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We here present a method of clearly identifying multipartite subgraphs in a network. The method is based on
a recently introduced concept of the communicability, which very clearly identifies communities in a complex
network. We here show that, while the communicability at a positive temperature is useful in identifying
communities, the communicability at a negative temperature is useful in identifying multipartite subgraphs; the
latter quantity between two nodes is positive when the two nodes belong to the same subgraph and is negative
when they do not. The method is able to discover “almost” multipartite structures, where intercommunity
connections vastly outweigh intracommunity connections. We illustrate the relevance of this work to real-life
food web and protein-protein interaction networks.
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INTRODUCTION

Since the publication of the seminal paper by Girvan and
Newman in 2002 �1�, there has been a dramatic explosion of
strategies and approaches for detecting communities in com-
plex networks �2–8�. These networks represent systems in
which the nodes account for the interacting entities, such as
molecules, cells, animal species, technological artifacts, etc.,
and the links record their interactions. A network community
is a group of entities which have a large number of interac-
tions among them but very few interactions with members of
the other groups �1�.

A completely contrasting type of structure can also be
found in complex networks. In such structures the nodes are
organized in groups of �almost� bipartite subgraphs �9,10�.
Here, the phrase bipartite signifies that the �sub�graph can be
divided into two distinct subsets such that all connections are
from one subset to the other. In this organization a commu-
nity is a collection of nodes that are not interconnected, but
have many neighbors in common. These structures appear in
a wide variety of complex systems. For instance, in the con-
text of protein-protein interaction networks, the bipartite
structure is intimately related to the existence of complemen-
tary binding domains in proteins �11,12� as well as to the
identification of essential proteins �13�. In food webs, bipar-
tite substructures might represent different trophic levels,
such as those formed by plants and herbivores, and in social
networks some of these disjoint sets can represent potential
competitors as in sellers-buyers or dating networks.

The main purpose of the present paper is to identify a
bipartite structure �and more generally a multipartite struc-
ture� in an arbitrary network. To do this, we introduce the
concept of communicability with a negative temperature.
Two of the authors recently demonstrated that we can iden-
tify communities in an arbitrary network very clearly with

the use of the communicability �with a positive temperature�
�14�. Here we show that we can clearly identify a multipar-
tite structure with the use of the communicability with a
negative temperature.

PRELIMINARIES

We represent a complex network by an undirected graph
G= �V ,E�, where V and E are the sets of nodes and links,
respectively. Let G have n nodes. Then the adjacency matrix
of G, A�G�=A, is a square, symmetric matrix of order n,
whose elements Aij are ones or zeroes if the corresponding
nodes are adjacent or not, respectively. This matrix has n �not
necessarily distinct� real-valued eigenvalues �15�, which are
denoted here by �1 ,�2 , . . . ,�N, and assumed to be labeled in
a nonincreasing manner: �1��2� ¯ ��N. Let � j be an or-
thonormal eigenvector corresponding to the eigenvalue � j.
Then, � j�i� designates the component of this eigenvector to
the ith node in the network. A graph is said to be bipartite if
its nodes can be divided into two disjoint sets V1 and V2 such
that every link connects a vertex in V1 and one in V2, but
there is no edge between two nodes in the same set.

THEORETICAL APPROACH

Let us consider the communicability between a pair of
nodes p and q in the network �14�,

Gpq��� = �e�A�pq = �
j=1

n

� j�p�� j�q�e��j , �1�

where �= 1
kT is the inverse temperature, k is the Boltzmann

constant, and T is the absolute temperature �16�. We have
previously shown that Eq. �1� represents the Green’s function
of the network, that is, a function which expresses how an
impact propagates from one node to another node in the
graph �14�. Using the quantity �1�, we constructed the “com-
municability graph ��G�” from the original graph G. The*Corresponding author. estrada66@yahoo.com
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communicability graph indicates communities in the graph G
very clearly �17�.

It is known from spectral clustering techniques that the
eigenvectors corresponding to positive eigenvalues give a
partition of the network into clusters of tightly connected
nodes �18,19�. In contrast, the eigenvectors corresponding to
negative eigenvalues make partitions in which nodes are not
close to those which they are linked, but rather to those with
which they are not linked �18,19�. Such differences have
made possible the classification of complex networks into
four universal classes �20�. Let us demonstrate the above
statements for a cycle Cn with even number of nodes n. The
adjacency matrix of a cycle is diagonalized by the eigenvec-
tors �� j�p�=Reeikjp /�n�, where � j�p� denotes the component
on the pth node of the eigenvector with the label j, and kj
	2��j−1� /n. The corresponding eigenvalues are � j
=2 cos kj. The largest eigenvalue �1=2 is given by the eigen-
vector �1�p�=const, which is a partition of the whole net-
work Cn into just one cluster. The second largest eigenvalue
�2=2 cos�2� /n� is given by the eigenvector �2�p�
=cos�2�p /n� /�n, which is positive for almost half of the
nodes and negative for the other half. In short, the second
largest eigenvalue gives a partition of the network Cn into
two clusters. On the other hand, the lowest eigenvalue
�1+n/2=−2 is given by the eigenvector �1+n/2�p�= �−1�p /�n,
which gives a partition of the network Cn into two sub-
graphs; that is, the eigenvector is positive for the nodes with
even p and negative for the nodes with odd p.

From the perspective of the communicability function �1�
we can say that a positive �negative� value of � increases the
contribution of the positive �negative� eigenvalues to the
communicability function. Then if we write the communica-
bility function as

Gpq��� = �
�j�0

� j�p�� j�q�e��j + �
�j=0

� j�p�� j�q�e��j

+ �
�j	0

� j�p�� j�q�e��j �2�

we have that

Gpq�� 	 0� 
 �
�j	0

n

� j�p�� j�q�e��j , �3�

Gpq�� � 0� 
 �
�j�0

n

� j�p�� j�q�e−����j . �4�

In other words, Gpq��	0� determines a partition of the net-
work into clusters of tightly connected nodes, which corre-
sponds to the network communities. On the other hand, for
Gpq���0� the network is partitioned in such a way that the
nodes are close to other nodes which have similar patterns of
connections with other sets of nodes, i.e., nodes to which
they are structurally equivalent. In the first case, we say that
the nodes corresponding to larger components tend to form
quasicliques. That is, clusters in which every two nodes tend
to interact with each other. In the second case, the nodes tend
to form quasibipartites, i.e., nodes are partitioned into almost

disjoint subsets with high connectivity between sets but low
internal connectivity.

Negative values of � arise when the absolute temperature
is negative �T�0�. Note that the temperature scale from cold
to hot then runs �21� 0 K, . . . , +300 K, . . . , +
 K, . . . ,
−
 K, . . . ,−300 K, . . . ,−0 K. In the limit T→−0 the largest
contribution to the communicability is from the lowest ei-
genvalue of the adjacency matrix �n,

lim
�→−


Gpq��� 
 �n�p��n�q�e−����n, �5�

which is known to produce a two-coloring of the nodes �22�.
In the above-mentioned example of the cycle Cn, the quantity
�5� is positive when p and q have the same parity �that is,
when they belong to the same subgraph� and negative when
not. This implies that the sign of the communicability at a
negative temperature indicates whether or not two nodes be-
long to the same subgraph. This is the main observation on
which we develop the theoretical approach hereafter.

In order to understand the meaning of the inverse tem-
perature � in the context of complex networks, we may ex-
press the communicability in terms of powers of the adja-
cency matrix,

�e�A�pq = �
k=0



�k�Ak�pq

k!
. �6�

Accordingly, � represents a weight given to every link of the
network. This weight accounts for the “strength” of the in-
teraction between the corresponding nodes in the graph. For
instance, �=0, which corresponds to the limit T→
, corre-
sponds to a graph with no links. This case is similar to a gas
formed by monoatomic particles. On the other hand, very
large values of � in the limit T→ +0 represent very large
attractive interactions between pairs of bonded nodes in a
similar manner to a solid. The new cases considered in this
work, ��0, correspond to the existence of repulsive inter-
actions between the pairs of linked nodes, which obligates
them to be in separated clusters forming bipartite structures
in the network.

From now on we consider, for the sake of simplicity, the
case where �=−1. Then,

Gpq�� = − 1� = �e−A�pq = �
j=1

n

� j�p�� j�q�e−�j . �7�

Now, let us interpret the exponential negative adjacency ma-
trix. First, we expand it in powers of the adjacency matrix,

e−A = I − A +
A2

2!
−

A3

3!
+ ¯ , �8�

which can be expressed in terms of the hyperbolic functions
as

e−A = cosh�A� − sinh�A� . �9�

The term �cosh�A��pq represents the weighted sum of the
number of walks of even length connecting nodes p and q in
the network. Similarly, �sinh�A��pq represents the weighted
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sum of the number of walks of odd length connecting nodes
p and q.

Let us consider a bipartite graph and let p and q be nodes
which are in two different disjoint sets of the graph. Then,
there are no walks of even length between p and q in the
graph and

Gpq�� = − 1� = �− sinh�A��pq � 0. �10�

However, if p and q are nodes in the same disjoint set, then
there is no walk of odd length connecting them due to the
lack of odd cycles in the bipartite graph, which makes

Gpq�� = − 1� = �cosh�A��pq 	 0. �11�

The above argument shows that, in general, the sign of the
communicability at a negative temperature, Gpq��
=−1�= �e−A�pq, gives an indication as to how the nodes can
be separated into disjoint sets.

Strategy for detecting quasibipartite clusters

The relations �10� and �11� hold when the graph is bipar-
tite. However, the arguments concerning odd vs even length
walks carry through to the case of quasibipartite subgraphs.
A bipartite subgraph �bipartite cluster� is a subset of nodes of
the graph that can be divided into two disjoint sets. In a

quasibipartite subgraph we have a subset of nodes that can
be divided into two almost disjoint sets. The term “almost
disjoint” means that most of the links in the subgraph are
interset links but there are very few intraset links. In more
formal terms we can define a quasibipartite cluster of nodes
as follows.

Definition 1. Let C�V be a cluster of nodes in the net-
work. Then, C is a quasibipartite cluster if, and only if,
�cosh�A��pq	 �sinh�A��pq∀ p ,q�C.

Our strategy for detecting quasibipartite clusters in com-
plex networks is as follows. First we start by calculating
exp�−A�, whose �p ,q� entry gives the communicability at
negative temperature between the nodes p and q in the net-
work. We recall that the positive entries of this matrix, i.e.,
Gpq	0, correspond to pairs of nodes which are in the same
quasibipartite cluster. The matrix exp�−A� can be repre-
sented as a signed complete graph in which every link con-
necting a pair of nodes has positive �Gpq	0� or negative
�Gpq�0� signs. We recall that a signed graph is a graph
whose edges are labeled by signs. In a signed graph a posi-
tive clique is a maximal set of mutually adjacent vertices in
which every pair of nodes is linked by a positive edge. That
is, a positive subgraph B is said to be a positive clique if
Gpq	0∀ p ,q�B. Then a quasibipartite cluster in the net-
work is a positive clique. A clique is a maximal complete
subgraph and a complete subgraph is a part of a graph in
which all nodes are connected to each other.

FIG. 1. �a� Quasibipartite graph having 12 nodes which was
built from a complete bipartite graph with two disjoint sets of 6
nodes each �see main text�. �b� The node-repulsion graph corre-
sponding to the quasibipartite graph shown in Fig. 1�a�. �c� Orga-
nization of the nodes of the graph given in Fig. 1�a� to represent the
two quasibipartite clusters found by the method developed in this
work. The black lines represent the intracluster connections and the
gray lines the intercluster links.

FIG. 2. �a� Quasitripartite graph having 18 nodes which was
built from a complete tripartite graph with three disjoint sets of 6
nodes each �see main text�. �b� Organization of the nodes of the
graph given in Fig. 2�a� to represent the three quasitripartite clusters
found by the method developed in this work. The black lines rep-
resent the intracluster connections and the gray lines the intercluster
links.
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In order to account for the inter- to intraset proportion of
links in the detection of quasibipartite clusters we introduce a
Heaviside step function:

��x� = �1 if x 	 0

0 if x � 0
 .

Definition 2. The node-repulsion graph is a graph whose
adjacency matrix is given by ��exp�−A��, which results
from the elementwise application of the function ��x� to the
matrix exp�−A�. A pair of nodes p and q in the node-
repulsion graph ��exp�−A�� is connected if, and only if, they
have Gpq	0.

Now, suppose that there is a link between the nodes p and
q and there are also links between them and a third node r.
This means that Gpq	0, Gpr	0, and Gqr	0. Consequently,
the three nodes form a positive subgraph B. As we want to
detect the largest subset of nodes connected to this triple we
have to search for the nodes s for which Gis	0∀ i�B.
Using the node-repulsion graph, this search is reduced to
finding the cliques in a simple graph, ��exp�−A��. These
cliques correspond to the quasibipartite clusters of the net-
work.

Finding the cliques in a graph is a classical problem in
combinatorial optimization, which has found applications in
diverse areas �23�. Here we use a well-known algorithm due
to Bron and Kerbosch �24�, which is a depth-first search for
generating all cliques in a graph. This algorithm consumes a
time per clique which is almost independent of the graph size
for random graphs and for the Moon-Moser graphs of n ver-

tices the total time is proportional to �3.14�n/3. The Moon-
Moser graphs have the largest number of maximal cliques
possible among all n-vertex graphs regardless of the number
of edges in the graph �25�.

Our algorithm differs from those in �9,10� in a number of
ways. Fundamentally, our aim is different. Rather than quan-
tifying the overall bipartivity of the network, or of individual
nodes or edges, we are looking for communities that share in
a bipartite substructure. Moreover, we allow several such
substructures to be present. In contrast to �9�, this algorithm
takes account of both odd and even length walks, avoids the
need for a cutoff parameter by considering walks of all pos-
sible lengths, and does not require a complex energy land-
scape to be searched by a heuristic discrete optimization al-
gorithm. This approach differs from �10� in that the
difference between odd and even length walks is used, and
we consider walks between distinct pairs of nodes rather than
closed walks, allowing communities to be detected.

COMPUTATIONAL TESTS

In order to test our strategy to find quasibipartite clusters
in complex networks, we start with a small quasibipartite
graph. The graph was formed by placing 12 nodes into two
disjoint sets of 6 nodes each �a bipartite graph� and then
connecting at random some of the nodes in each disjoint set,
which creates a quasibipartite structure. The graph has aver-
age degree �k�=6.67. We apply the Bron and Kerbosch �BK�

FIG. 3. �a� Quasitetrapartite graph having 24 nodes which was
built from a complete tetrapartite graph with three disjoint sets of 6
nodes each �see main text�. �b� Organization of the nodes of the
graph given in Fig. 3�a� to represent the four quasitetrapartite clus-
ters found by the method developed in this work. The black lines
represent the intracluster connections and the gray lines the inter-
cluster links.

(b)

(a)

FIG. 4. �a� Network representation of the food web of Canton
Creek. �b� Bipartite structure of this network as found by the
method developed in this work. Nodes in each quasibipartite cluster
are represented by squares and circles. The black lines represent the
intracluster connections and the gray lines the intercluster links.
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algorithm to the 0,1-adjacency matrix of the node-repulsion
graph, ��exp�−A��, to identify the cliques, which correspond
to the quasibipartite clusters in the original graph.

In Fig. 1�a�, we illustrate the graph in such a way that the
quasibipartite structure is not visually apparent. This would
be the case with a typical graph drawing algorithm. The
node-repulsion graph ��exp�−A��, which consists of two iso-
lated components, is illustrated in Fig. 1�b�. Each of these
components is formed by a complete graph of 6 nodes. Then,
it is evident that the BK algorithm identifies these two
cliques as the only ones existing in the node-repulsion graph
��exp�−A��, which indeed correspond to the two quasibipar-
tite clusters of the graph, as illustrated in Fig. 1�c�. The two
almost disjoint sets are represented in two lines of nodes
where the intercluster links are represented in gray and the
intracluster ones in black. The intracluster links make the
graph quasibipartite rather than perfectly bipartite.

Next, we create two new graphs using a similar approach.
The first is a quasitripartite graph and the second is a qua-
sitetrapartite graph. The application of the current approach
clearly divides the first graph into three quasipartite clusters
and the second one into four. The graphs and their partitions
are illustrated in Figs. 2 and 3, respectively.

MULTIPARTITE STRUCTURE IN REAL-WORLD
NETWORKS

As a proof of concept we first select a network which we
already know is bipartite. It is the network of heterosexual
contacts obtained empirically at the Cadham Provincial
Laboratory during six months between November 1997 and
May 1998 �26�. This network, consisting of 82 nodes and 84
connections, was studied by Lind et al. �27� where illustra-
tions and details can be found. Our current approach clearly
identifies the two bipartite clusters, one consisting of 47
nodes and the other of 35 �results not shown�. The node-
repulsion graph clearly identified the two isolated compo-
nents.

As a second example, we studied the food web of Canton
Creek, which consists primarily of invertebrates and algae in
a tributary, surrounded by pasture, of the Taieri River in the
South Island of New Zealand �28�. This network consists of
108 nodes �species� and 707 links �trophic relations�. Using
our current approach, we find that this network can be di-
vided into two almost-bipartite clusters, one having 66 nodes
and the other 42. Only 20 links connect nodes in the same
clusters, 13 of them connect nodes in the set containing 66
nodes and the other 7 connect nodes in the set of 42 nodes.
Thus 97.2% of links are connections between the two
almost-bipartite clusters and only 2.8% links are intracluster
connections. In Fig. 4, we illustrate the network and its qua-
sibipartite clusters as found in the current work. Other food
webs �see �29� and references therein�, like that of the pe-
lagic species from the largest of a set of 50 New York Ad-
irondack lake food webs �Bridge Brook�, a marine ecosystem
on the northeast US shelf �Shelf�, invertebrates in an English
pond �Skipwith�, and a food web like Canton Creek but in
native tussock habitat �Stony stream� are also formed by two

main quasibipartite clusters with no overlap between them.
However, there are other food webs with a larger number of
quasibipartite clusters with large overlap among them. One
example is the network formed by birds and predators and
arthropod prey of Anolis lizards on the island of St. Martin
�see �29� and references therein�, located in the northern
Lesser Antilles �St. Martins�, which has 116 quasipartite
clusters.

The next example corresponds to the protein-protein in-
teraction network �PIN� of the Kaposi sarcoma–associated
herpes virus �KSHV� �30�. KSHV is a member of the
�-herpes virus subfamily associated with Kaposi sarcoma
and B-cell lymphomas. Its PIN was generated by Uetz et al.
�30� by testing 12 000 viral protein interactions involving
both full-length proteins and protein fragments. From this
pool of interactions, Uetz et al. �30� identified 123 nonredun-
dant interacting pairs of proteins, 8 of which were self-
interactions. The resulting PIN of KSHV, formed by 50 pro-
teins and 115 interactions, is illustrated in Fig. 5�a�. Some of
the global topological characteristics of this PIN can be
found in Uetz et al. �30�.

Using our current approach we identify 34 quasipartite
clusters in the PIN of KSHV. The proteins grouped in every
cluster are given in Table I. The largest clusters are the num-

(b)

(a)

FIG. 5. �a� Network representation of the protein-protein inter-
action network of the Kaposi sarcoma–related herpes virus
�KSHV�. �b� Bipartite structure of this network as found by the
method developed in this work. Nodes in each quasibipartite cluster
are represented by squares and circles. Triangles correspond to
nodes not in these two quasibipartite groups �see text for explana-
tion�. The black lines represent the intracluster connections and the
gray lines the intercluster links
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bers 10, 11, 14, and 18 which have 21 proteins each. How-
ever, there is a very large overlap among them ranging from
66.6% for clusters 11 and 18 to 95% for the pairs of clusters
�10, 11�, �11, 14�, �14, 18�. There is another group of quasi-
bipartite clusters containing a large number of proteins. They
are the clusters 28, 29, 30, and 32. They also display very
large overlapping among them, ranging from 89.5% to
94.7%. However, these two groups of clusters are completely
orthogonal. That is, absolutely no overlapping exists between
any of the clusters of the first group �10, 11, 14, and 18� with
the clusters in the second group �28, 29, 30, and 32�. Then
we conclude that the PIN of KSHV can be divided into two

disjoint clusters of almost the same size, which contain 78%
of the proteins in the PIN. These two clusters are illustrated
in Fig. 5�b�.

On the other side of the coin, there are networks display-
ing a huge number of small quasibipartite clusters. This is
the case for those networks lacking a bipartite structure at all
but having a multipartite structure. For instance, the neuronal
synaptic network of the nematode C. elegans �see �31� and
the references therein�, which has 280 nodes and 1973 links,
is formed by 43 753 quasipartite clusters. This network has
been formerly shown to have a superhomogeneous structure
�32�, which explains its lack of bipartivity.

TABLE I. Quasibipartite clusters found in the protein-protein interaction network of the Kaposi sarcoma–related herpes virus �KSHV�.
The numbers are identification labels for the clusters and the proteins which form the cluster are given in the second column.

No. Proteins

1 K1 K15 K3 K5 K8 K8.1 Orf41 Orf52 Orf54 Orf65 Orf67.5 Orf68 Orf74 Orf56 K12 Orf48 Orf61

2 K8.1 Orf41 Orf54 Orf65 Orf67.5 Orf68 K12 Orf48 Orf61 Orf39 Orf47

3 Orf41 Orf65 K12 Orf48 Orf61 Orf39 Orf47 Orf2

4 Orf48 Orf61 Orf39 Orf47 Orf45 Orf2 Orf28 Orf37 Orf49

5 Orf56 Orf48 Orf61 Orf45

6 K1 K15 K3 K5 K8 K8.1 Orf23 Orf41 Orf50 Orf52 Orf54 Orf65 Orf67.5 Orf68 Orf74 Orf56 K12 Orf61

7 K8.1 Orf41 Orf50 Orf54 Orf65 Orf67.5 Orf68 K12 Orf61 Orf39 Orf47

8 Orf61 Orf39 Orf47 Orf45 Orf2 Orf27 Orf28 Orf31 Orf37 Orf49 Orf59

9 Orf61 Orf45 Orf2 Orf27 Orf28 Orf31 Orf34 Orf37 Orf49 Orf59 Orf69

10 K1 K10 K11 K15 K3 K5 K8 K8.1 Orf23 Orf30 Orf41 Orf50 Orf52 Orf54 Orf58 Orf65 Orf67.5 Orf68 Orf72 Orf74 Orf56

11 K1 K10 K10.5 K11 K15 K3 K5 K8 K8.1 Orf23 Orf30 Orf41 Orf50 Orf52 Orf54 Orf58 Orf65 Orf67.5 Orf68 Orf72 Orf74

12 K10 K10.5 K11 Orf23 Orf50 Orf72 Orf36

13 K10 Orf36 Orf25

14 K1 K10.5 K11 K15 K3 K5 K8 K8.1 Orf23 Orf30 Orf41 Orf50 Orf52 Orf54 Orf58 Orf65 Orf67.5 Orf68 Orf72 Orf74 K12

15 K10.5 K8.1 Orf41 Orf50 Orf54 Orf65 Orf67.5 Orf68 K12 Orf39 Orf47

16 K1 K10.5 K11 K15 K3 K5 K8.1 Orf30 Orf41 Orf52 Orf54 Orf65 Orf67.5 Orf68 Orf74 K12 K9

17 K10.5 K8.1 Orf41 Orf54 Orf65 Orf67.5 Orf68 K12 K9 Orf39 Orf47

18 K1 K11 K15 K3 K5 K8 K8.1 Orf23 Orf30 Orf41 Orf50 Orf52 Orf54 Orf58 Orf65 Orf67.5 Orf68 Orf72 Orf74 Orf56 K12

19 K1 K11 K15 K3 K5 K8.1 Orf30 Orf41 Orf52 Orf54 Orf65 Orf67.5 Orf68 Orf74 Orf56 K12 K9

20 K1 K15 K3 K5 K8 K8.1 Orf30 Orf41 Orf52 Orf54 Orf58 Orf65 Orf67.5 Orf68 Orf74 Orf56 K12 Orf48

21 K1 K15 K3 K5 K8.1 Orf30 Orf41 Orf52 Orf54 Orf65 Orf67.5 Orf68 Orf74 Orf56 K12 K9 Orf48

22 K8.1 Orf41 Orf54 Orf65 Orf67.5 Orf68 K12 K9 Orf48 Orf39 Orf47

23 Orf41 Orf65 K12 K9 Orf48 Orf39 Orf47 Orf2

24 K9 Orf48 Orf39 Orf47 Orf45 Orf2 Orf37

25 Orf56 K9 Orf48 Orf45

26 K9 Orf45 Orf2 Orf37 Orf57

27 Orf36 Orf25 K7 Orf27 Orf29b Orf31 Orf34 Orf53 Orf57 Orf59 Orf6 Orf60 Orf62 Orf63 Orf69 Orf9

28 Orf25 Orf45 K7 Orf27 Orf28 Orf29b Orf31 Orf34 Orf37 Orf49 Orf53 Orf57 Orf59 Orf6 Orf60 Orf63 Orf69 Orf75 Orf9

29 Orf25 K7 Orf27 Orf28 Orf29b Orf31 Orf34 Orf37 Orf49 Orf53 Orf57 Orf59 Orf6 Orf60 Orf62 Orf63 Orf69 Orf75 Orf9

30 Orf45 K7 Orf2 Orf27 Orf28 Orf29b Orf31 Orf34 Orf37 Orf49 Orf53 Orf57 Orf59 Orf6 Orf60 Orf63 Orf69 Orf75 Orf9

31 Orf39 Orf47 Orf45 K7 Orf2 Orf27 Orf28 Orf31 Orf37 Orf49 Orf53 Orf59 Orf6 Orf60

32 K7 Orf2 Orf27 Orf28 Orf29b Orf31 Orf34 Orf37 Orf49 Orf53 Orf57 Orf59 Orf6 Orf60 Orf62 Orf63 Orf69 Orf75 Orf9

33 Orf48 Orf45 Orf2 Orf28 Orf37 Orf49 Orf75

34 Orf56 Orf48 Orf45 Orf75
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CONCLUSIONS

Given a complex network, the concept of a node-
repulsion graph has intuitive interpretations in terms of �i� a
Green’s function at negative absolute temperature, and �ii� a
measure of the discrepancy between the overall number of
odd and even walks between pairs of nodes. Moreover, this
concept allows for a natural, well-defined quantification of
quasibipartite clusters that can be investigated with a simple,
parameter-free computational algorithm. This algorithm was
able to discover inherent bipartite communities in real data

sets, and hence has the potential to unlock hidden patterns at
the heart of complex networks.
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