
26

CONTEST: A Controllable Test Matrix
Toolbox for MATLAB

ALAN TAYLOR and DESMOND J. HIGHAM
University of Strathclyde

Large, sparse networks that describe complex interactions are a common feature across a
number of disciplines, giving rise to many challenging matrix computational tasks. Several ran-
dom graph models have been proposed that capture key properties of real-life networks. These
models provide realistic, parametrized matrices for testing linear system and eigenvalue solvers.
CONTEST (CONtrollable TEST matrices) is a random network toolbox for MATLAB that im-

plements nine models. The models produce unweighted directed or undirected graphs; that is,
symmetric or unsymmetric matrices with elements equal to zero or one. They have one or more
parameters that affect features such as sparsity and characteristic pathlength and all can be
of arbitrary dimension. Utility functions are supplied for rewiring, adding extra shortcuts and
subsampling in order to create further classes of networks. Other utilities convert the adja-
cency matrices into real-valued coefficient matrices for naturally arising computational tasks that
reduce to sparse linear system and eigenvalue problems.

Categories and Subject Descriptors: G.1.3 [Numerical Analysis]: Numerical Linear Algebra—
Sparse; structured; and very large systems (direct and iterative methods); G.4 [Mathematics of

Computing]: Mathematical Software—Certification and testing

General Terms: Algorithms, Experimentation, Performance, Reliability

Additional Key Words and Phrases: clustering, matrix computation, preferential attachment,
random graph, rewiring, sparse matrix, small-world

ACM Reference Format:

Taylor, A. and Higham, D. J. 2009. CONTEST: A controllable test matrix toolbox for MATLAB.
ACM Trans. Math. Softw. 35, 4, Article 26 (February 2009), 17 pages.
DOI = 10.1145/1462173.1462175. http://doi.acm.org/10.1145/1462173.1462175.

D. J. Higham was supported by Engineering and Physical Sciences Research Council grants
GR/S62383/01 and EP/E049370/1.
Authors’ address: A. Taylor and D. J. Higham, Department of Mathematics, University of
Strathclyde, Glasgow, G1 1XH, UK.
Permission to make digital or hard copies of part or all of this work for personal or classroom use
is granted without fee provided that copies are not made or distributed for profit or direct com-
mercial advantage and that copies show this notice on the first page or initial screen of a display
along with the full citation. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post
on servers, to redistribute to lists, or to use any component of this work in other works requires
prior specific permission and/or a fee. Permissions may be requested from the Publications Dept.,
ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or
permissions@acm.org.
c© 2009 ACM 0098-3500/2009/02-ART26 $5.00 DOI: 10.1145/1462173.1462175.

http://doi.acm.org/10.1145/1462173.1462175.

ACM Transactions on Mathematical Software, Vol. 35, No. 4, Article 26, Pub. date: February 2009.

26: 2 · A. Taylor and D. J. Higham

1. MOTIVATION

Networks describing connectivity structures arise across a vast range of
application areas. Examples where it has proved useful to record data include
interactions between genes [Kauffman 1969], proteins [de Silva and Stumpf
2005], cortical regions [Kamper et al. 2002; Sporns and Zwi 2004], Internet
nodes [Faloutsos et al. 1999], Web pages [Broder et al. 2000; Page et al. 1998],
countries [Fagiolo 2007], co-authors [Newman 2004], telephones [Abello et al.
1998], assets on the stock market [Boginski et al. 2003], and members of
various populations [Conyon and Muldoon 2006; Kiss et al. 2006; Onody and
de Castro 2004; Porter et al. 2005; Williams et al. 2002].

Typical data mining and visualization tasks reduce to linear system or
eigenvalue computations with the large, sparse adjacency matrices that define
the interactions. Several random graph models, that is, formulas for proba-
bilistically inserting connections, have been derived that attempt to capture
the key topological properties of real-life networks. Important goals for such
work are to understand how a network has reached its current state and to
predict how it will evolve. From a numerical analysis perspective, these ran-
dom graph models are an extremely useful source of realistic, controllable test
matrices for linear algebra software. This provides the motivation for the
MATLAB toolbox CONTEST (CONtrollable TEST matrices),1 which imple-
ments nine popular random network models, along with various utility func-
tions for postprocessing the networks. The codes were developed and tested
under MATLAB version 7.4.0.287 (R2007a). As supplementary material at the
Web site, we record performance results for MATLAB’s built-in iterative linear
system solvers pcg, qmr, symmlq, lsqr, minres, cgs, gmres, bicg, and bicgstab

using test matrices from the toolbox.
This article is arranged as follows. Section 2 gives a very brief overview

of the historical development of random network models. In Section 3 we de-
scribe each of the nine models and the corresponding MATLAB code. Section 4
introduces the utility functions for altering existing networks, setting up coef-
ficient matrices arising in common tasks and checking some basic topological
properties. In Section 5 we give a very brief illustration of the toolbox in use,
and we summarize the aims of this work in Section 6.

Our notation is as follows. We let n denote the number of nodes in a net-
work, with aij = aji = 1 if nodes i and j are connected and aij = aji = 0 otherwise.
So the adjacency matrix A ∈ R

n×n is symmetric. We always have aii = 0; so
nodes cannot be self-connected. The degree of node i is found by counting its
neighbors, degi :=

∑n
j=1 aij. For degi > 1 the curvature or clustering coefficient

of node i is found by counting how many pairs of these neighbors are them-
selves connected, and dividing this number by the maximum possible number
of connections, degi(degi − 1)/2. A definition in terms of MATLAB comands is
given in Section 4.7.1.

A call to one of the random network functions in the toolbox will generate
an A ∈ R

n×n as an independent instance drawn from a random network model.

1CONTEST is available from the Web site
http://www.maths.strath.ac.uk/research/groups/numerical analysis/contest.

ACM Transactions on Mathematical Software, Vol. 35, No. 4, Article 26, Pub. date: February 2009.

CONTEST: A Controllable Test Matrix Toolbox for MATLAB · 26: 3

The randomness is driven entirely by MATLAB’s built in pseudorandom
number generators, rand and randn, and our codes do not alter their states.
So the user can get back the same matrix by resetting the states of these two
random number generators. For consistency, we always generate adjacency
matrices with the sparse attribute, even though for some parameter values
a full matrix may arise (e.g., with the extreme choice of p = 1 in the Gilbert
model of Section 3.1).

Although we produce only symmetric adjacency matrices, it is straightfor-
ward to create unsymmetric versions, corresponding to directed networks, by
combining the upper and lower triangles from two independent samples from
the same model. For example, calling A = erdrey(n,m) and B = erdrey(n,m),
where erdrey described in Section 3.1.1 implements the Erdős–Rényi model,
we could set C = triu(A) + tril(B).

2. BACKGROUND

It has been repeatedly observed that real connectivity networks are neither
completely regular lattices nor classical random graphs. Following the land-
mark paper of Watts and Strogatz [1998], there has been a resurgence of
interest in the idea of designing probabilistic models that capture important
topological properties of real networks. Watts and Strogatz coined the phrase
small world network to describe a regime where small pathlengths coexist
with large clustering coefficients (nodes tend to live in cliquey, well-connected
subgraphs and yet the network can be globally traversed with relatively few
links). They also showed that this pair of properties arise when an appropriate
amount of disorder is added to a regular lattice.

Another key property that is claimed to be common in real networks is a
scale-free degree distribution,

Number of nodes of degree k

n
∝ k−γ , (1)

where γ is a constant, typically in the range 2 ≤ γ ≤ 3. The preferential

attachment model of Barabási and Albert [1999] attempts to describe the way
a network might grow when new nodes are added and new connections formed,
and it produces scale-free degree distributions. More recently, however, the
prevalence of the scale-free property has been questioned, at least in the con-
text of biological networks [Khanin and Wit 2006; Pržulj et al. 2004; Stumpf
et al. 2005].

In addition to small worlds and scale-freeness, a third dominant concept
is that of motifs [Alon 2006; Milo et al. 2004]. A motif is a subgraph that is
significantly overrepresented (relative to the occurrence of that subgraph in a
“randomized” version of the network). These motifs may be regarded as the
basic building blocks of the networks, and hence understanding their roles
gives valuable insights into how the overall network operates [Mangan and
Alon 2003; Mangan et al. 2003]. The closely related idea of graphlet frequency

was introduced in Pržulj et al. [2004] as a means to compare networks and
further developed in Pržulj et al. [2006]. Two networks are close if they are
made up of building blocks in the same relative proportions. This gives a

ACM Transactions on Mathematical Software, Vol. 35, No. 4, Article 26, Pub. date: February 2009.

26: 4 · A. Taylor and D. J. Higham

powerful and comprehensive means to check whether a probabilistic model is
capturing topological properties of real networks and to decide which models
are most appropriate. Using these ideas, the software tool GraphCrunch for
network comparison was developed in Milenkovic et al. [2008].

Overall, a recent and rapid expansion in theoretical and empirical research
activity has produced several models for computing networks in a controlled
manner that are “close” to real-life networks in a well-defined sense. It is our
tenet that these computable networks are therefore excellent candidates for
test matrices.

Although well-established sparse matrix test sets exist [Boisvert et al. 1997;
Davis 2007; Duff et al. 1989], they have been built around fixed instances aris-
ing in particular application areas. Randomness is typically incorporated very
simplistically. For example, Matrix Market2 [Boisvert et al. 1997] makes avail-
able the random generators DLATMR/ZLATMR from LAPACK [Anderson et al.
1999], which independently assign random samples from a given distribution
across the entries of an array and then randomly reset elements to zero in
order to achieve a given level of sparsity. In Davis [2007], Davis argues that
“random sparse matrices” are not appropriate for testing sparse matrix algo-
rithms; however, those comments would appear to be aimed at different classes
of matrices to those considered here. The models implemented in CONTEST
use randomness to capture properties that are commonly observed in complex
interaction networks.

The code in CONTEST was written to exploit vectorization and to use
matrix-vector-level operations where possible, but ultimately our priority was
to allow sparse matrices of the largest possible dimension to be computed.
A secondary aim was produce short, readable, and maintainable programs.
The importance of memory allocation and usage when generating sparse
matrices in MATLAB is discussed in Gilbert et al. [1992] and in NA Digest.3

Our justification for not focusing on execution time is that the tasks that will
typically be performed with the matrices—eigensolves, linear systems solves,
factorizations—will usually be more computationally expensive than the
matrix generation phase.

3. MODELS

In this section, we give brief descriptions of the nine models implemented, and
show how to use the corresponding MATLAB functions. In each case, the out-
put argument A is a sparse, symmetric, zero-diagonal matrix of dimension n,
with n being the first of the input arguments. The remaining input arguments
take default values if not specified in the function call. Default parameters
have been chosen to ensure that A corresponds to a connected (irreducible)
graph with high probability, with the exception of sticky in Section 3.7.1,
which, by construction, may produce many small disconnected subgraphs. In
Figure 1 we show a spy plot for each of the nine models using n=100; this

2with Web site URL http://math.nist.gov/MatrixMarket/.
3at http://www.netlib.org/na-digest-html/07/v07n28.html#1.

ACM Transactions on Mathematical Software, Vol. 35, No. 4, Article 26, Pub. date: February 2009.

CONTEST: A Controllable Test Matrix Toolbox for MATLAB · 26: 5

Fig. 1. Spy plots showing nonzero patterns for a 100 × 100 sample from each of the nine models.

dimension was chosen to make the visualization clearer; in practice values of
n of the order 104 or higher would be more realistic.

3.1 Classical

Random graph theory began in earnest in the late 1950’s, with the two classical
models in Gilbert [1959] and Erdös and Rényi [1959]. These models are usually
referred to as G(n, p) and G(n, m), but to help distinguish between them we will
use the names Gilbert and Erdős-Rényi.

In Gilbert’s model [Gilbert 1959] a fixed probability p is specified, and then
each pair of nodes is, independently, connected with probability p. In the
Erdős-Rényi model [Erdös and Rényi 1959] the number m of edges in the net-
work is specified. (Of course, m must be no more than the maximum possible
number of edges, n(n− 1)/2.) We then select uniformly at random from the set
of all graphs containing n nodes and m edges.

The properties of these classical random graphs have been well studied
[Albert and Barabási 2002; Bollobás 1985], although in terms of currently
adopted measures, such as pathlengths, clustering coefficients, and graphlet
frequencies, they cannot be regarded as accurate models of realistic networks
[de Silva and Stumpf 2005; Pržulj et al. 2004; Watts and Strogatz 1998]. Our

ACM Transactions on Mathematical Software, Vol. 35, No. 4, Article 26, Pub. date: February 2009.

26: 6 · A. Taylor and D. J. Higham

implementation for the Gilbert class is taken from Batagelj and Brandes [2005,
Algorithm 1].

3.1.1 Classical Codes: gilbert and erdrey. The function gilbert(n,p)

returns an instance from the Gilbert class. The optional second input ar-
gument defaults to log(n)/n, so A = gilbert(n) is equivalent to A = gilbert

(n,log(n)/n). Similarly, A = erdrey(n,m) produces an Erdős-Rényi random
graph, with m defaulting to the smallest integer bigger than n log(n)/2.

3.2 Small World

Motivated by the small world concept of the experimental psychologist Stanley
Milgram [1967], Watts and Strogatz [1998] proposed a random graph model
that can be regarded as interpolating between a regular, periodic lattice and
a classical random graph. Although the original work used rewiring, it is now
more common to introduce randomness via the addition of shortcuts [Higham
and Higham 2000; Newman et al. 2000]. Hence, in our Watts-Strogatz model
we begin with a k-nearest-neighbor ring (nodes i and j are connected if and only
if |i − j| ≤ k or |n − |i − j|| ≤ k). Then, each node is considered independently
in turn. With fixed probability p a node is given an extra link (i.e., a shortcut)
connecting it to a node chosen uniformly at random across the network. (At the
end of this process, self-links and repeated links between nodes are removed.)

3.2.1 Small World Code: smallw. The function smallw returns an instance
of the Watts-Strogatz model, with syntax according to A = smallw(n,k,p). The
optional input arguments k and p default to 2 and 0.1, respectively. From
a linear algebra perspective, the adjacency matrix has a symmetric, banded
Toeplitz structure, with extra nonzeros added uniformly and symmetrically at
random. We note that smallw makes use of the utility function short that is
described in Section 4.2.1.

3.3 Geometric

A two-dimensional, nonperiodic, geometric random graph may be defined as
follows. First, each of the n nodes is placed at random in the unit square:
More precisely, the ith node is given coordinates (xi, yi), where {xi, yi}

n
i=1 are

independent and identically distributed with uniform (0,1) distribution. Next,
for some specified radius r, nodes i and j are connected if and only if (xi − x j)

2 +
(yi − y j)

2 ≤ r2. In words, an edge denotes that two nodes were placed no more
than Euclidean distance r apart. Figure 2 illustrates the process with n = 100
and r = 0.2.

We emphasize that the resulting graph is simply the usual list of nodes and
edges. Information about the precise locations {xi, yi}

n
i=1 is not part of the final

mathematical object. Natural generalizations are possible.

—Dimension. The nodes can be randomly assigned to locations in the unit cube
in R

m, for some m > 2.

ACM Transactions on Mathematical Software, Vol. 35, No. 4, Article 26, Pub. date: February 2009.

CONTEST: A Controllable Test Matrix Toolbox for MATLAB · 26: 7

Fig. 2. Construction of a geometric random graph. Here, n = 100 and r = 0.2.

—Periodicity. Distance can be measured in a wrap-around fashion, so that, for
example, in the unit square, (xi − x j)

2 + (yi − y j)
2 is replaced by

(
min

(∣∣xi − x j

∣∣ , 1 −
∣∣xi − x j

∣∣))2
+

(
min

(∣∣yi − y j

∣∣ , 1 −
∣∣yi − y j

∣∣))2
.

—Norm. The Euclidean norm can be replaced by any other vector norm.

Much theory is available concerning properties of geometric random graphs;
see Penrose [2003] for a comprehensive treatment. Recently Pržulj et al.
[2004] showed that two- and three-dimensional nonperiodic versions, using the
Euclidean norm, give surprisingly accurate reproductions of many features of
real biological networks, and an algorithm that tests for geometric structure is
developed in Higham et al. [2008].

3.3.1 Geometric Code: geo. The call A=geo(n,r,m,per,pnorm) returns an in-
stance of a geometric random graph. There are four optional input arguments.

—r specifies the radius, defaulting to
√

1.44/n, which is motivated by the
asypmtotic (n → ∞) level that guarantees connectivity in two dimensions
[Penrose 2003];

—m specifies the dimension, defaulting to 2;

—per is a logical variable specifying whether periodic distance is to be used,
defaulting to per = 0; not periodic;

—pnorm specifies the L p-norm to be used, defaulting to 2.

3.4 Preferential Attachment

Barabási and Albert [1999] used the concept of preferential attachment to de-
velop random graphs with scale-free degree distributions. In this model, the

ACM Transactions on Mathematical Software, Vol. 35, No. 4, Article 26, Pub. date: February 2009.

26: 8 · A. Taylor and D. J. Higham

network grows (new nodes are added and linked into the existing network) un-
til n nodes have been created. For some fixed integer d ≥ 1, each new node
is given d links on arrival. These new connections are not chosen uniformly;
the new node links to an existing node with a probability that is proportional
to the current degree of that node. In this way, well-connected nodes tend to
become even better connected (the rich get richer) as the network evolves. Our
precise model is a translation into MATLAB of Batagelj and Brandes [2005,
Algorithm 5], which uses the specification in Bollobás et al. [2001].

3.4.1 Preferential Attachment Code: pref. The call A = pref(n,d) returns
an instance of a preferential attachment graph, using a single node as the
initial network. The degree parameter d defaults to 2.

3.5 Range Dependent

3.5.1 RENGA. Yeast two hybrid Protein-Protein Interaction (PPI) net-
works have proteins as nodes. Two nodes share an undirected edge if they
have been experimentally observed to interact [Xenarios et al. 2002]. Moti-
vated by the structure of PPI networks, Grindrod [2002] proposed and ana-
lyzed a random graph model that, in a sense, generalizes Watts-Strogatz. In
this model, the nodes have a natural linear ordering, i = 1, 2, . . . , n. Inde-
pendently over all pairs of nodes, we then insert a link between nodes i and
j with probability αλ| j−i|−1, where α > 0 and λ ∈ (0, 1) are fixed parameters.
The choice α = 1 ensures that adjacently ordered nodes are always connected.
The geometric factor λ| j−i|−1 causes long-range edges to be less common than
short-range edges.

Further analysis and generalizations of this model, now referred to as
RENGA, appear in Grindrod et al. [2008] and Higham [2005; 2003]. Closely
related models have also been used in percolation theory [Grimmett 1999].

3.5.2 RENGA Code: renga. The call A = renga(n,lambda,alpha) returns
an instance of a RENGA, with lambda defaulting to 0.9 and alpha defaulting
to 1.

3.5.3 Kleinberg. Kleinberg [2000] defined a variation of the Watts-
Strogatz model, and used it to examine which types of navigation algorithm
can exploit the existence of shortcuts. Kleinberg’s model is based on a peri-
odic, two-dimensional lattice: The n = m2 nodes can be thought of as being
equally spaced throughout a square, with each node having a location of the
form (i, j) ∈ R

2, where the integers i and j run from 1 to m. Every node is
given short-range connections to its neighbors that are a lattice (Manhattan)
distance of at most p away. Then each node is given q further long-range con-
nections. For a given node u, the recipient v of each such long-range connection
is chosen independently at random, with probability proportional to r−α. Here,
r is the lattice distance between u and v and α ≥ 0 is a fixed parameter.

3.5.4 Kleinberg Code: kleinberg. The call A = kleinberg(n,p,q,alpha)

generates an instance of the Kleinberg model. If the input dimension n is not

ACM Transactions on Mathematical Software, Vol. 35, No. 4, Article 26, Pub. date: February 2009.

CONTEST: A Controllable Test Matrix Toolbox for MATLAB · 26: 9

a perfect square then the output matrix has dimension (round(sqrt(n)))^2.
Default values are p = 1, q = 1, and alpha = 2.

3.6 Lock and Key

Using some basic biological insights, Thomas et al. [2003] proposed a class of
random graphs that model PPI networks. This class of models was further
analysed in Morrison et al. [2006], where it was used to extract new biological
information from real PPI datasets. The underlying modeling idea is that two
proteins interact because they share physically matching parts, which, follow-
ing Morrison et al. [2006], we refer to as locks and keys. There will be several
different types of key, which we can think of as labeled by colors (red, green,
blue, etc.) and for each type of key there is a matching lock (red, green, blue,
etc.). In the model, each protein has the same chance of possessing each color
of lock and each color of key. More precisely, for a given number of colors m, we
take each node in turn and independently assign it each possible lock and key
with some fixed probability p. The graph is then generated according to the
rule that two nodes share an edge if and only if one possesses a key and the
other possesses a lock of the same color. Self-links are removed.

3.6.1 Lock and Key Code: lockandkey. The call A = lockandkey(n,m,p) re-
turns an instance of a lock-and-key graph where there are m different lock-and-
key colors and each type of lock and key is handed out independently with fixed
probability p. Default values are m = ceil(n*log(n)) and p = 1/n.

3.7 Stickiness

The stickiness model was introduced in Pržulj and Higham [2006] to model
PPI networks. It was motivated as a simplified version of the lock-and-key
framework in which parameters could be fitted to real data. Here, a nonnega-
tive vector d̂ ∈ R

n is given, representing the scaled degree distribution of some

target network; more precisely, d̂i = degi/
√∑n

j=1 degi, where degi is the degree

of the ith node in the target. Then a new random network is produced by con-
necting nodes i and j with probability d̂îdj. In this way the expected degrees in
the random model match the target degrees. This model was found more accu-
rate than previously proposed models at reproducing topological properties of
PPI networks.

3.7.1 Stickiness Code: sticky. The call A = sticky(deg) generates an in-
stance of a stickiness graph with expected degree distribution given by the
one-dimensional array deg. To be consistent with our general philosophy that
all models can be called with a single input argument, n, representing the di-
mension, we allow an exception where sticky is called as A = sticky(n), with
n a positive integer. In this case A will be an instance of a stickiness graph
of dimension n with a scale-free expected degree distribution of the form (1)
with γ = 2.5. It is also possible to specify two input parameters: A call A =

sticky(n,gamma) specifies the value of γ to be used in (1).

ACM Transactions on Mathematical Software, Vol. 35, No. 4, Article 26, Pub. date: February 2009.

26: 10 · A. Taylor and D. J. Higham

4. UTILITY FUNCTIONS

4.1 Rewiring

The Watts-Strogatz model [Watts and Strogatz 1998] added randomness to a
ring network by rewiring some edges. For a general undirected network, we
define a rewiring process as follows, in terms of a fixed parameter p. Each
entry in the lower triangle of the original adjacency matrix is examined in
turn. If aij 6= 0 then, independently with probability p, we reset aij = aji = 0,
choose a node k uniformly at random from all nonneighbors of node i, and set
aik = aki = 1.

4.1.1 Rewiring Code: rewire. The call R = rewire(A,p) takes an adja-
cency matrix A and returns a rewired adjacency matrix R. The rewiring proba-
bility p defaults to p = log(n)/n.

4.2 Shortcuts

Rewiring has the theoretical drawback that it may cause a connected network
to become unconnected. Adding shortcuts is an alternative procedure that
gives very similar topological effects [Newman et al. 2000] but does not de-
grade connectivity. In this case the parameter p is a fixed probability that
is used independently over all nodes. For each node, with probability p we
add a new link from that node to a node chosen uniformly at random across
the whole network. Self-links are then removed and repeated links treated as
single links.

4.2.1 Shortcut Code: short. The call S = short(A,p) takes an adjacency
matrix A, adds shortcuts, and returns the new adjacency matrix S. The shortcut
probability p defaults to log(n)/n.

4.3 Subsampling

Information is often missing from real-life connectivity datasets [de Silva et al.
2006]. These omissions may be caused, for example, by errors in experimental
observations (false negatives) or by an inherent restriction on the number or
type of observations that can be made. In the case of yeast two hybrid PPI net-
works, it is widely accepted that the reported network is merely a noisy subset
of the underlying “true” network, and we can think of the given network as be-
ing generated from a subsampling operation on the larger version [Titz et al.
2004]. Interestingly, it has been discovered that the subsampling operation
may dramatically alter the topological properties of a network [de Silva et al.
2006; Han et al. 2005; Salathé et al. 2005].

We have implemented two subsampling algorithms. Given the adjacency
matrix for a network, they return the adjacency matrix for a network consist-
ing of a subset of those nodes and edges. The first algorithm does an unbiased,
uniform node removal involving a fixed parameter p. Each node is consid-
ered in turn, and with independent probability 1 − p we remove that node
and all edges that involve it, that is, we delete that row and column from the

ACM Transactions on Mathematical Software, Vol. 35, No. 4, Article 26, Pub. date: February 2009.

CONTEST: A Controllable Test Matrix Toolbox for MATLAB · 26: 11

adjacency matrix. The second algorithm uses a bait-and-prey approach, along
the lines of Han et al. [2005], which models the generation of certain PPI
datasets. Here, we use two fixed parameters, bait and prey. A proportion
bait of the nodes are chosen as baits. Then, for each bait, a proportion prey of
its edges are recorded, along with the prey nodes that are linked to the bait by
these edges. The final subsampled network consists of the bait-prey edges and
all the nodes that they involve.

4.3.1 Supsampling Codes: unisample and baitsample. The call U =

unisample(A,p) takes an adjacency matrix A and returns a subnetwork U

formed from an unbiased, uniform node removal. The probability p defaults
to 0.5.

The bait-and-prey algorithm can be called as B = baitsample (A,bait,

prey), with defaults bait = 0.5 and prey = 0.5.

4.4 Laplacian Matrices

An undirected network can be characterized by its adjacency matrix, and
basic linear algebra tells us that the eigenvectors and eigenvalues of this
matrix carry relevant information. However, spectral graph theory [Chung
1997] has shown that it is generally more useful to look at the spectrum of the
so-called Laplacian. There are two different matrices that take this name in
the literature. We distinguish between them as follows.

—The graph Laplacian has the form D − A.

—The normalized graph Laplacian has the form D̂− 1
2 (D − A)D̂− 1

2 .

Here D = diag(degi) and D̂ = D, with the exception that we take D̂ii = 1 in the
case where degi = 0.

Clustering and partitioning tasks can be tackled by computing eigenvectors
corresponding to small eigenvalues of these matrices. In particular, the Fiedler

vector and normalized Fiedler vector of a connected network are defined to
be the eigenvectors corresponding to the second smallest eigenvalues of the
Laplacian and normalized Laplacian, respectively. Specific software exists for
computing this type of information [Cour et al. 2005; Hendrickson and Leland
1994; Hu and Scott 2003].

4.4.1 Laplacian Matrix Codes: lap. The call L = lap(A,nl) takes a sym-
metric adjacency matrix A and returns a Laplacian; nl=0 for unnormalized and
nl=1 for normalized. The default is nl=1.

4.5 PageRank Matrix

The PageRank algorithm returns a vector whose ith entry indicates the
“importance” of the ith node in a network. The algorithm was invented by
Page and Brin and forms the heart of the search engine Google [Langville and
Meyer 2006; Page et al. 1998]. PageRank was originally designed for the di-
rected network where nodes are Web pages and edges are hypertext links, but

ACM Transactions on Mathematical Software, Vol. 35, No. 4, Article 26, Pub. date: February 2009.

26: 12 · A. Taylor and D. J. Higham

it has also been used on networks in biology [Morrison et al. 2005]. Given an
adjacency matrix A, the PageRank vector x solves the linear system

Px = 1, where P = I − dAT D̂−1. (2)

Here, d ∈ (0, 1) is a scalar parameter, the diagonal degree matrix D̂ is de-
fined in Section 4.4, and 1 denotes the vector of 1s. More precisely, when

A is unsymmetric we consider the out degree, so D = diag
(∑N

j=1 aij

)
and

D̂ = diag
(
max(Dii, 1)

)
.

4.5.1 PageRank Code: pagerank. The call P = pagerank(A,d) takes an ad-
jacency matrix A and returns the PageRank matrix P, with d defaulting to 0.85.
The matrix A is not assumed to be symmetric; directed edges are allowed.

4.6 Mean Hitting Time Matrix

In many applications it is useful to consider the discrete time, finite state
space, Markov chain that arises naturally from a network [Lovász 1996]. Here,
if we are currently at node i then at the next time level we move to a node
chosen uniformly among the neighbors of node i. The transition matrix for this
Markov chain thus has the form D−1 A. Fixing a node, i, the the mean hitting

time for node j is defined to be the average number of steps required for the
Markov chain to reach state j, given that it starts at state i. The vector of
mean hitting times can be found by solving the linear system Mx = 1, where
M ∈ R

n−1×n−1 is the transition matrix with its ith row and column removed
[Norris 1997].

4.6.1 Mean Hitting Time Code: mht. The call M = mht(A,i) takes an adja-
cency matrix A with nonzero out degrees and returns the mean hitting time
matrix M for a chain that starts at node i, with i defaulting to 1. The matrix A

is not required to be symmetric.

4.7 Pathlength and Curvature

The pathlength between nodes i and j is the smallest number of edges that
must be crossed to reach j starting from i. In terms of the adjacency matrix
A, the pathlength between nodes i and j can be characterized as the smallest
integer k ≥ 1 such that (Ak)ij 6= 0. If (An−1)ij = 0 then there is no suitable path
and the pathlength may be regarded as infinite.

The curvature, or clustering coefficient, of a node was defined in Section 1.
In MATLAB notation, the vector of clustering coefficients may be computed as
follows.

diag(A^3)/(sum(A).*(sum(A) - 1))

4.7.1 Pathlength and Curvature Codes: pathlength and curvature. The
call Path = pathlength(A) returns an array Path of the same dimension as
the adjacency matrix A, such that Path(i,j) is the pathlength from node i to
node j. We always set Path(i,i)=0 and we use Path(i,j)=inf to denote that
no path exists.

ACM Transactions on Mathematical Software, Vol. 35, No. 4, Article 26, Pub. date: February 2009.

CONTEST: A Controllable Test Matrix Toolbox for MATLAB · 26: 13

Fig. 3. amd runtimes for Gilbert model.

The call curv = curvature(A) takes an adjacency matrix A of dimension
n and returns a one-dimensional array curv of length n, such that curv(i)

records the curvature of node i. A second input argument is allowed. The call
curv = curvature(A,ind) returns the maximum curvature if ind is the string
’max’, the average curvature if ind is the string ’ave’, and the curvature for
the ith node if ind is the integer i. Undefined curvature evaluates to NaN.

5. COMPUTATIONAL EXPERIMENT

For a brief illustration of the toolbox in use, we follow Davis [2007] by examin-
ing the complexity of the minimum degree ordering algorithm, as implemented
in MATLAB’s amd. Letting L denote the Cholesky factor of the appropriate
permuted version of A, we plot the runtime, scaled by |L|, against |L|, on a
log-log scale. Davis [2007] distinguished between matrices from a determin-
istic test set coming from problems with and without inherent geometry. To
mirror this, Figure 3 shows results for matrices arising from the Gilbert class,
using gilbert, where there is no inherent structure, and Figure 4 shows re-
sults for matrices arising from the Kleinberg class, using klein, where there
is an underlying lattice. The least-squares slope is indicated by a solid line. In
each case the matrix dimension n was varied between 50 and 10,000. The test
programs are available from the testing section of the toolbox Web site. The
figures are consistent with the rule of thumb mentioned in Davis [2007] that
the runtime is typically below O(|L|).

6. SUMMARY: NETWORKS AS TEST MATRICES

The motivation for this work is the fact that recent random network mod-
els make excellent candidates for sparse test matrices. The models capture

ACM Transactions on Mathematical Software, Vol. 35, No. 4, Article 26, Pub. date: February 2009.

26: 14 · A. Taylor and D. J. Higham

Fig. 4. amd runtimes for Kleinberg model.

features of interaction data observed across a wide range of application areas,
and they incorporate parameters that allow the user to control topological
features, including sparsity and the distribution of degree and clustering coeffi-
cients. Naturally arising computational tasks in network science present chal-
lenging test problems for general (symmetric and unsymmetric) linear system
solvers and symmetric eigenvalue routines.

ACKNOWLEDGMENT

We thank T. Davis for useful advice about sparse matrix operations in
MATLAB.

REFERENCES

ABELLO, J., BUCHSBAUM, A., AND WESTBROOK, J. 1998. A functional approach to external graph
algorithms. Lecture Notes in Computer Science, vol. 1461, 332–343.

ALBERT, R. AND BARABÁSI, A.-L. 2002. Statistical mechanics of complex networks. Rev. Modern

Phys. 74, 47–97.

ALON, U. 2006. An Introduction to Systems Biology. Chapman and Hall/CRC, London.

ANDERSON, E., BAI, Z., BISCHOF, C., BLACKFORD, S., DEMMEL, J., DONGARRA, J., CROZ, J. D.,
GREENBAUM, A., HAMMARLING, S., MCKENNEY, A., AND SORENSEN, D. 1999. LAPACK Users’

Guide, 3rd ed. SIAM, PA.

BARABÁSI, A.-L. AND ALBERT, R. 1999. Emergence of scaling in random networks. Sci. 286, 5439,
509–12.

BATAGELJ, V. AND BRANDES, U. 2005. Efficient generation of large random networks. Phys. Rev.

E 71, 036113.

BOGINSKI, V., BUTENKO, S., AND PARDALOS, P. M. 2003. On structural properties of the market
graph. In Innovations in Financial and Economic Networks, A. Nagurney, Ed. Edward Elgar
Publishers, 29–45.

ACM Transactions on Mathematical Software, Vol. 35, No. 4, Article 26, Pub. date: February 2009.

CONTEST: A Controllable Test Matrix Toolbox for MATLAB · 26: 15

BOISVERT, R., POZO, R., REMINGTON, K., BARRETT, R., AND DONGARRA, J. 1997. Matrix
market: A Web resource for test matrix collections. In The Quality of Numerical Software:

Assessment and Enhancement, R. Boisvert, Ed. Chapman and Hall, London, 125–137.

BOLLOBÁS, B. 1985. Random Graphs. Academic, London.

BOLLOBÁS, B., RIORDAN, O., SPENCER, J., AND TUSNÁDY, G. 2001. The degree sequence of a
scale-free random graph process. Random Structures Algor. 18, 279–290.

BRODER, A., KUMAR, R., MAGHOUL, F., RAGHAVAN, P., RAJAGOPALAN, S., STATA, R., TOMKINS,
A., AND WIENER, J. 2000. Graph structure of the Web. Comput. Netw. 33, 309–320.

CHUNG, F. 1997. Spectral Graph Theory. American Mathematical Society, Providence, RI.

CONYON, M. J. AND MULDOON, M. R. 2006. The small world of corporate boards. J. Business

Finance Account. 33, 1321–1343.

COUR, T., BENEZIT, F., AND SHI, J. 2005. Spectral segmentation with multiscale graph decom-
position. In Proceedings of the IEEE International Conference on Computer Vision and Pattern

Recognition (CVPR), vol. 2, 1124–1131.

DAVIS, T. 2007. The University of Florida sparse matrix collection. Tech. rep. CISE Department,
REP-2007-298, University of Florida, USA.

DE SILVA, E. AND STUMPF, M. 2005. Complex networks and simple models in biology. J. R. Soc.

Interface 2, 419–430.

DE SILVA, E., THORNE, T., INGRAM, P., AGRAFIOT, I., SWIRE, J., WIUF, C., AND STUMPF, M. P. H.
2006. The effects of incomplete protein interaction data on structural and evolutionary infer-
ences. BMC Biol. 4, 39.

DUFF, I. S., GRIMES, R. G., AND LEWIS, J. G. 1989. Sparse matrix test problems. ACM Trans.

Math. Softw. 15, 1–14.

ERDÖS, P. AND RÉNYI, A. 1959. On random graphs. Publ. Math. Debrecen 6, 290–297.

FAGIOLO, G. 2007. Clustering in complex directed networks. Phys. Rev. 76, 026107.

FALOUTSOS, M., FALOUTSOS, P., AND FALOUTSOS, C. 1999. On power-law relationships of the
internet topology. Comput. Commun. Rev. 29, 251–262.

GILBERT, E. N. 1959. Random graphs. Ann. Math. Statist. 30, 1141–1144.

GILBERT, J. R., MOLER, C., AND SCHREIBER, R. 1992. Sparse matrices in MATLAB: Design and
implementation. SIAM J. Matrix Anal. Appl. 13, 333–356.

GRIMMETT, G. 1999. Percolation, 2nd ed. Springer.

GRINDROD, P. 2002. Range-Dependent random graphs and their application to modeling large
smal-world proteome datasets. Phys. Rev. E 66, 066702.

GRINDROD, P., HIGHAM, D. J., AND KALNA, G. 2008. Periodic reordering. Tech. rep. 6, University
of Strathclyde, Department of Mathematics.

HAN, J. D. H., DUPUY, D., BERTIN, N., CUSICK, M. E., AND M., V. 2005. Effect of sampling on
topology predictions of protein-protein interaction networks. Nature Biotechnol. 23, 839–844.

HENDRICKSON, B. AND LELAND, R. 1994. The Chaco user’s guide: Version 2.0. Tech. rep.
SAND94–2692, Sandia National Laboratories, Albuquerque, NM.

HIGHAM, D. J. 2003. Unravelling small world networks. J. Comput. Appl. Math. 158, 61–74.

HIGHAM, D. J. 2005. Spectral reordering of a range-dependent weighted random graph. IMA J.

Numer. Anal. 25, 443–457.

HIGHAM, D. J. AND HIGHAM, N. J. 2000. MATLAB Guide. Society for Industrial and Applied
Mathematics, Philadelphia, PA.

HIGHAM, D. J., PRŽULJ, N., AND RAŠAJSKI, M. 2008. Fitting a geometric graph to a protein-
protein interaction network. Bioinf. 24, 1093–1099.

HU, Y. AND SCOTT, J. A. 2003. HSL_MC73: A fast multilevel Fiedler and profile reduction code.
RAL-TR-2003-36, Numerical Analysis Group, Computational Science and Engineering Depart-
ment, Rutherford Appleton Laboratory.

KAMPER, L., BOZKURT, A., RYBACKI, K., GEISSLER, A., GERKEN, I., STEPHAN, K. E., AND

KÖTTER, R. 2002. An introduction to CoCoMac-Online. The online-interface of the primate
connectivity database CoCoMac. In Neuroscience Databases—A Practical Guide, R. Kötter, Ed.
Kluwer Academic, Norwell, MA, 155–169.

ACM Transactions on Mathematical Software, Vol. 35, No. 4, Article 26, Pub. date: February 2009.

26: 16 · A. Taylor and D. J. Higham

KAUFFMAN, S. A. 1969. Metabolic stability and epigenesis in randomly constructed genetic nets.
J. Theor. Biol. 22, 437–467.

KHANIN, R. AND WIT, E. 2006. How scale-free are gene networks? J. Comput. Biol. 13, 3, 810–818.

KISS, I. Z., GREEN, D. M., AND KAO, R. R. 2006. The network of sheep movements within Great
Britain: Network properties and their implications for infectious disease spread. J. Roy. Soc.

Interface 3, 669–677.

KLEINBERG, J. M. 2000. Navigation in a small world. Nature 406, 845.

LANGVILLE, A. N. AND MEYER, C. D. 2006. Google’s PageRank and Beyond: The Science of Search

Engine Rankings. Princeton University Press, Princeton, NJ.

LOVÁSZ, L. 1996. Random walks on graphs: A survey. In Paul Erdös is Eighty, D. Miklós, V. T. Sós,
and T. Szönyi, Eds. János Bolyai Mathematical Society, Budapest, 353–398.

MANGAN, S. AND ALON, U. 2003. Structure and function of the feed-forward loop network motif.
Proc. Nat. Acad. Sci. 100, 11980–11985.

MANGAN, S., ZASLAVER, A., AND ALON, U. 2003. The coherent feedforward loop serves as a sign-
sensitive delay element in transcription networks. J. Math. Biol. 334, 2, 197–204.

MILENKOVIC, T., LAI, J., AND PRZULJ, N. 2008. GraphCrunch: A tool for large network analyses.
BMC Bioinf. 9, 70.

MILGRAM, S. 1967. The small world problem. Psychol. Today 2, 60–67.

MILO, R., ITZKOVITZ, S., KASHTAN, N., LEVITT, R., SHEN-ORR, S., AYZENSHTAT, I.,
SHEFFER, M., AND ALON, U. 2004. Superfamilies of evolved and designed networks. Sci. 303,
1538–1542.

MORRISON, J. L., BREITLING, R., HIGHAM, D. J., AND GILBERT, D. R. 2005. Generank: Using
search engine technology for the analysis of microarray experiments. BMC Bioinf. 6, 233.

MORRISON, J. L., BREITLING, R., HIGHAM, D. J., AND GILBERT, D. R. 2006. A lock-and-key
model for protein-protein interactions. Bioinf. 2, 2012–2019.

NEWMAN, M. E. J. 2004. Who is the best connected scientist? A study of scientific coauthorship
networks. In Complex Networks, E. Ben-Naim et al., Eds. Springer, 337–370.

NEWMAN, M. E. J., MOORE, C., AND WATTS, D. J. 2000. Mean-Field solution of the small-world
network model. Phys. Rev. Lett. 84, 3201–3204.

NORRIS, J. R. 1997. Markov Chains. Cambridge University Press.

ONODY, R. N. AND DE CASTRO, P. A. 2004. Complex network study of Brazilian soccer players.
Phys. Rev. E 70.

PAGE, L., BRIN, S., MOTWANI, R., AND WINOGRAD, T. 1998. The PageRank citation ranking:
Bringing order to the Web. Tech. rep., Stanford Digital Library Technologies Project.

PENROSE, M. 2003. Geometric Random Graphs. Oxford Univeristy Press.

PORTER, M. A., MUCHA, P. J., NEWMAN, M. E. J., AND WARMBRAND, C. M. 2005. A network
analysis of committees in the United States House of Representatives. Proc. Nat. Acad. Sci. 102,
7057–7062.

PRŽULJ, N., CORNEIL, D. G., AND JURISICA, I. 2004. Modeling interactome: Scale-Free or
geometric? Bioinf. 20, 18, 3508–3515.

PRŽULJ, N., CORNEIL, D. G., AND JURISICA, I. 2006. Efficient estimation of graphlet frequency
distributions in protein-protein interaction networks. Bioinf. 22, 974–980.

PRŽULJ, N. AND HIGHAM, D. J. 2006. Modeling protein-protein interaction networks via a
stickiness index. J. Roy. Soc. Interface 3, 711–716.

SALATHÉ, M., MAY, R. M., AND BONHOEFFER, S. 2005. The evolution of network topology by
selective removal. J. Roy. Soc. Interface 2, 533–536.

SPORNS, O. AND ZWI, J. D. 2004. The small world of the cerebral cortex. Neuroinf. 2, 145–162.

STUMPF, M. P. H., WIUF, C., AND MAY, R. M. 2005. Subnets of scale-free networks are not
scale-free: Sampling properties of networks. Proc. Nat. Acad. Sci. 102, 4221–4224.

THOMAS, A., CANNINGS, R., MONK, N. A. M., AND CANNINGS, C. 2003. On the structure of
protein-protein interaction networks. Biochem. Soc. Trans. 31, 1491–1496.

TITZ, B., SCHLESNER, M., AND UETZ, P. 2004. What do we learn from high-throughput protein
interaction data? Expert Rev. Proteomics 1, 111–121.

ACM Transactions on Mathematical Software, Vol. 35, No. 4, Article 26, Pub. date: February 2009.

CONTEST: A Controllable Test Matrix Toolbox for MATLAB · 26: 17

WATTS, D. J. AND STROGATZ, S. H. 1998. Collective dynamics of ‘small-world’ networks. Nature

393, 440–442.

WILLIAMS, R. J., BERLOW, E. L., DUNNE, J. A., BARABÁSI, A.-L., AND MARTINEZ, N. D. 2002.
Two degrees of separation in complex food webs. Proc. Nat. Acad. Sci. 99, 12913–12916.

XENARIOS, I., SALWINSKI, L., DUAN, X. J., HIGNEY, P., KIM, S. M., AND D., E. 2002. DIP,
the database of interacting proteins: A research tool for studying cellular networks of protein
interactions. Nucleic Acids Res. 30, 1, 303–305.

Received June 2007; revised May 2008; accepted June 2008

ACM Transactions on Mathematical Software, Vol. 35, No. 4, Article 26, Pub. date: February 2009.

