 

publicly available genomic data is being examined by linear algebra methods, with 

the aim of revealing biological and medical insights. 

 

Section 1: What’s New? 

Since the time of Gregor Mendel, biologists have been attempting to understand how 

genes determine biological properties.  Differences in genes largely explain biological 

diversity. But in spite of this all humans are recognisably the same due to our control 

systems that respond to driving forces such as feeding, stress, infection, age, sex and 

environment.  These controls operate at all possible levels, many of which can now be 

studied using high-throughput technology. Microarrays observe the transfer of 

information from deoxyribonucleic acid (DNA), containing around 30,000 genes, to 

messenger ribonucleic acid (mRNA).  In this way the state of all these genes can be 

recorded for individual samples.  In terms of the functioning of the cell, genes are 

important because the mRNA that they create goes on to produce proteins, and 

proteins are the catalysts of all cells� activities. Maybe 20,000 mRNA signals are 

responsible for the production of proteins in any single human cell and it is thought 

that major aspects of development, and disease, can be understood at the gene-

mRNA-protein level.  
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Defects in genes (mutations) can contribute to particular diseases, like cancers, but it 

is unusual for a single mutation to be found in all cases of one type of cancer.  For 

instance the cancer drug Herceptin, recently in the news, is only affective for the 20% 

of women with breast cancer who overproduce the protein Her-2.  Generally, there are 

two main reasons to subdivide patients into subgroups based on mRNA profiles: first 

the groups may respond differently to treatment and second biologists want insight 

into the disease process. 

 

The challenge of making sense of complex genomic information, often involving 

many genes over relatively few samples, provides many opportunities for 

mathematicians. Typical data sets take the familiar form of matrices: two dimensional 

arrays. It is the size of the matrices (at least one dimension in the thousands or 

hundreds of thousands), the level of uncertainty in the measurements (repeating 

experiments to a degree that classical statistical tests are passed is often prohibitively 

expensive) and the imprecise nature of the questions to be addressed, that present the 

main challenges to applied and computational mathematicians.  

 

Basic biology [Elliot&Elliot03] teaches us that DNA forms an organism�s genetic 

signature - arranged as 24 one-dimensional lattices (chromosomes).  Analogously, 

mathematicians know that the singular value decomposition (SVD) of a matrix forms 

a spectral signature, encoding many of its fundamental properties 

[Golub&VanLoan96]. It is not surprising, therefore, that the SVD is proving to be a 

valuable tool for teasing meaningful information out of large biological data sets. 

 

Our aim in this article is to give an introductory account of (a) where this type of 

genomic data comes from and (b) how the SVD can be used to add value. Very little 

biological and mathematical background is assumed, and the SVD is seen to arise 

naturally from an algorithmic perspective. Because of its relevance and timeliness, we 

see this material as ideal for incorporating into undergraduate courses on linear 

algebra, scientific computing or mathematical biology, or for the basis of an 

independent study project. References to accessible texts in biology are included in 

subsequent sections for those who wish to learn more. 
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Section 2: What is the Data?   

DNA may be viewed as a linear string where each character is one of the four 

nucleotide bases (C,A,T,G). The string is arranged into a regular double-helix 

structure. Certain contiguous chunks of DNA, that satisfy known constraints, can code 

for genes. Genes are important because they code for proteins. Proteins are linear 

strings of amino acids, from an alphabet of 20 characters, but, unlike DNA, these 

strings fold into complicated 3D shapes, capable of interacting with each other in a 

myriad of ways. The Central Dogma of Molecular Biology states that a DNA gene 

specifies its unique mRNA, which in turn specifies its unique protein (Figure 1). This 

is an oversimplified picture, but it allows useful conclusions to be drawn. There are 

many references available for those who wish to learn more about basic cell biology 

from a mathematics/informatics perspective; including [Brazma, Kanehisa03]. We 

will be concerned with two types of data that give glimpses into the workings of the 

cell. Microarrays are used to estimate simultaneously the amount of each mRNA that 

is present, so it is now possible to have this information for many thousands of genes 

in every experiment. At a higher level, protein-protein interaction (PPI) data 

measures which pairs of proteins appear to bind physically, thereby giving clues about 

the proteins� biological functions.   
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Figure 1: The Central Dogma of Molecular Biology states that a DNA gene specifies 

its unique mRNA, which in turn specifies its unique protein.

If one gene is responsible for creating one mRNA and hence one type of protein, then 

each microarray experiment records the activity of each individual gene. This data can 

be represented by a one-dimensional vector whose ith entry stores the expression level 

of the ith gene. Typically, data from several experiments will be collected. For 

example, tissue from different cancer patients may be tested, or a single tissue may be 

tested at different times in order to produce a time series. In both cases, the different 

experiments are usually referred to as samples, and the resulting data set can be 

thought of as a two-dimensional array, with the jth column representing the one-

dimensional output for the jth sample. These mRNA measurements are often called 
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gene-expression data and they give a snapshot of the state of transcription of each 

sample, which in turn reflects the relative importance of their proteins in that tissue.  

Some leukaemia patients, for example, overproduce Red Blood Cell (RBC) mRNA 

and proteins including haemoglobin � responsible for the red colour of blood and 

oxygen transport.  In addition to haemoglobin about 40 other RBC genes are 

�switched-on� at the same time.  These proteins are all involved in the architectural 

and biochemical makeup of RBCs which deliver oxygen from the lungs with every 

breath and get rid of carbon dioxide at the same time.  On the other hand, the normal 

genes for lung function, including the surfactant protein � which prevent the lungs 

from collapsing, are often switched-off in lung cancer tumours.  The tumour is usually 

solid and has no �need� for the surfactant.  Hence repressed activity levels of these 

proteins is a possible indicator for that disease. 

 

Proteins are, of course, three-dimensional objects, and if two proteins are said to 

interact this means that they physically combine.  Experiments can now be conducted 

where, in principle, every possible pair of proteins in the cell can be tested to see if a 

mutual interaction takes place. The resulting PPI network is simply an undirected 

graph whose nodes are proteins and whose edges denote observed interactions 

[Grindrod04].   

 

In a simplified world where each protein has a single biological function and a protein 

always forms part of the same biological �team�, the principle of guilt-by-association 

can be effective. The biological function of a protein could be predicted by observing 

which other proteins had correlated expression levels, or which other proteins were 

neighbours in the PPI network, assuming that the function of those correlated proteins 

was known. However, the real story is rarely so clear-cut, with multiple sets of 

proteins able to perform similar tasks and with single proteins playing multiple roles. 

So, more flexible, unsupervised, methods are needed to identify the complex networks 

that maintain the systems biology of the cell. 

 

Section 3: How is the Data Produced?  

Microarrays depend on complimentary DNA and RNA molecules: this simply means 

that they form double helices with pairing rules � A matches with T and C with G. A 
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sequence of 25 nucleotides can be synthesized onto about 10
6
 to 10

8
 individual 

positions on an Affymetrix GeneChip© (http://www.affymetrix.com/index.affx), 

while longer pieces of DNA (60 � 100) can be attached to other glass microarrays 

[Hardiman04].  More unusually now, longer DNA fragments � grown in bacteria, are 

used in cDNA (copy DNA) microarrays.  However, despite production differences, all 

microarray devices depend on the specific sequence matching rules to ensure that only 

the required mRNA is detected by either one or several spots (Figure 2).  The mRNA 

being measured is first copied onto a molecule that has some tag, often fluorescent, 

incorporated � this is what is detected to give a numerical measure of the signal for 

each spot.  The signal has to be evaluated in various ways, depending on the physical 

design of the device. The casual user is advised to avoid this step and acquire 

�normalised� data, and also to be aware that each step in the preparation of 

microarray results contributes noise that can affect the reproducibility of the 

expression data. There are publicly available microarray repositories. Among the most 

accessible are the National Center for Biotechnology Information 

(www.ncbi.nlm.nih.gov/geo), the European Molecular Biology Laboratory�s 

European Bioinformatics Institute (www.ebi.ac.uk/arrayexpress), and Stanford 

MicroArray Database (genome-www5.stanford.edu/) with associated publications and 

replication of published methods to identify clusters of genes or groups of samples 

that are useful first steps in beginning to analyse datasets.  

 

 

 

 
 

Figure 2: c DNA microarray (left) and Affymetrix GeneChip© (right); each gene 

represented by one or several spots. 
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To fix notation,  we will let the microarray data take the form of a real M×N matrix, 

W , where M is the number of genes (rows) and N is the number of samples 

(columns), with  measuring the activity (expression level) of gene i in sample 

j. The larger the value , the greater the activity level. 

0≥ijW

Wij

 

As noted in the previous section, it is also possible to analyse proteins directly and see 

which proteins can physically interact (bind or become attracted) with one another. 

Yeast two hybrid (Y2H) experiments allow biologists to measure, in a pair-wise 

fashion, whether proteins interact. The two hybrid system is based on the premise that 

many eukaryotic transcriptional activators consist of two physically discrete modular 

domains. The DNA binding domain of the transcription factor is expressed as a hybrid 

protein fused to protein X (the "bait"), the activation domain is fused to protein Y (the 

"prey"). The domains act as independent modules: neither alone can activate 

transcription. Only if proteins X and Y interact will the activation domain be in the 

proper position to activate transcription of the reporter gene. As with microarray data, 

PPI networks obtained this way are very noisy; experimental limitations are believed 

to result in at least 50% for both the false negative (missing interactions) and false 

positive (spurious interactions) rates [Grindrod02, Titz04]. In Figure 3 we plot the 

adjacency matrix of a PPI network for yeast based on the data in [Uetz2000]. Here, a 

dot in row i and column j indicates an interaction between proteins i and j. In this case 

there are 1048 proteins and 1029 interactions.  
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More accurate, but much less exhaustive, methods for discovering interactions are 

available, and the data from these can be used to post-process the network producing 

so-called high-confidence networks [Bader03] 
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Figure 3: Adjacency matrix for the yeast PPI network from [Uetz2000]. A dot 

indicates a nonzero. 

 

Notwithstanding the inherent uncertainty in the experimental data, we should also 

keep in mind that the �yes or no�, binary, nature of the PPI network is necessarily an 

oversimplification. Whether two proteins interact may depend on environmental 

conditions within the cell and, in particular, on the presence or absence of other 

proteins. Further, biological false positives may be recorded�in this case, two 

proteins are observed to interact when brought together in the experimental procedure, 
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but will never have the opportunity to meet in the cell because they operate in distinct 

physical regions or exist at different times in the cell�s life cycle. 

 

In summary, our PPI data takes the form of a real symmetric N×N matrix, W, where N 

is the number of proteins, with 1=ijW  if proteins i and j are observed to interact and 

 if there is no interaction. 0=ijW

 

Section 4: What are the Questions? 

Microarray and PPI data sets provide large-scale, noisy, information. This must be 

distilled and refined if we are to draw biologically meaningful inferences. The 

overlapping fields of data mining, dimension reduction and machine learning provide 

tools for this purpose, and there are already many success stories [Grindrod06]. In this 

article we focus entirely on one tool�spectral analysis, giving an intuitive, 

algorithmic derivation of this SVD-based approach. 

 

Typical questions that biologists and medics may ask of high-throughput genomic 

data include 

1) Can a disease be linked to a particular set of genes? (For example: Are genes 

A, B and C are almost exclusively overexpressed in patients with disease Y?)  

2)  Given a new tissue sample, can we accurately classify it as either normal or 

cancerous? 

3) Given that gene A is known to play an important role in some biological 

function, can we discover any other genes that behave similarly to gene A and 

hence may also be involved in this function? 

4) Can we assign the genes/samples to clusters, where members within each 

cluster have common behaviour? 

5) Similarly, can we divide proteins into strongly interconnected clusters? 

6) Following on from 4) and 5), can we order the genes/samples/proteins so that 

near-neighbours are highly similar/strongly connected and far-neighbours are 

very dissimilar/weakly connected? 
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These issues are clearly interrelated. We will motivate our SVD approach with the 

ordering problem, 6), although the resulting algorithm also addresses the clustering 

problem 4)-5) and can be used to tackle questions 1), 2) and 3). 

 

Section 5:  How does the SVD Come in? 

We now derive an algorithm, based on biological principles, to tackle the ordering 

question 6) discussed at the end of the previous section. It turns out that we recover 

the SVD for a rectangular matrix via the well-known power method to find the 

dominant eigenvalue of a square matrix. 

 

First, let us repeat the ordering question 6) for samples in a microarray experiment. 

Imagine that we are trying to find an ordering of the samples on the real line such that 

close samples exhibit similar gene expression levels, whereas samples far apart on the 

real line show very different gene expression levels. In order to implement this 

reordering, our first task is to find a measure with which to compare samples. 

 

As discussed in Section 2, given M genes and N samples the gene expression values 

of the samples are stored in an M×N rectangular array W. We have in mind the case M 

> N (many genes and few samples) though, in fact, our ideas and analysis hold 

equally well for M ≤ N. We shall take as similarity measures the elements in the N×N 

matrix . Mathematically, for 1 ≤ i, j ≤ N, the ijth element of  is WW T WW T

  .)()()(
11

∑∑
==

==
M

l

ljli

M

l

ljil

T

ij

T WWWWWW

 

Biologically, Wli Wlj denotes the product of the expression levels of gene l in samples 

i and j. So if we sum over all the genes, that is, over l = 1,�,M, we obtain a measure 

of the total gene expression level for all genes that are expressed in both sample i and 

sample j. We expect this value to be large when sample i is closely related to sample j, 

but small if the samples are unrelated. (Note that all the elements of W are assumed to 

be non-negative so no cancellation occurs in summing Wli Wlj.) 

 

For convenience we write 
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  WWA T=

and assume that A has row and column sums equal to 1, that is, for row i and column 

j, 

  (1) .1       ,1
11

== ∑∑
==

N

t

tj

N

t

it aa

(This assumption makes the following discussion easier, but it is not essential. If the 

matrix A does not have this property a simple rescaling, often called �normalization�, 

can be implemented, see, for example, [Higham05, Knight06].) We also note that the 

derivation below applies equally well to the case where proteins are to be ordered 

from PPI data. In this case we would deal directly with the (symmetric) matrix W,  

rather than . WW T

 

Based on the data, our aim now is to assign a real value to each sample in such a way 

that the ordering of these values reflects a useful ordering of the samples. We start 

with some initial, arbitrary, set of values and proceed iteratively. Denote the initial 

position on the real line of the ith sample as . We seek an iterative algorithm to 

reposition the ith sample based on its relationship with all other samples. We claim 

that a reasonable candidate for repositioning is  

]0[

ix

   (2) ∑
=

+ =
N

t

k

tit

k

i xax
1

][]1[

for k=0,1,2,�, with k counting the number of iterations. In (2), the idea is that the 

new position of the ith sample is a weighted combination of the current position of all 

samples, with the weight for the tth sample depending on how closely samples i and t 

are related. 

 

However, there is a redundancy in (2), in that all the  could be shifted by an 

arbitrary amount, s say, with no change in the ordering, as is seen from 

][k

ix

 3) sxasxasxa k

i
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t
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11
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1

][ )(  (

using (1). 

 

To remove this redundancy, let us make a shift so that the mean position of the genes 

is centered at 0. This is implemented as 
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that is, we subtract the mean of the  values. Hence ][k
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using (1). In fact, if the initial ordering has zero mean, that is,  

 0 , (5) 
1

]0[ =∑
=

N

t

tx

then (4) and (2) coincide, ensuring that all future orderings have zero mean, and the 

freedom expressed by (3) is removed. In practice, round-off errors in evaluating the 

sums in (4) would cause the mean to drift away from zero, so (4) is less prone to 

numerical instabilities.  

 

In matrix-vector notation, (4) may be written as 

 
][1][k

1 1
1 kT

x
N

Ax ⎟
⎠
⎞

⎜
⎝
⎛ −=+

 (6) 

where 
][k

x is the vector whose i
th

 component gives the position of the i
th

 sample at the 

k
th

 iteration. Here, T)1,...,1,1( 1= , and the outer product 
T

1 1  is the N×N matrix with 

each component equal to 1. 

 

We now make the simple observation that (6) is the well known power method, and 

hence our iterates will converge to an eigenvector [Golub&VanLoan96]. Some 

straightforward linear algebra now allows us identify this vector and tie it to the SVD.  

 

Because  is a positive semidefinite matrix with non-negative elements, the 

classical Perron-Frobenius Theorem says that there is an eigenvalue at the spectral 

radius, and the corresponding eigenvector has strictly positive components 

[Horn&Johnson85]. Since 

WWA T=

1
1
=≤⇒= AxxA λλ , from (1), we know that the 

spectral radius of A is less than or equal to 1. But, by construction, 11 =A , so 1=λ  is 

the dominant eigenvalue of A with corresponding eigenvector 1. In the generic case 

where A is irreducible (see, for example, [Horn&Johnson85, p. 361]), this eigenvalue 

is simple, and the iteration (6) is precisely the power method applied to the matrix 
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⎟
⎠
⎞

⎜
⎝
⎛ − T

N
A 1 1

1
 with a starting vector satisfying 01

]0[ =x
T

 (from (5)). We see that the 

matrix A has been deflated, with the dominant eigenvalue being mapped to zero. 

Hence the iterates will converge to the eigenvector corresponding to the subdominant 

eigenvalue (assumed to be simple). In other words, (6) performs a power method 

iteration that generically converges to a vector corresponding to the second largest 

eigenvalue of A. 

 

Finally, we arrive at the SVD. Since , that subdominant eigenvalue of A is 

the square of the second largest singular value of W, and the converged eigenvector 

from (6) is the corresponding right singular vector of W.  

WWA T=

 

In summary, the ordering arising from (2) with (5), which was motivated by seeking 

similarities between samples on the basis of connections to genes, yields precisely the 

second right singular vector of W.  In practice, we need not implement the iteration 

given by (6). Instead, we could use standard software to compute the second right 

singular vector of W, directly obtaining the desired ordering of the samples. Similarly, 

an algorithm to order genes can be derived as above, but using WW
T
, producing an 

ordering based on that given by the second left singular vector of W. Numerical 

results to show the effectiveness of these ideas are given in the next section. 

 

It is often the case that other re-arrangements of the samples or genes are also 

relevant, and arguments along the lines of those above can be used to show that the 

third, fourth, etc. left and right singular vectors are natural candidates. One way to 

justify this generalisation is developed in [Higham07a], and illustrations also appear 

in the next section. 

  

Section 6: Does it Work? 

To illustrate the performance of the SVD, we give some results on microarray data 

from cancer studies. Here, each sample (corresponding to each column of W) is from 

the tumour of a patient with a known type of cancer, or from a normal/control tissue. 

In these examples, we are simply testing whether the SVD can rediscover the known 
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groupings, but it should be clear that a successful algorithm has enormous potential 

for revealing new information and answering questions like those listed at start of 

section 3. 

 
 

 
 

Figure 4: Upper left: carcinoma (stars) and normal (circles) liver samples; here 

M=12065 and N=152. Upper right: T (triangles) and B (circles) cell ALLs, AML 

(stars); here M=7129 and N=72. Lower left: normal in vivo (squares) and in vitro 

(circles) and carcinomas in vivo (triangles) and in vitro (stars); here M=20428 and 

N=21. Lower right: carcinoma (stars) and normal (circles) lung samples; here 

M=5983 and N=34. 

Figure 4 gives the results. In each of the four cases we have used both the second and 

third right singular vectors to give two-dimensional components for the samples, 

producing a �scatter plot� where nearby samples are likely to be related. Let us re-

emphasize that the underlying idea here is to use correlation in gene expression 

behaviour in order to classify sample types. In the upper left scatter plot clear 

separation of the carcinoma (stars) and normal (circles) kidney samples has been 

achieved by the second singular vector in data from [Choi05]. The upper right part of 

Figure 4 shows a scatter plot of the second versus third singular vectors of 72 

leukaemia samples from [Golub99]. In this plot the samples are known to divide into 
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three different groups. We see that the second singular vector does a good job of 

separating the ALLs and AMLs, while the third singular vector focuses on 

distinguishing between the T and B subtypes of ALL. Four clear subgroups can be 

seen in the lower left part of the Figure 4. The second, dominant, singular vector 

separates in vivo and in vitro samples and the third vector divides normal samples 

from oral carcinomas. This data comes from the first set of experiments of an ongoing 

study led by Dr. Johanna K. Thurlow at the Beatson Institute for Cancer Research, 

Glasgow. Microarray analysis of normal oral cultures or biopsies and immortal 

carcinomas grown in vivo (xenografts/human tumour) or in culture (in vitro) has 

defined a carcinoma gene expression signature which is maintained in vivo and in 

vitro. Finally, in the lower right of the figure we can see a scatter plot of two 

dominant vectors for a set of lung carcinomas and normal lung samples [Choi05]. 

Although a good separation can be deduced from this plot, it is not performed by a 

single singular vector. This is an example where carcinomas and normal samples can 

be distinguished only by using a combination of singular vectors. Although singular 

value ı2, shown in Figure 5, left, is far apart from the rest of the singular values the 

corresponding singular vector alone does not produce clear separation.  We see that 

the next two singular values, ı3 and ı4, are also separated from the rest of the pack, 

and an appropriate 3D plot of the lung data set reveals the shapes of two clusters 

(Figure 5, right). 

 

Figure 5: Left: singular values ı2, ı3 � Right: carcinoma (stars) and normal (circles) 

lung samples. 
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In Figure 6 we show how the PPI network from Figure 3 looks when it is reordered 

according to the first subdominant singular vector (also called the Fiedler vector in 

this context).  In linear algebra terms, we have applied a symmetric row/column 

permutation to the adjacency matrix. We see that the new ordering encourages 

nonzeros to lie close to the diagonal; proteins that appear close together in this new 

ordering are much more likely to interact than proteins that appear far apart, and the 

reordering shows that it is possible to view the network as being made up largely of 

local interactions with relatively few long-range links, as proposed in [Grindrod02]. 
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Figure 6: The adjacency matrix for the PPI network in Figure 3 when reordered 

using the subdominant singular vector (or Fiedler vector). 
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Section 6: What Else Can We Do? 

Even if we restrict ourselves to the topic of analysing genomic data sets from a 

computational matrix viewpoint, there are many exciting extensions and variations of 

the basic ideas presented here. For example, 

 

• Along with clustering/ordering information, it is possible to analyse 

sensitivity, giving information about how reliable the results are in the 

presence of uncertainty in the data [Spence07]. 

   

• The expression levels in microarray data can take the form of signed data, 

with negative values representing under-expression [Higham07b]. 

 

• Matrix-based inference algorithms can be developed through a systematic 

Bayesian approach [Lo&Gottardo07], and in the case where data represents 

evolution, algorithms for time series may be appropriate [Filkov02]. 

 

• As an alternative to the SVD, a Non-negative Matrix Factorization can be 

used [Fogel07]. 

 

• Expression data from two different organisms can be analysed with the 

Generalized Singular Value Decomposition [Alter03]. 

 

• Viewing the data as representing a network of interactions, random graph 

models can be developed [deSilva&Stumpf05] and used to extract 

biologically meaningful information [Morrison06]. 

 

• Generally, in order to add the most value, algorithms that work on multiple 

sources of data (including discrete quantities from, for example, sequence 

analysis or interaction and real-valued expression measurements)  must be 

developed [Li06]. 
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Overall, we hope to have convinced the reader that there is a range of important and 

exciting activities taking place at the data-driven end of computational cell biology 

where algorithms in matrix computation are being pushed to their limits in the 

analysis of large, noisy biological datasets. 
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