SIAM [ SCL STAT. COMPUT. & 1991 Society For Industdal and Applied Mathematics
Vol. 12, No. 5, pp. 991-999, September 1991 ' G0

RUNGE-KUTTA DEFECT CONTROL USING HERMITE-BIRKHOFF
INTERPOLATION*

DESMOND J. HIGHAM®

Abstract, Two technigques for reliably controlling the defect {residual} in the numerical solution of
nonstif initial value problems were given in [D. J. Higham, STAM J. Numer. Anal, 26 (1989), pp. 1175-11831,
“This work describes an alternative approach based on Hermite-Birkhoff interpolation. The new approach
has two main advantages—it is applicable to Runge-Kutta schemes of any order, and it gives rise to a defect
of the optimum asymptotic order of accuracy. For a particular Runge-Kutta formula the asymptotic analysis
is verified numerically.
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1. Imtroduction. This work deals with the control of errors in the numerical solution
of the nonstiff initial value problem

Yix)=flx y(x), vla)=y.eRY, a=xsbh

using an explicit Runge-Kutta method. These methods produce discrete approxima-
tions v, = y(x,) by proceeding in a stepwise fashion; a typical step involves advancing
the numerical approximation from x, 10 X, X, + h,.. To complement the approxima-
tion at the meshpoints {x,}, many authors have derived interpolants p(x) which provide
approximations p(x) = y(x) for other values of x (see, for example, [1], [71, [9], [12],
[137]). Tt is desirable for p{x) to provide efficient, accurate approximations, and to have
at least global C' continuity. The corresponding defect (residual),

8(x)=p'(x) —f{x, p(x)),

may then be used to measure the error in the numerical solution. As a means of
error-controt, Enright [5] suggests that the defect be sampled at one or more points
on each step. By retaking the step with a smaller stepsize if necessary, we could ensure
that the sampled vaiues were sufficiently small on every step. The idea of controlling
the defect is intuitively reasonable-—if the solution has a small defect then it solves a
nearby system of differential equations and has a small “backward error.” For a
discussion of the defect contro} philosophy, and its relation to the more traditional
local error control, see [3] and [6].

When standard Runge-Kutta interpolation schemes are used, the shape of the
defect over each step cannot be determined a priori, since it depends on f In [10] two
special classes of interpolant were derived which have the property that asymptotically
(as h, - 0) each component of the defect behaves like a multiple of a known polynomial
over each step, and hence the maximum or root-mean-square integral value of the
defect can be approximated from one sample. (We mention that it has been shown
that in the case of Adams PECE multistep formulas, there are natural interpolation
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992 D. I. HIGHAM

schemes which automatically satisfy this property {11].} Two main drawbacks of the
schemes in [10] are:

® They are only viable for low-order Runge-Kutta formulas (say =5}, and

® They produce a defect with an asymptotic order of one less than the optimal

value.
The purpose of this work is to show that both difficulties can be overcome by the use
of Hermite-Birkhoff interpolants.

In the next section we set out some basic definitions and define the particular
type of Hermite-Birkhoff interpolant that we need. We then show that the corresponding
defect has the desired asymptotic properties. In the final two sections we specialize
to fifth-order Runge-Kutta formulas and give some numerical verification of the
theoretical resuits.

‘2. The Hermite-Birkhoff iﬁterpelant. An s-stage explicit Runge-Kutta formula
for advancing the numerical solution over a step of length hA(=h,) can be written

yn4~]=yn+h Z bikis
i=1

where
kl :f(xny yn):

i—1
k;-=f(xn"i""c,»h,y,,+h Z aijkj)a 2=Ei=s
j=1

The local solution for the'step u(x) is the solution curve which passes through y, at
x,; that is, #'(x} = f(x, u{x}) and u(x,) =y,. A Runge-Kutta formula is said to be of
order p if p is the largest integer such that the local error satisfies y,., —u(x,+h)=
O(h?*"). (Here, and in the following analysis, we assume that f is sufficiently differenti-
able.} We say that a corresponding local interpolant p{x) has local order g+1 if g is
the largest integer such that p(x, ++h) — u(x, + 7h) = O(h**") for any fixed 70, 1].
The interpolation condition p(x, + k)= y,., ensures that g+ 1= p+1. '

In deriving the interpolant p{x), a natural approach is to use a polynomial
interpolant to solution and derivative approximations. The data y,, f(x,, ¥a), Vot and
S{X,41, Yas1) 18 available free of charge, but normally extra data is needed to achieve
the desired order, and more stages must be added to- the Runge-Kutta process. An
automatic beotstrapping itechnique for generating polynomial interpoiants of local
order up to p+1 was developed by Enright et al. [7]. The technigue makes use of a
special kind of Hermite-Birkhoff interpolant. We show below that these interpolants
can also be used to derive robust defect control schemes.

The Hermite-Birkhoff interpolants that we consider are chosen to maich the
meshpoint data plus some extra derivative data at intermediate points in the step. If
f is Lipschitzian, then we have the result

Vo1 = U(Xnes} = OCh? =2 (00, Yord) = 1 (x,0,) = O(R™TH).
We write ¥, =0, v, =1, ¢} = f{x,, ¥,) and us = f{x,+, ¥ns+:1), and we suppose that there
are r—2 further derivative approximations {u}}].; available which also satisfy
ui—u'(x,+yh)=0(h"™),

where {v}i.; are distinct points in {0, 1). This data could be generated, for example,
by constructing one of the standard locally ordered p + 1 interpolants, p(x}, and fixing
up= fix,+vyh, p{x,+yh}). We may then consider the Hermite- Birkhoff polynomial
interpolant H(x) of degree =r+1 which satisfies

(21) H(xn):yns H(xn+1)xyn+l= H’(xn+yih):u;> l=i=sr
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Note that H{x)} does not satisfy the usual Hermite interpolatory conditions, since it
matches a derivative value, but not a solution value at X, -+ yh i=3, -, r

We point out that the existence and uniqueness of H(x) cannot be guaranteed in
general. However, for any particular r it is always possible to choose {v}i-s so that
H(x) exists uniquely [7, p. 197]. In the remainder of this section we assume that this
has been done.

Using the normalized variable, 7= (x —x,)/ h, we may write the interpolant in the
form

(2.2) H () = dy )y + d 1)y b L en(m)uy

where d,(7), do(7), and {e(7)}i., are scalar polynomials in 7 of degree =r+1. To
examine the local error and the defect in H (x}, we adopt the usual sirategy of isolating
the interpolation and data errors. To this end, we let Q(x) denote the Hermite-Birkhoff
interpolant that matches the exact local solution values:

(2.3 Q(xn+7h):di(T)u(xn)+d2(7)u(xn-§-i)+h Zr: e, (T)u'(x, + yih).
=t

First, we consider the interpolation error Q(x)~u(x). To find the asymptotic order
of this expression we follow the approach of Dormand et al. [4, pp. 5-6], which relies
only on the uniqueness of the interpolant. (Incidentally, although there is 2 well-known
error expression in the case of Hermite interpolation, the author is not aware of any
general expression for the error in Q(x}.) .

Suppose that the local solution u(x) has at least r+2 continuous derivatives.
Using the subscript f to denote the tth component of a vector-valued function, we
may substitute the truncated Taylor expansions

rl Lk r+2

h
+h)= T @ o+
u(x,+h) ;Eok!u‘ {x.) G

. f (v
ur(xn-{’”}’ih): E ’Yk!
. k=0 .

ul P (x, + 8,0h),

] ('}’gh}r+l i
W () +mw'— w " (x, + 6,:h),

where 0<< 8,9, 0,5, ", 0, <1, into {2.3} to give

r+2

r+1 kk h
Qs = e+ ] 3, s 000
k= I

{r+2)1

(vh)"

th él 6,-(7'){3;0———— u('kﬂ)(xn)'*“w

(r+2)
(J‘+1)' Uy (xn+8£,ih}}-

i
k!
This may be rearranged as
Qt(xn + 'Th) = ut(xn){dl(q') + d2(7)}
o hk {k} : k—-1
+k>: _[:i ul(x,)  daf7)+ 21 e Thky;
=1 : ==
(2.4) g
+ h””{—w?w(j—)— wl B (x, + 0,0h)
r !

r ’.’+i
+ 1 elr) "'r‘y‘l“—'" Ul H(x, + 6, ih)} .
i=1 (F"f" 1)1 ’
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Since dy(7), {fedm)}_, and u" P (x, + rh) are bounded on [0, 1], this may be written as
rtl hk

Q(x, +7h) = u,(x Hds{r) + dol7)}+ ¥ “l;“;ui'é)(xn}
k=1 KL

{2.5) r
. {dz(’ﬂ‘*‘ 2 ei('?'}kyf.c“'"l} + O(hr-e—z}.

i=

Now, by uniqueness, Q,(x, +7h) will be exact for w,(x, +rh)= (7h)* for0=k=r+1.
Hence, in (2.3),

(2.6) di{r)tdy(r)=1,

(2.7) d(7)+ T elnkyf =5 1sZksrtl
I=1

Substituting into (2.5} this gives
r+1 ’rh)k ]
o5 Qs+ =ulx) + T T )+ 00
. w :
=y (x, +rh)+ O(h™),

Similarly, by differentiating (2.4), (2.6}, and {2.7) with respect to 7, we can show that
1 d
{2.9) P Q.(x, + 7h) = ul{x, +7h)+ O(h"™).
T

Using (2.2) and {2.3), the data error H{x)~ Q(x) may Ee written
H(x,+7h) — Q{x, + 7h} = dy{T) ¥y — u(X041)]

(2.10) +h S emul~ ', + )]

= dZ(T)[yn-i-l - u(xn+1)] + O(hp+2),
since the derivative approximations are accurate to O(h"™"). Similarly,
1 d
= —{H{x,+7h}— @{x,+7h)}
h dr
(2.11)

AT [Prr— 2(xp0y) ]+ O,

=

If we have rzp, that is, if we use a sufficient amount of derivative data, then,
combining (2.8} and (2.10) we have

H(x,+7h)—u(x, + th) = d{ tH ypsi — ul{x0r) ]+ O(hp+2)'

We thus have an interpolant of local order p+ 1. Furthermore, H{x) has the desirable
property that the local error at any point ia the step can be directly related to the local
error at the next meshpoint y,.; — u(x,+,). Some low-order interpolation schemes with
this property have been discussed in [9]. The defect in H{(x) satisfies

8{x) = H'(x}~f(x, H(x))
= H'(x) ~w'(x}+f(x, u(x)) —f(x, H{x))
= H'(x) = u'(x)+O(h"""),



RUNGE-KUTTA DEFECT CONTROL 995
which, using (2.9) and (2.11), has the form
1
(2.12) 8{x, +7h) i A4 (P [ Vs — (X ) 1+ O(RT).

Hence, for sufficiently small stepsizes each component of the defect behaves like a
multiple of a known polynomial over each step.

As we mentioned earlier, the extra derivative data {u}}/.; could be obtained by
first constructing a standard interpclant p(x) of local order p-+1, and then setting
ul = f(x, + vh, p{x,+yh)}. With r=p, this would mean that the new.interpolant
requires p — 2 more f evaluations per step than p(x). However, in the case where p(x)
is a Hermite interpolating polynomial it is possible that some w!l = f(x,+vh, p(x,+vh))
data was used in the formation of p(x) and hence will be available “free of charge.”
An example of this will be seen in the next section.

From the expansion (2.12) we see that in order to have a small defect, it is desirable
that the local error per unit step { v, — #(x, .;}1/ h besmall. By examining the fruncation
coefficients in the asymptotic local error expansions, it is possible to derive Runge-Kutta
formulas with “minimal” local errors (see {3] for an overview). Such formulas would
ciearty be useful in our context. The polynomial d}(7) appearing in (2.12) is determined
solely by the choice of {v}i.s. (From (2.1} and (2.2), dy(7) is determined by the
conditions dy(0) =di(y,}=0, 1Ei=r, and d,(1)=1.}) Hence it is sensible to choose
these points so that the relevant measure of di(7) is small. In particular, if we are
concerned with controlling max, .o I| 6 (X, + vh}|| over each step, for some vector norm-
| -II, then the most efficient scheme asymptotically is given by choosing {y; f_, to sclve
the minimax problem
{2.13) mift max |di(7)].

{{miieae (0.1 distinot) TE[01]
The author does not know whether this problem can be solved analytically. In any
case it may be necessary to place other constraints on {y;};_;. For example, some v,
values may be fixed a priori, and the y; should be reasonably well spaced out across
the step (see the next section}.

The following lemma gives a little insight into the problem.

LEMMA 2.1. Suppose there exists a unique polynomial dy(r} of degree =r+1
satisfying

d{0)=0,  dy(1)=1,

di(yy=0, 1Fi&r,
where ¥, =0, y,=1 and {y}i_;€(0,1) are distinct. Let d¥(+Y be the corresponding
polynomial which satisfies

d3(0) =0, da¥(l)=1,
d¥(1—v)=0, I1sisr
Then 1—dy(v)= d¥(1~7) and hence di(7)=d3'(1—7), so that
%ﬁﬁdéw =max [d¥ (7).
Proof. Given d,(7} as in the lemma, g{r)=1~d,(7) is the unique poiynomial of
degree =r-+1 which satisfies
gl =1, g(1)=0,
g {y)=0, I1Zisr

These conditions are precisely those which d3{1 -} must satisfy. 0
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The lemma shows that solutions to the minimax problem (2.13) generally arise in
pairs {¥}{.; and {1 v;}{.;. If the problem is to be solved by performing a grid search,
then the lemma allows us to reduce the amount of searching. For example, if r=35,
then rather than considering v, v, ys€(0, 1), we may restrict attention to vs£(0,1)
and v;, v,€(0,1]. (We may also assume, without loss of generality, the ordering
Y5 < Ya < Ys.)

Int the remaining sections we focus on the case p = 5. First we derive the conditions
which guarantee the existence of a unique Hermite-Birkhoff interpolant. We then
compute the oplimal points {v,}]., and test the resulting defect control scheme

numerically,

3. The case p =5. With a fifth-order Runge-Kutta formula ( p = 5) we must choose
*&5 in order to construct a Hermite-Birkhoff interpolation scheme of the required
form. Taking r = 5, we have three free parameters y,, v,, and s, which must be distinct
in (0, 1). The interpolation conditions that H(x) must satisfy can be cast as a system
of linear equations. The determinant of the system can be shown to be a constant
multiple of

det=3(y;+ vat vs) = 5(vsvat ¥avs+ ¥e¥s) + 103y, ys— 2.

Hence H(x) exists uniguely if and only if {ys, v., s} are chosen so that det 0. For
example, {0.4,0.5,0.6}, {0.1,0.5,0.9}, and {0.28,0.75,0.8} are invalid parameters,
Further straightforward but tedious algebra shows that d.(7) has the form

dy(r)= 7 {ar®+ b’ 4+ cr? + dr + ),

where

20 T et et D)
det’ _de{ Ya .74 ¥s 3

15
C=c (vt vat vst vavat ¥avs+ vays),

d=—-2-2¢~3b—4a, e=3+3a+2b+c

As discussed earlier, one reasonable way to choose {v;, v,, s} is to minimize the
quantity d2max:=maxp,,;|d3(7)|. Using a simple three-dimensional grid search, we
found that as the grid spacing decreased, the optimal y; value seemed to approach
one. To avoid approaching this pathological case, we chose to restrict the parameters
to [0.1, 0.9]. Varying the parameters in steps of 0.1 gave optimal values of {0.3, 0.4, 0.9}
for which dZmax =2.35. Although finer grid spacing slightly reduced d2max, it appeared
that v, and v, were converging to the same value.

In the numerical experiments described in the next section we base our Hermite-
Birkhoff interpolant on the six-stage, fifth-order formula from the RK5(4)7FM pair
derived by Dormand and Prince [2]. For this formula, Shampine [13] showed that by
using f(x,s, ¥n.t) and adding one extra stage, it is possible to construct an approxima-
tion y,4,,2 which satisfies y,.,,,~ u(x,+h/2)=O(h%). It follows that the Hermite
interpolant to y,, fix,, ¥.), Vnrrszs X T /2, Yosisa)s Yaur» and f(x,,, y Yus1) is locally
sixth order. While the general Hermite-Birkhoff interpolant derived above requires
three extra f evaluations per step, if we set v; =1 then we can save one evaluation by
using f(x, + /2, ype1/-) as derivative data. With v, =3 and {v,, vsy varying in [0.1, 0.9],
a grid search with spacing of 0.0001 gave {0.1, 0.7051} as the optimal values. The
corresponding d2max value is 3.46, and the optimal sample point is 7%=
0.89994049343102.
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4. Numerical results. We now describe some numerical testing of the scheme
outlined above. On each step we sampled the defect in H(x) at the asymptotically
optimal point and accepted the step if and only if [|8(x, +7%h}.<TOL, where TOL
is an absolute error tolerance. Stepsize selection was based on the usual asymptotically

motivated formula
- ( TOL )”5
= 0G| .
hold 1%6(3{:”‘*‘7'*;1}“00

For comparison, we also implemented a defect control scheme using the locally
sixth-order Hermite interpolant based on ¥,., f{X,, ¥u)s Vas1s2, flx, +H/2, Var172)s Yoo
and f(X,11, Vas1)- In this case the shape of the defect is not known a priori—it is
problem dependent and varies from step to step. The construction of this interpolant
requires two fewer [ evaluations than that of the Hermite-Birkhoff interpolant; hence
we chose to sample the defect at three points on each step in order to give schemes
with the same overall cost per step. The maximum observed defect at the three sample
points was used as the defect estimate. Noting that the defect is zero at the midpoint
of the step, we used 7=4, 3, and { as the three sample points.

To measure the accuracy of the defect sample in the Hermite-Birkhofl scheme
we formed

MAXg:= j 100 Lia(x,,+0.01jh)ﬂm}
1600+ 7"h)leo '
which is the worst case of the sample value underestimating the “true” maximum

defect over all steps. Similarly, we measured the accuracy of the underlying interpolant
by compuiing

(4.1} D= max{

n

MaXgs;z100 || H (%, +0.017h) — y(x, +90.01 jh)[]w}
Hyn-i-imy(anrl)lEoo )

The ratio G compares the global error in H{x) with that of the basic Runge~Kutta
formula. Corresponding results were obtained for the Hermite scheme, with
MAX, cq1/4,2/3,5/6) |8(X, + Th)]l in the denominator of (4.1).

We used the following nonstiff systems:

(i) A problem due to Fehlberg [see 11]:

(4.2) G max {

yi=2xy, log (max (y;, 1077)), v, (1) = exp (sin (1)),
yi=—2xy, log (max (y,,107%)), yAly=exp(cos{l}}, 1=x=5
(ii)-{iv) The orbit equations [8, Class D]:

yi=ys, n{0)=1-e,
J’5=Jf4, yl(o)zos
—
V3= T 72(0) =0,
RN ?
=V 1-&-5)”2
e T 0) = ., 0=x=20,
ST no=(15; *

with values of 0.1, 0.5, and 0.9, respectively, for the eccentricity parameter &.

The results can be found in Tables 1 and 2.

We see that for the Hermite-Birkhoff scheme, the defect sample is generally very
reliable, more so than for the original robust schemes in [107. It is noticeable that the
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TABLE 1
Defect ratios 12 for the Hermite- Birkhoff (HB} and Hermite (H) schemes,

TOL
1078 167 107° 1078 1674
(1} HB 1.002 1.002 1.000 1.001 1.071
H 1.946 2570 2.417 2.413 2.405
{ii) HB 1.000 1.000 1.000 1.000 1.004
H 1,001 1.001 1.003 1,198 1.383
{iii} HB 1.000 1.001 1.000 1,000 1.012
H 1.076 1.115 1.746 2.125 - 2.078
{iv) HEB 1.025 1.032 1.706 1.032 1.463
H 1.887 2718 3,242 2.565 2.500

TagLs 2
Global error ratios G for the Hermite- Birkhoff (HB) and Hermite {H) schemes.

TOL

1072 0 107¢ 1978 10710

(i) HB 1.070 1.001 1.000 1.000 1.000
H 1.037 1.000 1.000 1.000 1.000

(i) HB 1.033 1.010 1.000 1.600 1.000
H 1.003 1.004 1.001 1.000 1.000

(iif) HB 1.023 1.011 1.004 1.001 1.000
H 1.000 1025 1.000 1.000 1.000

(iv) HBR 1.038 1.004 1.002 1.000 1.000
H 1.018 1.007 1.001 1,000 1.060

ratio D worsens as TOL decreases from 107% to 107, This behavior can be attributed
to rounding errors—the defect is formed as a numerical difference which can involve
a significant amount of cancellation. (For these computations, the unit roundof was
=2 x 107'°.} Such rounding errors are especially prone to occur on the first few steps
of an integration. Here a code will typically take conservatively small steps until it
finds the scale of the problem. On these steps the defect may be considerably less than
TOL. Overali the scheme performed worst on the & =0.9 orbit problem. Here the
solution is known to change rapidly in certain regions, and hence it is likely that there
are some steps where the stepsize-selection scheme has not adequately taken account
of these rapid changes and the higher-order terms in the defect expansion cause the
“optimum™ sample to be slightly less accurate than normal. The Hermite scheme
performs less reliably than the Hermite-Birkhoff scheme on all four problems. It is
liable to underestimate the defect by a factor of around twe. This behavior is to be
expected given the problem-dependent nature of the defect. In fact it is perhaps
surprising that the defect ratio D remains reasonably small (in theory it can be arbitrarily
large). The original experiments of Enright {5] with such “nonrobust’ defect control
schemes gave similar results. In terms of glabal errors, Table 2 shows that both
interpolants deliver almost exactly the same accuracy as the Runge-Kutta formula on
each test problem.

In summary, we have given a general technique for constructing robust defect
control schemes, and the particular case that we implemented performed reliably in
practice. Two important questions, which lie beyond the scope of this paper, are the
following:
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& How to compare numerically two different defect control schemes, using such
criteria as efficiency, reliability, and the proportionality of the global error to
the tolerance.

& How to compare numerically schemes which use different types of error control,
such as defect control and the various types of local error control (see [6] for
more details).

Tt is hoped that these issues will be addressed in the near future using a modified

version of the DETEST package [8] which is currently under development at the
University of Toronto.
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