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a b s t r a c t

Betweenness measures provide quantitative tools to pick out fine details from the massive
amount of interaction data that is available from large complex networks. They allow us
to study the extent to which a node takes part when information is passed around the
network. Nodes with high betweenness may be regarded as key players that have a highly
active role. At one extreme, betweenness has been defined by considering information
passing only through the shortest paths between pairs of nodes. At the other extreme,
an alternative type of betweenness has been defined by considering all possible walks
of any length. In this work, we propose a betweenness measure that lies between these
two opposing viewpoints. We allow information to pass through all possible routes, but
introduce a scaling so that longer walks carry less importance. This new definition shares
a similar philosophy to that of communicability for pairs of nodes in a network, which was
introduced by Estrada and Hatano [E. Estrada, N. Hatano, Phys. Rev. E 77 (2008) 036111].
Having defined this new communicability betweenness measure, we show that it can be
characterized neatly in terms of the exponential of the adjacency matrix. We also show
that this measure is closely related to a Fréchet derivative of the matrix exponential. This
allows us to conclude that it also describes network sensitivity when the edges of a given
node are subject to infinitesimally small perturbations. Using illustrative synthetic and real
life networks, we show that the new betweenness measure behaves differently to existing
versions, and in particularwe show that it recoversmeaningful biological information from
a protein–protein interaction network.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Characterizing local properties of complex networks is important both in theory and practice [1]. While at the global
scale we can summarize the overall architecture [2–4], at the local scale we can detect which nodes are the most relevant
for the organization and functioning of a network [5–8]. These local measures are commonly named centrality indices [9]
and have proved of great value in analyzing the role played by individuals in social networks [10]. We are now in a new era
for the study of complex networks,which is characterized by the availability of large amounts of data representing biological,
ecological, social, technological and infrastructural systems, among others [2–4]. Centralitymeasures have therefore become
an important tool in identifying essential proteins [11–13], keystone species [14,15], informational hubs or vulnerable
infrastructures [16].
Centrality indices can be motivated by looking at the ability of a node to communicate directly with other nodes, or

to its closeness at many other nodes or pairs of nodes or, more generally, by studying how frequently the node plays the
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role of intermediary when messages are passed around the network [17]. These ideas have given rise to some well-known
centrality measures such as degree centrality (DC), closeness centrality (CC), and betweenness centrality (BC) [9,18]. Other
centrality measures, known as eigenvector centrality (EC), information centrality (IC) and the subgraph centrality (SC) were
developed by Bonacich [19,20], Stephenson and Zelen [21] and Estrada and Rodríguez-Velázquez [22,23], respectively.
The betweenness centrality, BC, is defined as the fraction of shortest paths going through a given node [18]. It can be

regarded as a measure of the ‘‘importance’’ of a node as a controller of the information which is flowing between the other
nodes in the network. This measure assumes that all the information flowing through the network is going from one site to
another following only the shortest (or geodesic) paths. However, it may be argued thatmost of the ‘‘information’’ is likely to
flow through non-shortest paths. To account for this Freeman et al. [24] introduced the concept of flow betweenness centrality
(FBC), which includes contributions from both shortest paths and non-shortest paths in the graph. However, Newman
showed that the flow betweenness can give counterintuitive results in some cases [25], and offered the alternative concept
of random-walk betweenness centrality (RWBC) [25]. The first two kinds of betweenness can be considered as mathematical
ones while the third is a sort of statistically defined centrality.
The random-walk betweenness centrality of a node r is equal to the number of times that a random walk starting and

ending at two other nodes p and q passes through the node r along theway, averaged over all p and q. This centralitymeasure
is based on a diametrically opposite premise to that of shortest-path betweenness [25]. In the shortest-path betweenness
the ‘‘information’’ which travels from p to q through r ‘‘knows’’ what is the most effective way to reach its target. In the
Newman betweenness it is assumed that the ‘‘information’’ does not know anything about the best route to arrive at the
target. In Newman’s betweenness [25] we travel from p to q following links at random. Suppose that on the way node r is
visited many times. This indicates that node r plays an important role in the transmission of information between p and q.
Averaging over all nodes p and q produces an overall centrality measure for node r .
The two approaches, shortest-path and random-walk betweenness, are at opposite ends of a spectrum, but each has

a valid role in accounting for processes that can take place in the network. However, if they are at opposite ends of the
betweenness scale it is interesting to askwhat is in themiddle.We believe that the answer is a betweenness centrality based
on all walks connecting two nodes p and q that pass through r weighted by path length; in other words, a betweenness
centrality that accounts for the shortest path connecting two nodes, but also acknowledges the existence of other (non-
shortest) paths, giving them less significance. This can be motivated by the idea that the information travelling from p to q
through r knows the best way for arriving at the target but is also willing to make use of longer paths in order to deliver
the information. The idea of using a weighted sum over walks of all possible lengths has been used successfully to define
communicability between pairs of nodes [26]. Here we are extending the idea by looking at weighted all-walks passing
through a third node. In the next section we show how to characterise and compute communicability betweenness via the
exponential of an adjacency matrix. We then show some examples of the practical application of this measure in artificial
and real-world networks.

2. Preliminaries

The main objective of the current work is to find a betweenness centrality measure that accounts for all the traffic which
is carried through a particular node. This includes not only the shortest paths but every walk connecting the nodes p and q
that pass through r . In this context we start by considering the communicability between a pair of nodes p and q [26].
The communicability between a pair of nodes in a network is usually considered as taking place through the shortest path

connecting both nodes. However, it is known that communication between a pair of nodes in a network does not always
take place through the shortest paths but it can follow other non-optimal walks. In a previous work we have introduced a
communicability measure that fulfils these requirements [26]. If P (s)

pq is the number of shortest paths between distinct nodes
p and q having length s andW (k)

pq is the number of walks connecting p and q of length k > s, we may consider the quantity

Gpq =
1
s!
P (s)
pq +

∑
k>s

1
k!
W (k)
pq , (1)

which was introduced in Ref. [26] to measure the communicability between nodes p and q. This expression can be written
as the sum of the p, q entry of the different powers of the adjacency matrix

Gpq =
∞∑
k=0

(
Ak
)
pq

k!
, (2)

which converges to

Gpq =
(
eA
)
pq . (3)

There are several ways of weighting the walks according to their lengths. Some of them are now under study by two
of the current authors and will be published elsewhere. The weighting used in (2) allows a physical interpretation of
the communicability by considering a continuous-time quantum walk on the network. Considering this approach, the
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communicability between nodes p and q in the network represents the probability that a particle starting from the node
p ends up at the node q after wandering on the complex network due to the thermal fluctuation. By regarding the thermal
fluctuation as some form of random noise, we can identify the particle as an information carrier in a society or a needle in a
drug-user network.
Our objective here is to use this communicability function to account for the betweenness centrality of a node in a

complex network. It is clear that there are several ways for accounting such a property of a node. As we have already
remarked, the shortest-path and the random-walk betweenness are two extreme cases. Another possibility is to consider
the number of paths or the number of self-avoiding walks between any two nodes [27]. Here, however, we consider the use
of the number of walks connecting every pair of nodes as the basis for the new centrality measure. By using this approach
we are able to define the betweenness centrality on the basis of the communicability function, which can be physically
interpreted as the Green’s function of the complex network.
Consequently, in full analogywith (1) we now let Gprq be the correspondingweighted sumwherewe only consider walks

that involve node r . The new concept of communicability betweenness centrality (CBC) of node r then takes the form

ωr =
1
C

∑
p

∑
q

Gprq
Gpq

, p 6= q, p 6= r, q 6= r, (4)

where C = (n− 1)2 − (n− 1) is a normalization factor equal to the number of terms in the sum, so that ωr takes values
between zero and one. We show in the next section that this quantity can be neatly characterised in terms of the matrix
exponential.

3. Communicability betweenness

Let G = (V , E) be a simple graph with n = |V | nodes and m = |E| links, and let A denote its adjacency matrix. Let
G (r) =

(
V , E ′

)
be the graph resulting from removing all edges connected to the node r ∈ V , but not the node itself. The

adjacency matrix for G (r)may be written A+E (r), where E (r) has nonzeros only in row and column r , and in this row and
column has−1 wherever A has+1. For simplicity, we will often write E instead of E (r).
Analogously to (3), Gprq may be written as

Gprq =
(
eA
)
pq −

(
eA+E(r)

)
pq , (5)

so in (4) we have

ωr =
1
C

∑
p

∑
q

Gprq
Gpq
=
1
C

∑
p

∑
q

(
eA
)
pq −

(
eA+E(r)

)
pq(

eA
)
pq

, p 6= q, p 6= r, q 6= r, (6)

which gives a computable characterisation of CBC. We consider connected graphs only, for which
(
eA
)
pq is nonzero.

It is straightforward to realise that the proportion of communicabilities defining the betweenness (see Eq. (6)) is bounded
between zero and one,

0 ≤

(
eA
)
pq −

(
eA+E(r)

)
pq(

eA
)
pq

≤ 1. (7)

The lower bound is obtained when
(
eA
)
pq =

(
eA+E(r)

)
pq, which indicates that no walks connecting the nodes p and q pass

through the node r . This cannot happen for a connected graph, but we will have
(
eA
)
pq
∼=
(
eA+E(r)

)
pq when the walks that

connect p and q through r are of very long length.
On the other hand, the upper bound is reached for a graph in which all walks connecting the nodes p and q pass through

the node r . This situation coincides with the selection of the node r as the one with degree n− 1 in a star with n nodes, Sn.
We recall that Sn is the graph having one node with degree n− 1 (central node) and n− 1 nodes of degree 1. In this case if
we remove the links incident with node r we obtain the fully disconnected graph. Consequently,

(
eA+E(r)

)
pq = 0 for every

pair of the nodes with degree 1 in the star and we obtain the upper bound for the expression (7).
If we consider now the expression for the communicability betweenness for a node r in any graph we see that

ωr =
1
C

∑
p

∑
q

(
eA
)
pq −

(
eA+E(r)

)
pq(

eA
)
pq

≤
(n− 1) (n− 2)

C
, (8)

which for the normalization constant selected in this work gives ωr = 1 for the central node of the star graph. The upper
bound for the communicability betweenness is obtained for the central node of Sn, for whichwe have themaximum value of
(7) for all pairs of non-hub nodes in the graph. This is a desired property of a betweennessmeasure; optimal centrality should
correspond to the central hub of a star, through which all the communication between the other pairs of nodes passes. It is
also clear from the construction that ωr increases in any graph if node r is given an extra edge.
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Fig. 1. Adjacency matrix for a graph with 8 nodes and 20 edges used to illustrate the Fréchet derivative. Nonzeros are indicated by dots.

Although the matrix exponential cannot be computed in finite time, a high-accuracy approximation can be obtained
from an algorithm that is guaranteed to terminate. The scaling and squaring method for exponentiating a matrix in Ref. [28]
(Algorithm 10.20) has an operation count that is a modest multiple of n3, so that the overall cost of computing ωr in (5)
for all nodes in the graph scales like n4. However, if the network is sparse then it will typically not be necessary to store or
compute with a full n× nmatrix. The series expansion (2) could be terminated after a predetermined number of terms, so
that walks of sufficiently long length are ignored. Alternatively, existing high quality sparse matrix software, for example,
the function EIGS in MATLAB, could be used to compute the dominant eigenvalues and corresponding eigenvectors and a
truncated spectral formulation of the matrix exponential could then be exploited. In this case the efficiency gain would be
highly dependent on the sparsity structure.

4. Communicability betweenness and the Fréchet derivative

We see from (5) that CBC depends on the relative componentwise changes that occur in the matrix exponential when
a specific row/column is set to zero. Such a change represents an O (1) perturbation. We will show now that this quantity
is closely related to the sensitivity of the matrix exponential to small changes in the same direction, which gives another
interpretation of the CBC measure.
The effect of making an infinitesimal perturbation to the adjacency matrix exponential in the direction E is given by the

directional or Fréchet derivative,

DE(r) (A) = lim
h→0

1
h

[
e(A+hE(r)) − eA

]
, (9)

which may be, in different contexts, called the Gáteaux derivative or a linear response [28–30]. The Fréchet derivative can
also be expressed as a Taylor series as follows [28]

DE(r) (A) =

∞∑
k=1

1
k!

k∑
j=1

Aj−1E (r)Ak−j . (10)

We now interpret the right-hand side of (10) in terms of walks through the network. As before we consider a pair of
distinct nodes p and q that are both different from r . We first note that (AE)pq = −1 if there is a walk (a path in this case)
of the form p → r → q and (AE)pq = 0 otherwise. Similarly, (EA)pq = −1 if there is a walk of the form p → r → q and
(EA)pq = 0 otherwise. So, we see that the k = 1 term of the expansion in (10), (AE+ EA)pq, contributes−2 if there is a walk
of length two that connects nodes p and q via node r , and contributes 0 otherwise. Similarly, it may be shown that the k = 3
term,

(
A2E+ AEA+ EA2

)
pq, contributes−2 times the number ofwalks of length three from p to q that involve r . For the case

k ≥ 3, however, the relationship is not quite so simple. These terms are studied in the Appendix and our overall conclusion
is that the (p, q) element of the Fréchet derivative (9), whenmultiplied by−1, is at least twice as big as theweighted number
of walks from p to q that involve r . It is generally not a lot more than twice as big, because the extra amount comes from
walks that involve node r more than once—these will generally be long and hence will have small weights.
To illustrate this idea, we constructed a network with 8 nodes where 19 edges were assigned arbitrarily. Fig. 1 illustrates

the adjacency matrix. In this case the ratio of the (p, q)th component of the Fréchet derivate in (9) to the quantity Gprq in
(5), as we vary p to q and r , ranges from−2.08 to−2.96.
Overall, we have established a close relation between the limiting h → 0 sensitivity in (9) and the h = 1 analogue.

We emphasize that this relationship hinges on the special nature of the direction E (r) in which the adjacency matrix is
perturbed.
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Fig. 2. Networks used by Newman [25] as examples for the analysis of the differences between centrality measures. The results obtained here including
the communicability betweenness are given in Table 1.

Table 1
Values of the different betweenness centrality measures for the nodes labeled in the graphs represented in the Fig. 2.

Network Betweenness measure
Node BC FBC RWBC CBC

1 A 0.636 0.631 0.670 0.657
C 0.200 0.282 0.333 0.140
X 0.200 0.068 0.269 0.216

2 A 0.265 0.269 0.321 0.166
C 0.243 0.004 0.267 0.157
X 0.125 0.024 0.194 0.128

5. Analysis of the communicability betweenness

We test here some examples that Newman [25] used to introduce the random-walk betweenness, plus an extra
illustrative example. We first consider the two graphs represented in Fig. 2. These were selected by Newman [25] as
prototypes of networks in which there are some nodes, like C, which are not intermediaries in many shortest paths, but
may play an important role in the flow of information between distinct communities. The betweenness measures for these
networks is shown in Table 1. We see that for network 1, CBC ranks node X higher than node C, unlike RWBC. This can be
explained by the fact that node C is never an intermediary in a non-trivial shortest lengthwalk, whereas node X is important
for walks within its own clique. For network 2, node C plays a more significant role in short walks and CBC ranks C only
slightly lower than A.
Network 3, shown in Fig. 3, illustrates that CBC and RWBC can differ dramatically. Here, we have two large communities,

each consisting of a complete graph of 12 nodes. These communities are joined by a short chain through the single node A
and also by a long chain of 8 nodes that has node B at one end and node C in the middle. We see in the Fig. 3 that while both
measures pick out node A as the most central, the RWBC version ranks node B second and much prefers node C to node D
while CBC ranks D second and, most notably, attaches very little significance to node C. This can be explained by the fact that
node C is typically involved in relatively long walks that are down-weighted by the CBCmeasure. This discrepancy between
the two centrality measures becomes even more pronounced if the size of the complete subgraphs and the length of the
connecting chain are increased. When node A is removed in the network in Fig. 3, CBC behaves like RWBC in placing node C
ahead of node D.
The fourth example in this section is the network of intermarriages between prominent families in early 15th century

Florence [31] (see Fig. 4). The four betweenness measures identify Medici as the most central family. However, there are
some differences in the ranking for the rest of the families. For this specific network the communicability betweenness is
highly correlated to the random walk betweenness (r2 = 0.964) and in lower degree with the shortest path betweenness
(r2 = 0.935) and the flow betweenness (r2 = 0.844). The intercorrelation between the different measures is dependent



E. Estrada et al. / Physica A 388 (2009) 764–774 769

Fig. 3. Network where two large communities are connected through a single node and also through a longer chain.

Fig. 4. Illustration of the network of intermarriages between prominent families in early 15th century Florence.

on the specific networks we are studying and it should be noted that even when high correlations are observed there can
be significant differences in the ranking of individual nodes. For instance, the random walk betweenness ranks the Strozzi
family as the fourth most central only after Medici, Guadagni and Albizzi. However, communicability centrality ranks this
family as the sixth most central after Medici, Guadagni, Albizzi, Ridolfi and Tornabuoni.
We also study the correlation existing between the various betweenness centralities and the degree centrality for

the network of marriages in Florence. The lowest correlations are observed for the flow betweenness (r2 = 0.662)
and the shortest path betweenness (r2 = 0.712) and the largest one for the random walk betweenness (r2 =
0.906). The communicability betweenness displays an intermediate correlation (r2 = 0.856). Despite these correlations
‘‘there are usually a small number of vertices in a network for which betweenness and degree are very different,
and betweenness is useful precisely in identifying these vertices’’ [25]. For instance, communicability betweenness is
able to differentiate the four less central families in this network, which neither of the other betweennesses nor the
degree are able to differentiate. The communicability betweenness ranks these families in the following decreasing order,
Acciaiuoli > Lamberteschi> Ginori> Pazzi.
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Table 2
Description of the real-world complex networks studied in the current work.

Name n m Description

Galesburg 31 67 Friendship ties among 31 physicians
High Tech 33 91 Friendship ties among the employees in a small hi-tech computer firm which sells, installs, and

maintains computer systems
Prison 67 142 Social network of inmates in prison who chose ‘‘What fellows on the tier are you closest friends with?
College 32 96 Social network among college students in a course about leadership, where the students choose

which three members they wanted to have in a committee
Zachary 34 78 A network of friendship between members of the Zachary karate club
ColoSpring 324 347 Risk network of persons with HIV infection during its early epidemic phase in Colorado Springs, USA

(sexual and injecting drugs partners) from 1985-1999
Centrality 118 613 Citation network of papers published in the field of Network Centrality
Small World 233 994 Papers that cite S. Milgram’s 1967 Psychology Today paper or use Small World in the title
Electronic1 122 189 Electronic sequential logic circuits parsed from the ISCAS89 benchmark set, where nodes represent
Electronic2 252 399 Logic gates and flip-flops
USAir97 332 2126 The airport transportation network between airports in US in 1997
PIN-Afulgidus 32 36 Protein–protein interaction network of A. fulgidus
PIN-Bsubtilis 84 98 Protein–protein interaction network of Bacillus subtilis
PIN-E.coli 230 695 Protein–protein interaction network of the bacterium Escherichia coli
Neurons 280 456 The neuronal synaptic network of the nematode Caenorhabditis elegans, including all data except

muscle cells and using all synaptic connections
Trans-E. coli 328 456 The direct transcriptional regulation between operons in E. coli
Bridge Brook 75 542 Represents the pelagic species from the largest of a set of 50 New York Adirondack lake food webs
Canton Creek 108 613 Invertebrates and algae in a tributary, surrounded by pasture, of the Taieri River in the South Island of

New Zealand
El Verde 156 1439 The insects, spiders, birds, reptiles and amphibians in a rainforest in Puerto Rico;
Grassland 75 113 All vascular plants and all insects and trophic interactions found inside stems of plants collected from

24 sites distributed within England and Wales
Little Rock 181 2318 The pelagic and benthic species, particularly fishes, zooplankton, macroinvertebrates, and algae of the

Little Rock Lake, Wisconsin, US
Reef Small 50 503 Caribbean coral reef ecosystem from the Puerto Rico-Virgin Island shelf complex

To investigate more deeply the correlations between the different betweenness measures as well as the degree
centrality we study a series of real-world networks, including social, informational, biological, technological and ecological
(see Ref. [32] for references about these networks). The names, number of nodes (n), links (m) and a brief description of
these networks are given in Table 2.
We study not only the correlation coefficient but also the relative error for the prediction of the CBC based on the other

measures. The relative prediction error, in percentage, is expressed as

RPE (%) = 100
SEP (y)
〈y〉

(11)

where SEP (y) is the standard error of predicting the variable y using a regressionmodel of the type y = ax+b and 〈y〉 is the
average of the y-values. Here y is the communicability betweenness centrality and x is any of the other centrality measures,
i.e., DC, BC, FBC and RWBC.
The largest correlations for CBC are the degree centrality, for which the average correlation coefficient is 0.866 (see

Table 3). The correlation between the degree centrality and the betweenness centrality has been previously observed by
Kitsak et al. to be dependent on the fractal nature of networks [33]. These authors have observed that the correlation ismuch
weaker in fractal than in non-fractal networks [33]. However, even in this case the relative prediction error is high (51.4%),
which indicates that both centrality measures account for different aspects of the structure of a network. For instance, there
are cases like the network of Colorado Springs in which the correlation between both measures is very poor (r2 = 0.589)
and the RPE is higher than 100%. In other cases like in the transcription network of Escherichia coli the correlation coefficient
is high (r2 = 0.864) but the relative error is almost 100% (RPE = 95.8%). This is because there is a node with very high
value of both degree and CBC which pulls the line to one extreme making the correlation coefficient very high. However,
the dispersion for the points below this extreme is very high as indicated by RPE.
The relationships between the CBC and the other betweennessmeasures are poorer. For instance, the average correlation

coefficients rank from 0.44 for the flow betweenness to 0.78 for the random walks betweenness. However, the relative
prediction errors are very high, overpassing 60% in all cases and reaching 102.8 for the FBC. This clearly indicates that the
CBC is an independent measure of node betweenness, which accounts for certain topological and structural characteristics
of nodes not accounted for either of the other measures of betweenness or the degree centrality. In the next section we will
analyze in more detail how these differences are manifested in one particular complex network.
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Table 3
Statistical parameters for the correlations between the different centrality measures studied here for 22 real-world complex networks.

Network DC BC FBC R WBC
r2 RPE (%) r2 RPE (%) r2 RPE (%) r2 RPE (%)

Galesburg 0.918 26.5 0.763 45.2 0.426 70.5 0.815 39.49
HighTech 0.969 17.3 0.644 58.5 0.294 82.6 0.754 47.50
Prison 0.893 31.8 0.851 36.3 0.202 85.4 0.862 33.49
Social3 0.941 19.8 0.862 30.5 0.452 61.7 0.837 33.93
Zackarias 0.957 23.8 0.852 44.0 0.736 59.2 0.955 25.31
ColoSpg 0.589 146.3 0.990 17.0 0.607 147.1 0.941 16.30
PIN-Afulgidus 0.887 45.6 0.993 11.5 0.823 57.2 0.966 25.80
PIN-Bsubtilis 0.871 67.9 0.988 20.4 0.804 83.5 0.923 50.23
PIN-E. coli 0.900 58.4 0.298 156.6 0.101 177.5 0.408 152.73
Neurons 0.828 71.4 0.722 90.0 0.413 131.3 0.711 98.96
Trans-E. coli 0.864 95.8 0.953 56.2 0.701 141.6 0.903 77.66
Centrality 0.957 28.5 0.578 89.8 0.300 115.2 0.756 67.02
SmallWorld 0.871 68.8 0.503 134.4 0.543 129.1 0.645 115.64
Electronic1 0.626 74.5 0.989 12.5 0.244 106.1 0.872 42.50
Electronic2 0.526 108.1 0.995 11.7 0.127 152.2 0.807 79.57
USAir97 0.940 51.1 0.350 167.4 0.204 186.2 0.561 132.25
BridgeBrook 0.882 31.7 0.501 65.0 0.297 77.3 0.689 52.19
Canton 0.960 19.8 0.536 67.7 0.448 74.1 0.771 48.60
ElVerde 0.957 25.1 0.482 86.1 0.327 98.4 0.643 72.08
Grassland 0.835 74.5 0.957 35.8 0.768 88.5 0.963 34.25
LittleRock 0.903 33.8 0.291 91.3 0.127 101.6 0.462 79.11
ReefSmall 0.976 9.5 0.619 38.2 0.689 34.4 0.860 22.79

6. Betweenness in a protein interaction network

Here we study the protein–protein interaction network (PIN) of E. coli in more detail. This network is formed by 695
validated interactions between 230 proteins in the bacterium E. coli. Butland et al. [34] have observed that the most highly
conserved proteins in this PIN are the most highly connected ones. That is, those proteins that have been evolutionarily
conserved in many different bacterial genomes are those having the largest degree centrality in the E. coli PIN. The
conservation of a protein was determined by Butland et al. [34] by searching for homologues in 148 different genomes
using BLAST. These genomes include proteobacteria, bacilli, clostridia, actinobacteridae, mycoplasmas, chlamydiaceae,
cyanobacteria, archae and eubacteria. These authors consider a protein to be conserved if it is detected in at least 125 of
the 148 genomes. On the contrary, a protein is deemed to be non-conserved if it appears at most in 25 genomes.
We calculated the degree and betweenness centrality measures for every protein in the E. coli PIN. Then we ranked these

proteins in decreasing order of their centrality and analysed howmany proteins are conserved in the top 1/3, themiddle 1/3
and the bottom 1/3. We calculated the proportion of conserved to non-conserved proteins for each centrality. The results
are displayed in Fig. 5. We see that the random walk centrality performs the best in detecting the conserved proteins as it
identifies more than 7 conserved proteins per each non-conserved one in the top 33% of the ranking. In addition it performs
verywell for the bottom1/3 of the ranking having the lowest proportion of conserved to non-conserved proteins. The second
best performance is displayed by the communicability betweenness, which identifies more than 5 conserved proteins per
each non-conserved one in the top 1/3 of the ranking. It also displays the second best performance for the bottom 1/3 of
the ranking. The worst results in this case are obtained for the flow betweenness, which identifies only 2 conserved proteins
per each non-conserved one in the top 1/3 of the ranking.
In addition, Butland et al. [34] observed a positive correlation between the number of protein interactions, i.e., protein

degree, and the number of genomes a homolog was detected in. The Pearson correlation coefficient for this relation is 0.24
as illustrated in Fig. 5 of the Supplementary material of that paper [34]. We have found here that the communicability
betweenness displays the same correlation as the degree centrality with the number of genomes in which a protein is
conserved, i.e., a Pearson correlation coefficient of 0.24. The random-walk betweenness displays a correlation coefficient
of 0.22, the shortest-path betweenness a correlation coefficient of 0.15 and the flow betweenness a correlation coefficient
of 0.11. To explore these effects further, we may consider the top 20 proteins according to the ranking introduced by the
centralitymeasures. In Fig. 6we illustrate the results obtained for this analysis, where it can be seen that the proteins ranked
by the communicability betweenness displays the largest average number of genomes in which such proteins appear.
The same situation is repeated when we select the top 30 or top 40 proteins according to each ranking. These results

indicate that the communicability betweenness display the best performance in identifying proteins which are conserved
in the largest number of genomes. Classifying a protein as highly conserved if it appears in at least 95 of the 148 genomes, we
found that both the random-walk and communicability betweenness display the best performance in identifying the most
conserved proteins among the top 1/3 proteins ranked by these measures (see Fig. 7). They both identify 54 of the most
highly conserved proteins from 76 possible ones, which is more than 70%. The second best performance is obtained for the
degree centrality and the worst is again for the flow centrality. However, if we analyze the top 2/3 proteins ranked by each
centrality measure, the communicability betweenness overtakes all the other centralities. It identifies 95 of the 152 most



772 E. Estrada et al. / Physica A 388 (2009) 764–774

Fig. 5. Proportion of conserved to non-conserved proteins in the E. coli PIN detected by the ranking of proteins according to different centrality measures
studied here.

Fig. 6. Average number of genomes in which one of the top 20 proteins according to the ranking introduced by the centrality measures appears.

Fig. 7. Number of genomes in which a protein appears according to the ranking introduced by the different centrality measures studied here.

highly conserved proteins, followed by the degree and shortest-path betweenness which identifies 93 of such proteins. For
the bottom 1/3 of the ranking the best performance is again observed for the communicability betweenness which left only
25 of the most highly conserved proteins among the less central ones. The worse performance in this case is observed for
the random-walk betweenness which left 29 of the most highly conserved proteins among the less central ones.
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7. Conclusion

Onepoint that should be clear from this and other studies analysing centralitymeasures in complex networks is that there
is not one centralitywhich is the best orworst. Centralitymeasures account for different aspects of the topological relevance
of a node. Consequently, a centrality can be good for summarizing onenetwork feature andpoor for another. This emphasizes
the importance of (a) providing theoretical justification and analysis, and (b) testing on real complex networks, in order to
understand what these measures have to offer. We have shown here that the communicability betweenness is amenable to
both approaches. On one hand, the communicability betweenneess, which measures the changes in the adjacency matrix
exponential subject to a certain O (1) perturbation, is closely related to the instantaneous rate of change. In other words,
although communicability betweenness wasmotivated by looking at what happenswhen the edges for node r are removed,
it also measures the sensitivity of a node’s communicability when its edges are subject to infinitesimal changes. (In the latter
case, we move into the realm of graphs with weighted edges.). On the other hand, we have shown empirically that this
centrality measure accounts for important topological characteristics of the nodes in real-world complex networks. Hence
we believe that this new concept has value in the study of centrality in complex networks.
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Appendix

For the general term of (10) where k ≥ 3 there is an expression of the form,(
Ak−1E

)
pq =

n∑
s1=1

n∑
s2=1

· · ·

n∑
sk−1=1

aps1as1s2as2s3 · · · ask−2sk−1ek−1q.

We see that
(
Ak−1E

)
pq = −1 if there is a walk

p→ s1 → s2 → s3 · · · → sk−2 → r → q, (A.1)
for any nodes s1, s2, . . . , sk−2, such that successive nodes are distinct, and

(
Ak−1E

)
pq = 0 otherwise. For the general case,(

Aj−1EAk−j
)
pq =

n∑
s1=1

n∑
s2=1

· · ·

n∑
sk−1=1

aps1as1s2as2s3 · · · asj−2sj−1esj−1sjasjsj+1 · · · ask−1q,

we see that
(
Aj−1EAk−j

)
pq = −1 if there is a walk

p→ s1 → s2 → s3 · · · → sj−1 → r → sj+1 → · · · → sk−1 → q, (A.2)
or

p→ s1 → s2 → s3 · · · → sj−2 → r → sj → sj+1 → · · · → sk−1 → q, (A.3)
and is zero otherwise.
Finally, since(

EAk−1
)
pq =

n∑
s1=1

n∑
s2=1

· · ·

n∑
sk−1=1

eps1as1s2as2s3 · · · ask−2sk−1ask−1q,

it follows that
(
EAk−1

)
pq = −1 if there is a walk

p→ r → s2 → s3 → s4 · · · → sk−1 → q, (A.4)
and is zero otherwise.
Note that any walk appearing in (A.1) also appears in the j = k − 1 case of (A.2), any walk appearing in the general

(j− 1)st instance of (A.2) also appears in the jth instance of (A.3) and any walk appearing in (A.2) also appears in the j = 2
case of (A.3). This shows that, for general walks of length k, (i) eachwalk involving node r is counted twice, and (ii) the count
involves multiplicity: e.g., a walk that involves node r twice counts as two walks (i.e. counts four times in total because of
point (i)), and, generally, a walk that involves node r a total of d times will count as d.
To illustrate point (ii), the walk p → r → 3 → r → q shows up in the form p → s1 → s2 → r → q and in the form

p→ r → s2 → s3 → q (and in each case is counted twice).
This multiplicity effect is relatively minor because it only arises for walks of length greater than or equal to four. (Walks

from p to q of length two or three cannot involve rmore than once.) Hence, because of the k! scaling in (A.2), themultiplicities
get down-weighted.
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