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ASYMPTOTIC STABILITY OF A JUMP-DIFFUSION EQUATION
AND ITS NUMERICAL APPROXIMATION∗
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Abstract. Asymptotic linear stability is studied for stochastic differential equations (SDEs) that
incorporate Poisson-driven jumps and their numerical simulations using theta-method discretizations.
The property is shown to have a simple explicit characterization for the SDE, whereas for the dis-
cretization a condition is found that is amenable to numerical evaluation. This allows us to evaluate
the asymptotic stability behavior of the methods. One surprising observation is that there exist
problem parameters for which an explicit, forward Euler method has better stability properties than
its trapezoidal and backward Euler counterparts. Other computational experiments indicate that all
theta methods reproduce the correct asymptotic linear stability for sufficiently small step sizes. By
using a recent result of Appleby, Berkolaiko, and Rodkina, we give a rigorous verification that both
linear stability and instability are reproduced for small step sizes. This property is known not to
hold for general, nonlinear problems.
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1. Introduction. Stability is an important property in any time-stepping sce-
nario. For stochastic differential equations (SDEs), two very natural, but distinct,
concepts are mean-square and asymptotic stabilities. Mean-square stability is more
amenable to analysis, and hence this property dominates in the literature [3, 16, 21].
Asymptotic stability has received some attention in the case of nonjump SDEs [2, 16,
15, 20]. However, in the jump-SDE context, which is becoming increasingly important
in mathematical finance [4, 7, 8, 6, 11, 12, 17, 19, 22], we are only aware of mean-
square results [13, 14]. This motivates the work in this article, where asymptotic
stability is studied for jump SDEs.

Our test model has the linear, scalar form

(1.1) dX(t) = μX(t−) dt+ σX(t−) dW (t) + γX(t−) dN(t) , X(0) = X0,

for t > 0, where X0 �= 0 with probability one. We use X(t−) to denote lims↑t− X(s).
Here, for t ≥ 0, W (t) is a scalar Brownian motion and N(t) is a scalar Poisson
process (independent of W ) with jump intensity λ, both defined on an appropriate
complete probability space (Ω,F , {Ft}t≥0,P), with a filtration {Ft}t≥0 satisfying the
usual conditions (i.e., it is increasing and right-continuous, while F0 contains all P-
null sets); see [4, 8]. In addition to λ, this model involves three other constants: μ is
the drift coefficient, σ is the diffusion coefficient, and γ is the jump coefficient. We
assume throughout that λ > 0 and γ �= 0 (if γ = 0, the problem reduces to a nonjump
SDE). We may view the problem (1.1) in terms of the exponentially distributed jump
times of the Poisson process. Between each jump, the solution evolves according to
the nonjump version dX(t) = μX(t) dt+ σX(t) dW (t). At a jump time, the solution
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gets an instantaneous kick, and X(t) is replaced by (1+γ)X(t). For γ > 0 or γ < −2,
this has the effect of increasing the solution size, and for −2 < γ < 0, the solution
size is decreased.

The class (1.1) is important in its own right as a model in mathematical finance
[4, 8, 19], but here we are using it as a natural extension to the linear test problem
that has proved valuable in the analysis of numerical methods for ODEs [10] and
SDEs [2, 3, 16, 20, 21]. It is known that (1.1) has the solution

(1.2) X(t) = X0 (1 + γ)N(t) exp
[(
μ− 1

2
σ2

)
t+ σW (t)

]
;

see, for example, [4, 5, 8].

2. Model stability. Following the standard definitions for nonjump SDEs (see,
for example, [18]), given parameters μ, σ, γ, and λ, we define the trivial solution (al-
ternatively zero solution or equilibrium solution) of the jump SDE (1.1) to be stochas-
tically asymptotically stable in the large (hereafter, asymptotically stable) if it is stable
in probability and, moreover, for all X0 ∈ R

(2.1) lim
t→∞ |X(t)| = 0, with probability 1.

We now give a lemma that characterizes asymptotic stability in terms of the
problem parameters.

Lemma 2.1. Suppose γ �= −1 in (1.1); then

(2.2) lim
t→∞ |X(t)| = 0 , with probability 1 ⇐⇒ μ− 1

2
σ2 + λ log |1 + γ| < 0.

Proof. Taking the logarithms in (1.2) gives

(2.3) log |X(t)| = log |X0| +
(
μ− 1

2
σ2

)
t+ σW (t) +N(t) log |1 + γ|.

We know that

lim
t→∞

W (t)
t

= 0 and lim
t→∞

N(t)
t

= λ , with probability 1,

by the law of the iterated logarithm [18] and the strong law of large numbers [9].
Hence,

(2.4) lim
t→∞

1
t

log |X(t)| = μ− 1
2
σ2 + λ log |1 + γ| , with probability 1.

We consider separately the cases where μ− 1
2σ

2+λ log |1 + γ| is positive, negative,
and zero.

Case 1. For μ − 1
2σ

2 + λ log |1 + γ| < 0, it follows immediately from (2.4) that
log |X(t)| → −∞ and thus |X(t)| → 0 as t → ∞, and so the zero solution is asymp-
totically stable.

Case 2. Similarly, for μ − 1
2σ

2 + λ log |1 + γ| > 0, it follows immediately from
(2.4) that |X(t)| → ∞.

Case 3. For μ − 1
2σ

2 + λ log |1 + γ| = 0, we return to (2.3) and introduce the
compensated Poisson process Ñ(t) := N(t) − λt so that (2.3) becomes

log |X̂(t)| = σW (t) + Ñ(t) log |1 + γ|,
where X̂(t) = X(t)/X0.
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We note that W and Ñ are independent and also that

E

[
σW (t) + Ñ(t) log |1 + γ|

]
= 0

and

Var
[
σW (t) + Ñ(t) log |1 + γ|

]
=
(
σ2 + λ

(
log |1 + γ|)2)t.

By choosing Δ = 1
σ2+λ(log |1+γ|)2 , we can construct the sequence

ξn = log
∣∣X̂(nΔ)

∣∣− log
∣∣X̂((n− 1)Δ

)∣∣ , n ≥ 1,

where the ξn are independent and identically distributed with mean 0 and variance
1. We can now apply the law of the iterated logarithm to Sn =

∑n
i=1 ξi, giving

P

[
lim sup

n→∞
Sn√

2n log logn
= 1
]

= 1,

which implies that

P

[
lim

t→∞ log |X(t)| = −∞
]

= 0.

Hence, the zero solution is not asymptotically stable in this case.
In the exceptional case where γ = −1, a jump kills the solution, so we have

X(t) = X0 exp
[(
μ− 1

2
σ2

)
t+ σW (t)

]
· 1{N(t)=0}, t ≥ 0,

where 1A denotes the indicator function for A. So P [X(t) = 0] ≥ 1 − e−λt, and we
conclude that, for any μ, σ, and λ, limt→∞ |X(t)| = 0, with probability one. We note
that the condition (2.2) in Lemma 2.1 could be regarded as applying in the γ = −1
case if we view log(0) as −∞.

We also note that the jump coefficient γ appears in (2.2) in the form |1 + γ|, a
term which is symmetric about γ = −1. This follows from the fact that the stability
definition (2.1) involves only the modulus of the solution, and, in this sense, the effect
of a jump with γ = −1 + a is the same as for a jump with γ = −1 − a.

The stability characterization μ − 1
2σ

2 + λ log |1 + γ| < 0 involves four param-
eters and hence is difficult to visualize. In Figure 1 we focus on the effect of the
jump parameters λ and γ. Here, we have contoured the function λ log |1 + γ|. Any
particular contour in the plot corresponds to a combination of fixed choices of μ and
σ, the value of which is calculated as 1

2σ
2 − μ. For instance, a choice of μ = 1 and

σ = 2 would correspond to the contour at “height” 1. This contour represents the
border between the stable region and the unstable one. If we focus on those pairs
(μ, σ) corresponding to the contour at 1, we can see that a choice of λ = 0.5, γ = 4
(represented in Figure 1 by ×) yields an asymptotically stable equilibrium solution,
whereas a choice of λ = 0.75, γ = 4 (represented in Figure 1 by +) would yield an
unstable equilibrium solution.

In essence, crossing from above a contour to below it is equivalent to moving from
an unstable zero solution to a stable one for a particular fixed choice of μ and σ by
varying λ and/or γ.
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Fig. 1. Contour plot of λ log |1 + γ| illustrating the asymptotic stability of the trivial solution
of (1.1). Markers × and + represent stable and unstable, respectively, choices of the pair (λ, γ) for
a fixed pair (μ, σ) corresponding to 1

2
σ2 − μ = 1.

The broad features of the plot are intuitively reasonable. For γ > 0, increasing
either the jump coefficient γ or the jump intensity λ makes the problem less stable.
On the other hand, for −1 < γ < 0, where a jump reduces the solution magnitude,
increasing the jump frequency λ makes the problem more stable. For γ = 0, we revert
to the condition μ − 1

2σ
2 < 0 for the nonjump SDE. Figure 1 only shows the case

γ ≥ −1 because of the underlying symmetry that we mentioned earlier.

3. Theta-method stability. A generalization of the theta method to jump
SDEs was introduced in [14] and studied in terms of strong convergence and linear
mean-square stability, with further results for nonlinear problems appearing in [13].
Applied to the test equation (1.1) the method takes the form

(3.1) Yn+1 = Yn + (1 − θ)μYn Δt+ θμYn+1 Δt+ σYn ΔWn + γYn ΔNn,

with Y0 = X0. Here, Yn ≈ X(tn), with tn = nΔt, ΔWn = W (tn+1) −W (tn) is the
Brownian increment, ΔNn = N(tn+1)−N(tn) is the Poisson increment, and θ ∈ [0, 1]
is a fixed parameter. We suppose that the step size Δt is fixed. For the implicit case
θ > 0, we require θμΔt �= 1 in order for the method to be well defined. Given θ and
Δt, we may write the recurrence (3.1) in the form

(3.2) (1 − θμΔt)Yn+1 =
(
1 + (1 − θ)μΔt+ σ

√
Δt ξn + γΔNn

)
Yn,

where the ξn are independent standard normal random variables and the ΔNn are
independent Poisson random variables with mean λΔt and variance λΔt.
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By analogy with the SDE definition (2.1), given parameters μ, σ, λ, and γ
and values for θ and Δt, we say that the theta method is asymptotically stable if
limn→∞ |Yn| = 0, with probability one, for any X0.

Using [16, Lemma 3.1], which is essentially an application of the strong law of large
numbers, we find that a necessary and sufficient condition for asymptotic stability of
the numerical method (3.2) is

(3.3) E

[
log
∣∣∣∣ 1
1 − θμΔt

(
1 + (1 − θ)μΔt+ σ

√
Δt ξi + γΔNi

)∣∣∣∣
]
< 0.

Hence, the stability issue involves the expected value of the logarithm of a linear
combination of independent normal and Poisson random variables. We are not aware
of any useful analytical expression for this quantity.

To gain some computational insight, we may rearrange (3.3) into the form

E

[
log
∣∣1 + (1 − θ)μΔt+ σ

√
Δt ξ + γΔN

∣∣]− log
∣∣1 − θμΔt

∣∣
and expand over the possible values of ΔN to get

E

[
log
∣∣1 + (1 − θ)μΔt+ σ

√
Δt ξ + γΔN

∣∣]
=

∞∑
k=0

P
(
ΔNi = k

)
E

[
log
∣∣1 + (1 − θ)μΔt+ σ

√
Δt ξ + γk

∣∣]
=
e−λΔt

√
2π

∞∑
k=0

(λΔt)k

k!

∫
R

log
∣∣1 + (1 − θ)μΔt+ σ

√
Δt x+ γk

∣∣e−x2
2 dx

�e
−λΔt

√
2π

K∑
k=0

(λΔt)k

k!

∫ R

−R

log
∣∣1 + (1 − θ)μΔt+ σ

√
Δt x+ γk

∣∣e− x2
2 dx

�e
−λΔt

√
2π

Δx
K∑

k=0

(λΔt)k

k!

⎛⎝ J∑
j=0

log
∣∣1 + (1 − θ)μΔt+ σ

√
Δt xj + γk

∣∣ exp

(
−x

2
j

2

)⎞⎠.
Here, we truncated the infinite sum to the range 0 ≤ k ≤ K, truncated each infinite in-
tegral to the range −R ≤ x ≤ R, and then applied a simple quadrature approximation
to each integral, using a spacing Δx, with J = 2R

Δx −1, x0 = −R, and xj+1 = xj +Δx.
The plots in Figure 2 were produced with K = 10, R = 10, and Δx = 0.0004.

In each case, for fixed values of μ = 0.25 and σ = 0.5, we show the range of γ
and λ values for which the theta method is stable. Computations are given for θ =
0, 0.25, 0.5, 0.75, and 1. For reference the contour for the underlying test problem
(as given in Figure 1) is also shown. The three pictures correspond to step sizes
Δt = 0.1, 0.01, and 0.001. The pictures suggest that varying theta has little effect on
the asymptotic stability properties and also that all theta methods will reproduce the
correct asymptotic stability for sufficiently small Δt. In section 4 we give a rigorous
proof of the latter property.

The surface plot in Figure 3 gives another view, showing the expected value on
the left-hand side of (3.3) for the fixed values μ = 1, σ = 2, λ = 1.5, and γ = 0.25
as a function of θ and Δt. Here, μ− 1

2σ
2 + λ log |1 + γ| = −0.66, so, by Lemma 2.1,

the problem is stable. The black contour line, highlighted underneath the surface,
shows where the expected value in (3.3) is zero. This is the critical value where
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Fig. 2. Asymptotic stability boundaries for the theta methods and the underlying jump-SDE
(jSDE) zero solution, with fixed μ = 0.25 and σ = 0.5.

the method moves from instability to stability. The contour indicates that for these
problem parameters the stability behavior, measured as the range of Δt values that
reproduce asymptotic stability, is best for θ = 0 and gets uniformly worse as θ in-
creases. This effect is at odds with the behavior seen for deterministic problems [10]
and for mean-square stability on SDEs and jump SDEs [16, 14, 21]. To confirm this
visual observation, Table 3.1 computes the expected value in (3.3) in two different
ways: one by the quadrature technique and the other by the Monte Carlo technique
(with 95% confidence intervals shown), for θ = 0, 0.5, and 1 with Δt = 0.18. Note
that θ = 0.5 corresponds to a generalization of the trapezoidal rule for ODEs. We
see that the expected value increases with θ and that θ = 0 yields a stable method,
whereas θ = 1 does not. As a final check, Figure 4 shows one path for each of the three
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Fig. 3. Left-hand side of (3.3) as a function of θ and Δt, illustrating conditions for asymptotic
stability of the theta method (3.1).

Table 3.1

Comparison of approximations of the expected value in the left-hand side of (3.3) by the quadra-
ture and the Monte Carlo simulations.

Δt = 0.18 θ = 0 θ = 0.5 θ = 1

Quadrature −0.0203 −0.0043 0.0188
−0.0156 −0.0027 0.0163

Monte Carlo ±0.0082 ±0.0086 ±0.0090

methods, with the vertical axis scaled logarithmically. The behavior for θ = 0 and
θ = 0.5 is clearly consistent with asymptotic stability. For θ = 1, the lower picture,
which covers a longer time scale, reveals the asymptotic instability.

4. Euler–Maruyama for small step size. The nonlinear SDE dX(t) = (X(t)−
X(t)3) dt+ 2X(t) dW (t), with deterministic initial data, was studied in [15]. For this
problem, lim supt→∞

1
t log |X(t)| ≤ −1, with probability one. However, given any

arbitrarily small Δt, we can find deterministic initial data for which, with positive
probability, the Euler–Maruyama solutions blow up at a geometric rate. This mo-
tivated a study of small step size asymptotic stability. It was shown in [15] that
on linear, scalar SDEs, the theta method will preserve asymptotic stability for all
sufficiently small Δt. In this section we extend this result to the case of the jump
SDE (1.1). Further, we simultaneously cover both the stable and unstable regimes,
obtaining positive results in both cases. The analysis makes use of a recent result by
Appleby, Berkolaiko, and Rodkina [1].

For convenience, we focus on the θ = 0 or extended Euler–Maruyama method for
jump SDEs. As we show in Corollary 5.1, the result then extends readily to general
θs.
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Fig. 4. Medium (upper) and long (lower) time trajectories with fixed Δt = 0.18 showing
asymptotic stability for θ = 0 and 0.5 and instability for θ = 1.

With θ = 0 the recurrence (3.1) reduces to

(4.1) Yn+1 = Yn(1 + μΔt+ σ
√

Δt ξn + γΔNn).

Lemma 3.1 of [16] then gives a necessary and sufficient condition for asymptotic
stability of the form

(4.2) E

[
log |1 + μΔt+ σ

√
Δt ξ + γΔN |

]
< 0,

where ξ is standard normal and ΔN is Poisson with parameter λΔt, respectively.
We make use of part of [1, Theorem 5] in the proof of Theorem 4.2. For com-

pleteness, we state this result here.
Lemma 4.1 (Appleby, Berkolaiko, and Rodkina [1]). Let ξ be a random variable

with bounded third moment and density monotonically decreasing at ±∞, and let ψ
be an integrable function on R which is C3

(
(1 − δ, 1 + δ)

)
. Then, for μ, σ ∈ R and

Δt→ 0, we have

(4.3) E

[
ψ(1 + μΔt+ σ

√
Δtξ)

]
= ψ(1) + ψ′(1)μΔt+

1
2
ψ′′(1)σ2Δt+ o(Δt).

Theorem 4.2. Given μ, σ, γ, and λ such that μ − 1
2σ

2 + λ log |1 + γ| < 0
so that, by Lemma 2.1, the jump SDE (1.1) is asymptotically stable, there exists a
Δt� = Δt�(μ, σ, γ, λ) such that the Euler–Maruyama method (4.1) is asymptotically
stable for all 0 < Δt < Δt�.
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Conversely, given μ, σ, γ, and λ such that μ − 1
2σ

2 + λ log |1 + γ| > 0 so that,
by Lemma 2.1, the jump SDE (1.1) is not asymptotically stable, there exists a Δt� =
Δt�(μ, σ, γ, λ) such that the Euler–Maruyama method (4.1) is not asymptotically stable
for any 0 < Δt < Δt�.

Proof. Multiplying the expected value in (4.2) by eλΔt for convenience and ex-
panding, we get

(4.4)

eλΔt
E

[
log
∣∣1 + μΔt+ σ

√
Δtξ + γΔN

∣∣]
=

∞∑
k=0

(λΔt)k

k!
E

[
log
∣∣1 + γk + μΔt+ σ

√
Δt ξ

∣∣]
= E

[
log
∣∣1 + μΔt+ σ

√
Δt ξ

∣∣]
+ λΔtE

[
log
∣∣1 + γ + μΔt+ σ

√
Δt ξ

∣∣]
+

∞∑
k=2

(λΔt)k

k!
E

[
log
∣∣1 + γk + μΔt+ σ

√
Δt ξ

∣∣].
We now consider three distinct cases, depending on the value of γ.
Case 1 (γ �= −1/k). First, we deal with the generic case where γ �= −1/k for any

integer k ≥ 1. In this case, we may write (4.4) as

(4.5)

eλΔt
E

[
log |1 + μΔt+ σ

√
Δt ξ + γΔN |

]
= E

[
log |1 + μΔt+ σ

√
Δt ξ|

]
+ λΔt

(
log |1 + γ| + E

[
log |1 + μ̂Δt+ σ̂

√
Δt ξ|

])
+

∞∑
k=2

(λΔt)k

k!
log |1 + μΔt+ γk|

+
∞∑

k=2

(λΔt)k

k!
E

[
log |1 + rk ξ|

]
,

where μ̂ = μ
1+γ , σ̂ = σ

1+γ , and rk = σ
√
Δt

1+μΔt+γk , for k = 2, 3, . . . , and, for sufficiently
small Δt, there is no issue of “division by zero” or “log of zero.”

Now, using Lemma 4.1 with ψ(·) ≡ log(·), we find that

(4.6) E

[
log |1 + μΔt+ σ

√
Δt ξ|

]
=
(
μ− 1

2
σ2

)
Δt+ o(Δt)

and

(4.7) λΔt
(

log |1 + γ| + E

[
log |1 + μ̂Δt+ σ̂

√
Δt ξ|

])
= λΔt log |1 + γ| +O(Δt2).

By restricting Δt to, say, Δt ≤ 1
2 , we may choose a constant K1 such that

|γK1| ≥ 1 + μΔt, and hence |1 + μΔt+ γk| ≤ |2γkK1|. Then

log |1 + μΔt+ γk| ≤ log |2γkK1| = log |2γK1| + log k

for k ≥ 2. Furthermore, there exists some k̂ ≥ 2 such that |1 + μΔt + γk| > 1 for
k > k̂.
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We then have∣∣∣∣∣
∞∑

k=2

(λΔt)k

k!
log |1 + μΔt+ γk|

∣∣∣∣∣
≤
∣∣∣∣∣

k̂∑
k=2

(λΔt)k

k!
log |1 + μΔt+ γk|

∣∣∣∣∣+
∣∣∣∣∣

∞∑
k=k̂+1

(λΔt)k

k!
log |1 + μΔt+ γk|

∣∣∣∣∣
≤

k̂∑
k=2

(λΔt)k

k!

∣∣∣log |1 + μΔt+ γk|
∣∣∣+ ∞∑

k=k̂+1

(λΔt)k

k!
log |1 + μΔt+ γk|

≤ (λΔt)2
(

k̂∑
k=2

(λΔt)k−2

k!

∣∣∣log |1 + μΔt+ γk|
∣∣∣

+
∞∑

k=k̂+1

(λΔt)k−2

k!
log |1 + μΔt+ γk|

)

= (λΔt)2
(
K2 k̂ +

∞∑
k=k̂+1

(λΔt)k−2

k!

(
log |2γK1| + log k

))

≤ λ2Δt2
(
K2 k̂ + log |2γK1|

∞∑
k=k̂+1

(λΔt)k−2

k!
+

∞∑
k=k̂+1

(λΔt)k−2

k!
log k

)
(4.8)

=
(
K2 k̂ + log |2γK1|K3 +K4

)
λ2Δt2

= O(Δt2).(4.9)

Here, K2 = maxΔt≤ 1
2 , 2≤k≤k̂ | log |1 + μΔt + γk||(λΔt)k−2/(k!), and, taking Δt to

satisfy λΔt < 1, constants K3,K4 are bounds (uniform in Δt) for the two convergent
infinite series in (4.8).

To bound the final term in (4.5), we note that

∣∣∣∣∣
∞∑

k=2

(λΔt)k

k!
E

[
log |1 + rk ξ|

]∣∣∣∣∣ =
∣∣∣∣∣
∞∑

k=2

(λΔt)k

k!
· 1√

2π

∫
R

log |1 + rk x| e−x2/2 dx

∣∣∣∣∣
=

1√
2π

(λΔt)2
∣∣∣∣∣
∞∑

k=2

(λΔt)k−2

k!
F (rk)

∣∣∣∣∣ ,(4.10)

where F (rk) =
∫

R
log |1 + rk x| e−x2/2 dx. Making the substitution rk+1 x = rk y, we

have

F (rk+1) =
∫

R

log |1 + rk y| exp

(
−
(

rk
rk+1

)2
y2

2

)
· rk
rk+1

dy.
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Noting that rk/rk+1 > 1 and taking absolute values, we find

|F (rk+1)| =
∣∣∣∣ rkrk+1

∣∣∣∣
∣∣∣∣∣
∫

R

log |1 + rk y| exp

(
−
(

rk
rk+1

)2
y2

2

)
dy

∣∣∣∣∣
≤
∣∣∣∣ rkrk+1

∣∣∣∣ ∣∣∣∣∫
R

log |1 + rk y| exp
(
−y

2

2

)
dy
∣∣∣∣

=
∣∣∣∣ rkrk+1

∣∣∣∣ |F (rk)|.

Hence,

|F (rk+1)|
|F (rk)| ≤

∣∣∣∣ rkrk+1

∣∣∣∣ .
We can now examine the convergence of the infinite series in (4.10). If we set

ak =
∣∣∣∣ (λΔt)k−2F (rk)

k!

∣∣∣∣ ,
then

ak+1

ak
=
∣∣∣∣λΔt F (rk+1)
(k + 1)F (rk)

∣∣∣∣
≤
∣∣∣∣ λΔt
k + 1

· rk
rk+1

∣∣∣∣
=
∣∣∣∣λΔt (1 + μΔt+ γ(k + 1))

(k + 1)(1 + μΔt+ γk)

∣∣∣∣ → 0 as k → ∞.

Hence, the series in (4.10) is absolutely convergent, and we have

(4.11)

∣∣∣∣∣
∞∑

k=2

(λΔt)k

k!
E

[
log |1 + rk ξ|

]∣∣∣∣∣ = O(Δt2).

Using (4.6), (4.7), (4.9), and (4.11) in (4.5) gives

eλΔt
E

[
log |1 + μΔt+ σ

√
Δt ξ + γΔN |

]
=
(
μ− 1

2
σ2 + λ log |1 + γ|

)
Δt+ o(Δt).

It follows that for sufficiently small Δt and μ − 1
2σ

2 + λ log |1 + γ| �= 0, the sign of
E[log |1 + μΔt + σ

√
Δt ξ + γΔN |] matches the sign of μ − 1

2σ
2 + λ log |1 + γ|; so by

Lemma 2.1 and (4.2) the result follows.
Case 2 (γ = −1). When γ = −1, we know that the problem (1.1) is asymptotically

stable for all values of μ, σ, and λ. Hence, we must show that the numerical method
has the same property for all sufficiently small Δt.

In this case, (4.4) becomes

eλΔt
E
[
log |1 + μΔt+ σ

√
Δt ξ − ΔN |] = E

[
log |1 + μΔt+ σ

√
Δt ξ|]

+ λΔtE
[
log |μΔt+ σ

√
Δt ξ|]

+
∞∑

k=2

(λΔt)k

k!
E
[
log |1 − k + μΔt+ σ

√
Δt ξ|].(4.12)
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To analyze the second term in the expansion of (4.12), we write

E
[
log |μΔt+ σ

√
Δtξ|] = log(

√
Δt) + E

[
log |μ

√
Δt+ σξ|],

and so

(4.13) E
[
log |μΔt+ σ

√
Δtξ|]− 1

2
log Δt =

1√
2π

∫ ∞

−∞
log |μ

√
Δt+ σx|e−x2/2 dx.

Now choosing some constant Kδ = σ(1 + δ), 0 < δ < 1, we have log |Kδ x| ≥
log |μ√Δt+ σx| for x ∈ (−∞, c1

√
Δt
] ∪ [c2√Δt,∞), where

(c1, c2) =

⎧⎨⎩
(
−μ/(σ −Kδ),−μ/(σ +Kδ)

)
, μ < 0,(

−μ/(σ +Kδ),−μ/(σ −Kδ)
)
, μ > 0.

Note that as Kδ > σ, we have c1 ≤ 0, c2 ≥ 0 ∀μ ∈ R. So splitting the integral up in
the natural way, taking absolute values, and applying the triangle inequality, we have∣∣∣∣∫ ∞

−∞
log |μ

√
Δt+ σx|e−x2/2 dx

∣∣∣∣ ≤ ∣∣∣∣∫ c1
√
Δt

−∞
log |Kδ x|e−x2/2 dx

∣∣∣∣
+
∣∣∣∣∫ ∞

c2
√
Δt

log |Kδ x|e−x2/2 dx
∣∣∣∣

+
∣∣∣∣∫ c2

√
Δt

c1
√
Δt

log |μ
√

Δt+ σx|e−x2/2 dx
∣∣∣∣.

(4.14)

We deal with the first two integrals in (4.14) in the same manner. Using the
triangle inequality we have∣∣∣∣∫ c1

√
Δt

−∞
log |Kδ x|e−x2/2 dx

∣∣∣∣ ≤ ∣∣∣∣∫ 0

−∞
log |Kδ x|e−x2/2 dx

∣∣∣∣+∣∣∣∣∫ 0

c1
√
Δt

log |Kδ x|e−x2/2 dx
∣∣∣∣.

The first term on the right-hand side has an analytical expression. For the second
term, we use e−x2/2 ≤ 1 so that∣∣∣∣∫ 0

c1
√
Δt

log |Kδ x|e−x2/2 dx
∣∣∣∣ ≤ ∣∣∣∣∫ 0

c1
√
Δt

log |Kδ x| dx
∣∣∣∣

=
∣∣∣∣∫ 0

c1
√
Δt

log(−Kδ x) dx
∣∣∣∣

=
∣∣c1√Δt

(
1 − log(−Kδ c1

√
Δt)
)|

≤
√

Δt|c1|
(

1 + | logKδ| + | log(−c1)| + 1
2
| log Δt|

)
.

So we have∣∣∣∣∫ c1
√
Δt

−∞
log |Kδ x|e−x2/2 dx

∣∣∣∣ ≤
√

2π
4

(
ε+

∣∣∣∣log
2
K2

δ

∣∣∣∣)
+
√
Δt|c1|

(
1 + |logKδ| + | log(−c1)| + 1

2
| log Δt|

)
,
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where ε = − ∫∞
0
e−t log t dt = limn→∞

(∑n
k=1

1
k − logn

)
is Euler’s constant. Similarly,

∣∣∣∣∫ ∞

c2
√
Δt

log |Kδ x|e−x2/2 dx
∣∣∣∣ ≤

√
2π
4

(
ε+

∣∣∣∣log
2
K2

δ

∣∣∣∣)
+
√
Δt c2

(
1 + | logKδ| + | log c2| + 1

2
| log Δt|

)
.

Taking c3 = max (|c1|, c2), both integrals may therefore be bounded by

max

(∣∣∣∣∫ c1
√
Δt

−∞
log |Kδ x|e−x2/2 dx

∣∣∣∣, ∣∣∣∣∫ ∞

c2
√
Δt

log |Kδ x|e−x2/2 dx
∣∣∣∣
)

≤
√

2π
4

(
ε+

∣∣∣∣log
2
K2

δ

∣∣∣∣)+
√

Δt c3

(
1 + | logKδ| +

∣∣∣∣log c3| + 1
2

∣∣∣∣ log Δt|
)
.(4.15)

For the third component of (4.14), we note that our choice of Kδ means we avoid
a “log of zero” over the interval [c1

√
Δt,c2

√
Δt], and therefore we may bound this

definite integral in modulus as

∣∣∣∣∫ c2
√
Δt

c1
√
Δt

log |μ
√
Δt+ σx|e−x2/2 dx

∣∣∣∣ ≤ ∣∣∣∣∫ c2
√
Δt

c1
√
Δt

log |μ
√

Δt+ σx| dx
∣∣∣∣

=
∣∣∣K5

√
Δt+K6

√
Δt log Δt

∣∣∣,
where

K5 =
1
σ

(
(μ+ σc2)

(
log |μ+ σc2| − 1

)− (μ+ σc1)
(
log |μ+ σc1| − 1

))
,

K6 = − Kδ|μ|
σ2 −K2

δ

,

independent of Δt.
Since Δt < 1, we have | log Δt| = − log Δt, and so, using the bounds (4.15) in

(4.14) and (4.13), we find that

∣∣∣∣E[log |μΔt+ σ
√
Δtξ|]− 1

2
log Δt

∣∣∣∣ ≤ K7

for some constant K7 independent of Δt. Now the first term on the right-hand side
of (4.12) was shown to be O(Δt) in (4.6), and the third term can be shown to be
O(Δt2) using the same technique that we used for the infinite series in Case 1. Hence,
we conclude that, for all small Δt, |eλΔt

E[log |1 + μΔt+ σ
√
Δtξ −ΔN |]− 1

2 log Δt| is
uniformly bounded, showing that E[1+ log |μΔt+σ

√
Δtξ−ΔN |] is negative for small

Δt, as required.
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Case 3 (γ = −1/k�, for k� ∈ N, k� > 1). In this third case, (4.4) can be expanded
as

eλΔt
E

[
log
∣∣∣1 + μΔt+ σ

√
Δt ξ − ΔN

k�

∣∣∣]
= E

[
log |1 + μΔt+ σ

√
Δt ξ|]

+ λΔtE
[
log
∣∣∣∣1 − 1

k�
+ μΔt+ σ

√
Δt ξ

∣∣∣∣]
+

(λΔt)k�

(k�)!
E
[
log |μΔt+ σ

√
Δt ξ|]

+
∑

k �=k�

(λΔt)k

k!
E

[
log
∣∣∣∣1 − k

k�
+ μΔt+ σ

√
Δt ξ

∣∣∣∣].
The first term on the right-hand side is dealt with by (4.6). The remaining terms

can be analyzed using the arguments developed for Cases 1 and 2 in order to show
that

eλΔt
E

[
log
∣∣∣∣1 + μΔt+ σ

√
Δt ξ − ΔN

k�

∣∣∣∣] =
(
μ− 1

2
σ2 + λ log

∣∣∣1 − 1
k�

∣∣∣)Δt+ o(Δt),

and so the asymptotic stability result follows from Lemma 2.1 and (4.2).

5. Theta method for small step size. Using an idea from [15, section 4.3],
we may extend Theorem 4.2 to the case of the general theta method.

Corollary 5.1. The statements in Theorem 4.2 for the Euler–Maruyama method
(4.1) also apply to the general theta method (3.1).

Proof. The result follows from Theorem 4.2 when we observe that the theta
method (3.1) is equivalent to the Euler–Maruyama method (4.1) applied to the per-
turbed problem

dX(t) =
μ

1 − θμΔt
X(t−) dt+

σ

1 − θμΔt
X(t−) dW (t) +

γ

1 − θμΔt
X(t−) dN(t),

X(0) = X0.

6. Discussion. The main conclusions of this work are that (a) a standard theta
method discretization for jump SDEs will correctly preserve asymptotic stability for
sufficiently small stepsizes, but (b) in general there is no benefit to using implicit-
ness. This raises the open question of whether new methods can be devised that
guarantee Δt-independent stability preservation and hence offer efficiency gains on
stiff problems.

Acknowledgment. We thank Gregory Berkolaiko for bringing [1, Theorem 5]
to our attention.
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