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First and second moment reversion for a discretized square root
process with jumps

Graeme D. Chalmers and Desmond J. Higham*

Department of Mathematics, University of Strathclyde, Glasgow G1 1XH, UK

(Received 26 September 2008; final version received 16 December 2008 )

Dedicated to Peter Kloeden on the Occasion of his 60th Birthday

Mean-reversion is an important component ofmany financialmodels.When simulations
are performed with numerical methods, it is therefore desirable to reproduce this
qualitative property. Here, we study a square root process with jumps that has been used
to model interest rates and volatilities, and we characterize the parameter regimes under
which the first and secondmoments revert to steady state values.We then consider a class
of implicit theta methods and investigate the same moment properties for the
corresponding stochastic difference equation. We find that the theta method is
unconditionally stable in first and second moment for theta values below a cutoff level.
This cutoff level depends on the parameters governing themean reversion and the jumps,
but is always more favourable than the value of one half that arises in the deterministic
setting. In the case of high jump intensity, large jumpmagnitude or slowmean reversion,
it is even possible for the explicit Euler–Maruyama type method from this class to be
unconditionally stable.We also establish upper and lower bounds for the secondmoment
steady state that are close to that of the continuous-time process for small step-sizes.
Numerical experiments are given to illustrate the results.

Keywords: implicit; interest rate; Ito lemma; Monte Carlo; stability; stochastic
differential equation; variance; volatility

1. Introduction

We consider the following stochastic differential equation (SDE) with jumps:

dXðtÞ ¼ jðm2 Xðt2ÞÞdt þ s
ffiffiffiffiffiffiffiffiffiffiffiffi
Xðt2Þ

p
dWðtÞ þ gXðt2ÞdNðtÞ: ð1Þ

Here, Xð0Þ ¼ X0 – 0 (a.s.), and W(t) and N(t) are independent scalar Wiener and Poisson

processes, respectively. The constant model parameters are

m . 0, which represents the long-term mean, in appropriate circumstances;

j . 0, which controls the rate of the mean reversion;

s . 0, which represents the strength of the diffusion term;

g . 0, which represents the relative jump size (here we consider upwards jumps) and

l . 0, which is the intensity of the Poisson process.

We emphasize that allmodel parameters are assumed to be positive throughout our analysis.

The equation (1) plays an important role in mathematical finance. In the non-jump

case, l ¼ 0, this is the classical mean-reverting square-root process, which was introduced
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and proposed as a potential model for interest rates by Cox et al. [9], it is therefore

commonly referred to as the CIR process. The process has also been used as part of a so-

called stochastic volatility model in Ref. [14]. Alternatively referred to as the Heston

model, it comprises two coupled SDEs with a CIR process describing the volatility

component, VðtÞ, of the asset price process, XðtÞ

dXðtÞ ¼ mXðtÞdt þ
ffiffiffiffiffiffiffiffi
VðtÞ

p
XðtÞdW xðtÞ;

dVðtÞ ¼ aðb2 VðtÞÞdt þ s
ffiffiffiffiffiffiffiffi
VðtÞ

p
dW vðtÞ;

where ðW x;W vÞ is a, perhaps correlated, two-dimensional Brownian motion. Existence

and uniqueness theory for (1) follows directly from that of the non-jump case, which is

discussed, for example, in Ref. [21].

Compared with the linear term that arises in standard geometric Brownian motion, the

square root diffusion term in (1) produces a less dramatic variance when the solution is

large, while continuing to exclude the possibility of negative solutions. It may therefore be

regarded as a better reflection of financial reality [21]. It is well-known that the non-jump

version of the square-root process has a well-defined non-negative solution [21] and,

whilst a transition density of the process may be characterized, no general analytical

solution has been found. Therefore, several authors have considered the issue of how to

simulate the process numerically, focussing on convergence over finite time intervals, see,

for instance, Refs. [2,3,13,17,20].

The jump term in (1) represents an attempt to account for unexpected, abrupt changes.

This model is considered in Refs. [1,7] and is referred to as a jump-extended CIR model.

A jump-extended version of the two-factor Heston model, called the Bates model

dXðtÞ ¼ mXðtÞdt þ
ffiffiffiffiffiffiffiffi
VðtÞ

p
XðtÞdW xðtÞ þ gðtÞXðtÞdNðtÞ; ð2Þ

dVðtÞ ¼ aðb2 VðtÞÞdt þ s
ffiffiffiffiffiffiffiffi
VðtÞ

p
dW vðtÞ; ð3Þ

is proposed in Ref. [6] and supported empirically in Refs. [4,5,22], where jumps (of

random magnitude) are included in the asset price process, as opposed to the volatility

process. It is further discussed in Ref. [8], with extensions to a more general class of Lévy

models in the volatility process, which include models with jumps in the volatility

component; such as the two factor model including correlated jumps in the asset and the

volatility processes considered in the empirical study [11]. In this proposed model, the

asset process is described as in (2), but the volatility component (3) is replaced with

dVðtÞ ¼ aðb2 VðtÞÞdt þ s
ffiffiffiffiffiffiffiffi
VðtÞ

p
dW vðtÞ þ g vðtÞVðtÞdN vðtÞ;

where the jump process N vðtÞ and jump-magnitudes g vðtÞ may be correlated with those

governing (2).

Existence, uniqueness and finite-time numerical convergence theory extends readily to

this jump case. The purpose of this work is to focus on the long-time, qualitative properties

of mean-reversion for the first and second moment. In addition to giving insights about

more general qualitative behaviour, this type of study is also relevant to the propagation of

error in numerical simulations.

2. First and second moment reversion for the exact process

The following theorem characterizes first and second moment reversion for the

continuous-time process.

G.D. Chalmers and D.J. Higham144



Theorem 1. For the jump-SDE (1), limt!1E½XðtÞ� is finite if and only if j2 lg . 0, in

which case

lim
t!1

E½XðtÞ� ¼
jm

j2 lg
: ð4Þ

Similarly, limt!1E½X
2ðtÞ� is finite if and only if 2j2 lgð2 þ gÞ . 0, in which case

lim
t!1

E½X 2ðtÞ� ¼
jmð2jmþ s2Þ

ðj2 lgÞ 2j2 lgð2þ gÞ
� � : ð5Þ

Proof. Part 1: First Moment. We may rewrite (1) in integral form

XðtÞ ¼ Xð0Þ þ j

ðt
0

m2 Xðr2Þdr þ s

ðt
0

jXðr2Þj
1=2

dWðrÞ þ g

ðt
0

Xðr2ÞdNðrÞ;

and take expectations, to get

E½XðtÞ� ¼ E½X0� þ

ðt
0

jm2 ðj2 lgÞE½XðrÞ�dr: ð6Þ

Case a: j2 lg ¼ 0.

When j2 lg ¼ 0, equation (6) becomes E½XðtÞ� ¼ E½X0� þ jmt, and hence E½XðtÞ�

!1 as t!1.

Case b: j2 lg – 0.

For j2 lg – 0, we may solve the integral equation (6) and rearrange to show that the

first moment of the solution of problem (1) is

E½XðtÞ� ¼
jm

j2 lg
þ E X0 2

jm

j2 lg

� �
e2ðj2lgÞt; ð7Þ

which is clearly unbounded for j2 lg , 0 as t!1. Otherwise, for j2 lg . 0 we have

lim
t!1

E½XðtÞ� ¼
jm

j2 lg
;

as required. Hence (4) is proved.

Part 2: Second Moment. Applying Itô’s Lemma to the process X 2ðtÞ, we get

X 2ðtÞ ¼ X2
0 þ ð2jmþ s2Þ

ðt
0

Xðr2Þdr 2 2j

ðt
0

X 2ðr2Þdr þ s

ðt
0

jXðr2Þj
3=2

dWðrÞ

þ gð2þ gÞ

ðt
0

X 2ðr2ÞdNðrÞ:
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Taking expectations we find

E X 2ðtÞ
� �

¼ E X2
0

� �
þ ð2jmþ s2Þ

ðt
0

E XðrÞ½ �dr 2 2j2 lgð2þ gÞ
� �ðt

0

E X 2ðrÞ
� �

dr: ð8Þ

Case a: 2j2 lgð2 þ gÞ ¼ 0.

When 2j2 lgð2 þ gÞ ¼ 0 it follows that j2 lg . 0, and (8) reduces to

E X 2ðtÞ
� �

¼ E X2
0

� �
þ ð2jmþ s2Þ

ðt
0

E XðrÞ½ �dr:

Then using (7), we have

E X 2ðtÞ
� �

¼ E X2
0

� �
þ ð2jmþ s2Þ

ðt
0

E X0 2
jm

j2 lg

� �
e2ðj2lgÞr þ

jm

j2 lg

� 	
dr

¼ E X2
0

� �
2

2jmþ s2

j2 lg
E X0 2

jm

j2 lg

� �
e2ðj2lgÞt 2 jmt

� 	
:

Therefore E X 2ðtÞ
� �

!1 as t!1.

Case b: 2j2 lgð2 þ gÞ – 0.

When 2j2 lgð2 þ gÞ – 0, we may use the expression for E XðtÞ½ � from (7) in (8) to

obtain

E X 2ðtÞ
� �

¼E X2
0

� �
þ ð2jmþ s2Þ

ðt
0

E X0 2
jm

j2 lg

� �
e2ðj2lgÞr þ

jm

j2 lg

� 	
dr

2 2j2 lgð2þ gÞ
� �ðt

0

E X 2ðrÞ
� �

dr:

This solves to give

E X 2ðtÞ
� �

¼
jmð2jmþ s2Þ

j2 lg
� �

2j2 lgð2þ gÞ
� �þ 2jmþ s2

j2 lgð1þ gÞ
E X0 2

jm

j2 lg

� �
e2ðj2lgÞt

þ E X2
0

� �
2

2jmþ s2

j2 lgð1þ gÞ
E X0½ � þ

jmð2jmþ s2Þ

2j2 lgð2þ gÞ
� �

j2 lgð1þ gÞ
� �

 !

£ e2ð2j2lgð2þgÞÞt:

So, for 2j2 lgð2 þ gÞ . 0 (which implies j2 lg . 0), we have

lim
t!1

E X 2ðtÞ
� �

¼
jmð2jmþ s2Þ

j2 lg
� �

2j2 lgð2þ gÞ
� � : ð9Þ

Alternatively, for 2j2 lgð2 þ gÞ , 0, we see that E X 2ðtÞ
� �

!1 as t!1. A
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3. Analysis of the Theta-method

3.1 Definition

Our aim is now to determine the extent to which a popular class of numerical methods can

match the mean-reversion properties of the underlying problem. Following the standard,

and practically useful, approach that began for deterministic ODEs [10,12] and has been

carried through to SDEs [18] and jump-SDEs [15,16], we will focus in the following

question

Given parameters for which there is moment reversion in (1), what restriction, if any, must be
placed on the step size in the numerical method in order to reproduce this behaviour?

We consider the class of theta methods which, when applied to (1), produce the stochastic

difference equation

Ynþ1 ¼ Yn þ jð12 uÞðm2 YnÞ þ juðm2 Ynþ1Þ
� �

Dt þ s
ffiffiffiffiffiffiffiffi
jYnj

p
DWn þ gYnDNn: ð10Þ

Here,

Yn is the approximation to XðnDtÞ, where Dt . 0 is a fixed step size, with Y0 ¼ Xð0Þ,

DWn :¼ W ðnþ 1ÞDtð Þ2W nDtð Þ is the Brownian increment over a step,

DNn :¼ N ðnþ 1ÞDtð Þ2 N nDtð Þ is the Poisson increment over a step,

u [ ½0; 1� is a fixed parameter that defines the particular theta method.

Choosing u ¼ 0, we have the explicit Euler–Maruyama method applied to (1). For the

non-jump case, replication ofmoment behaviourwas examined inRef. [17]where also strong

convergence (although no order of convergence) of the scheme was established. Typical

convergence theorems for non-jump and jump SDEs, for example, see Refs. [15,19], restrict

themodels to global Lipschitz conditions on the coefficient functions. This is not applicable in

the case of a square-root function for the diffusion term. More recent work has retrieved a

strong order of convergence for numerical methods applied to square-root models without

jumps, see Refs. [2,13].

3.2 First moment

Taking expectations in (10), using E DWn½ � ¼ 0 and E DNn½ � ¼ lDt, we find that

E Yn 2
jm

j2 lg

� �
¼ r̂ nE Y0 2

jm

j2 lg

� �
; ð11Þ

where

r̂ :¼ 12
ðj2 lgÞDt

1þ juDt
:

We conclude that limn!1E½Yn 2 jm=ðj2 lgÞ� ¼ 0 for general initial data if and only if

jr̂j , 1, which is equivalent to the constraint

ðj2 lgÞDt 22 jð12 2uÞ2 lg
� �

Dt
� �

. 0: ð12Þ

Now, suppose j2 lg . 0, so that from Theorem 1, the problem (1) undergoes mean-

reversion. It follows from (4) that there is a critical value

u* :¼
1

2
12

lg

j

� 	
ð13Þ
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with the property that

for u $ u* the theta-method (10) replicates the mean-reversion for all Dt . 0, whereas

for u , u* the mean-reversion is replicated if and only if the step size is restricted to

Dt ,
2

jð12 2uÞ2 lg
:

It is interesting to note that in the traditional deterministic ODE setting the value

u ¼ 1=2 gives the cutoff for unconditional stability [12]. However, for the problem (1), we

see that although a cutoff u* exists, it depends on the problem parameters. In particular, we

note two interesting consequences.

. Since u* , 1=2, the theta method is uniformly more stable for (1) than in the ODE

setting, in the sense that unconditional replication of stability arises for a larger range of

theta values.

. If u* , 0, then the theta method is always unconditionally stable; this includes the

explicit u ¼ 0 Euler–Maruyama based method. So, in this high jump intensity/large

jump magnitude/slow reversion setting, implicitness does not offer any stability

benefits.

3.3 Second moment

To analyse the second moment, we square and take expectations in (10), noting that

E DW2
n

� �
¼ Dt and E DN2

n

� �
¼ lDtð1 þ lDtÞ, to get

ð1þ juDtÞ2E Y2
nþ1

� �
¼ lg2Dt þ 12 ðjð12 uÞ2 lgÞDt

� �2
 �
E Y2

n

� �
þ 2jm 12 ðjð12 uÞ2 lgÞDt

� �� �
DtE Yn½ �

þ s2DtE jYnj
� �

þ j2m2Dt 2: ð14Þ

3.3.1 Second moment lower bound

Because of the modulus sign in (14), we do not seek an exact analytical expression for the

second moment of the numerical solution. Instead, we will develop explicit upper and

lower bounds. (A similar approach was taken for the non-jump case in Ref. [17].) We

begin with a lower bound. Replacing E jYnj
� �

in (14) by E Yn½ �, we obtain the sequence {zn}

with z0 ¼ E Y2
0

� �
and

ð1þ juDtÞ2 znþ1 ¼ lg2Dt þ 12 ðjð12 uÞ2 lgÞDt
� �2
 �

zn

þ 2jm 12 ðjð12 uÞ2 lgÞDt
� �

þ s2
� �

DtE Yn½ � þ j2m2Dt 2: ð15Þ

Since E Yn½ � # E jYnj
� �

, it is clear that E Y2
n

� �
$ zn for all n. Substituting for E Yn½ � from

(11) into (15) we get

ð1þ juDtÞ2 znþ1 ¼ lg2Dt þ 12 ðjð12 uÞ2 lgÞDt
� �2
 �

zn

þ 2jm 12 ðjð12 uÞ2 lgÞDt
� �

þ s2
� �

DtE Y0 2
jm

j2 lg

� �
r̂ n

þ
jm

j2 lg
2jm 12 ðjð12 uÞ2 lgÞDt

� �
þ s2

� �
Dt þ j2m2Dt 2;
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which has the form

ð1þ juDtÞ2 znþ1 ¼ azn þ cr̂n þ b; ð16Þ

where

a ¼ lg2Dt þ 12 ðjð12 uÞ2 lgÞDt
� �2

;

b ¼
jm

j2 lg
2jm 12 ðjð12 uÞ2 lgÞDt

� �
þ s2

� �
Dt þ j2m2Dt 2;

c ¼ 2jm 12 ðjð12 uÞ2 lgÞDt
� �

þ s2
� �

DtE Y0 2
jm

j2 lg

� �
:

We are interested in the case where the original problem has a reverting second moment,

so, following Theorem 1, we assume henceforth that 2j2 lgð2 þ gÞ . 0. Since a . 0,

we require a , ð1 þ juDtÞ2 for generic convergence of the sequence {zn} in (16). This

constraint may be written

Dt jð12 2uÞ2 lg
� �

,
2j2 lgð2þ gÞ

j2 lg
; ð17Þ

and it leads to the limit

zn !
b

ð1þ juDtÞ2 2 a
; as n!1:

As in the first moment analysis, the parameter value u* in (13) is an important cutoff

point. For u $ u*, the constraint (17) holds for all step sizes Dt, whereas for u , u* we

have the problem-dependent constraint

Dt ,
2j2 lgð2þ gÞ

ðj2 lgÞ jð12 2uÞ2 lg
� � :

Returning to our original variables, under the constraint (17) we have a lower bound on

the long term second moment of the form

lim inf
n!1

E Y2
n

� �
$

2j 2m 2þjms 2

j2lg
2

j 2m 2

j2lg
j ð12 2uÞ2 lg
� �

Dt

2j2 lgð2þ gÞ2 jð12 2uÞ2 lg
� �

j2 lg
� �

Dt

¼: Lðj;m;s; l; g; u;DtÞ:

ð18Þ

This lower bound is sharp in the sense that for small Dt it converges to the second moment

steady state for the underlying problem:

lim
Dt!0

Lðj;m;s; l; g; u;DtÞ ¼
jmð2jmþ s2Þ

j2 lg
� �

2j2 lgð2þ gÞ
� � : ð19Þ
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3.3.2 Second moment upper bound

For an upper bound, we note that for any b . 0

E jYnj
� �

#
1

2

1

b
þ b E jYnj

� �� �2� 	
#

1

2b
þ

1

2
bE Y2

n

� �
:

Substituting this into (14) yields

E Y2
nþ1

� �
ð1þ juDtÞ2 # lg2Dt þ 12 jð12 uÞ2 lg

� �
Dt

� �2
þ
1

2
s2bDt

� 	

þ 2jm 12 jð12 uÞ2 lg
� �

Dt
� �

DtE Yn½ �

þ
1

2b
s2Dt þ j2m2Dt 2

¼ lg2Dt þ 12 jð12 uÞ2 lg
� �

Dt
� �2

þ
1

2
s2bDt

� 	
E Y2

n

� �

þ 2jm 12 jð12 uÞ2 lg
� �

Dt
� �

DtE Y0 2
jm

j2 lg

� �
r̂ n

þ
jm

j2 lg
2jm 12 jð12 uÞ2 lg

� �
Dt

� �
Dt þ

1

2b
s2Dt þ j2m2Dt 2:

This leads us to define a sequence {ẑn} for which ẑn $ E Y2
n

� �
by ẑ0 ¼ E Y2

0

� �
and

ð1þ juDtÞ2 ẑnþ1 ¼ ~aẑn þ ~cr̂n þ ~b; ð20Þ

where

~a ¼ lg2 þ
1

2
s2b

� 	
Dt þ 12 jð12 uÞ2 lg

� �
Dt

� �2
;

~b ¼
2j2m2

j2 lg
12 jð12 uÞ2 lg

� �
Dt

� �
Dt þ

1

2b
s2Dt þ j2m2Dt 2;

~c ¼ 2jm 12 jð12 uÞ2 lg
� �

Dt
� �

DtE Y0 2
jm

j2 lg

� �
:

Since ~a . 0, convergence of the sequence (20) is characterized by ~a , ð1 þ juDtÞ2; that is,

Dt jð12 2uÞ2 lg
� �

,
2j2 lgð2þ gÞ2 1

2
s2b

j2 lg
: ð21Þ

Now, recall that we are assuming 2j2 lgð2 þ gÞ . 0, so that the true second moment

reverts (which implies j2 lg . 0). We are free to choose any b . 0, and so by choosing

sufficiently small bwe can ensure that the right hand side in (21) is positive. In this case we

see that u $ u* guarantees convergence of the upper bound sequence to a finite limit for all
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Dt . 0, whereas for u , u* we have convergence only for step sizes constrained by

Dt ,
2j2 lgð2þ gÞ2 1

2
s2b

ðj2 lgÞ jð12 2uÞ2 lg
� � :

When {ẑn} converges, we have the limit

lim
n!1

ẑn ¼
~b

ð1þ juDtÞ2 2 ~a
;

giving a lim sup bound for E Y2
n

� �
of the form

lim sup
n!1

E Y2
n

� �
#

2j 2m 2

j2lg
þ s 2

2b
2

j 2m 2

j2lg
jð12 2uÞ2 lg
� �

Dt

2j2 lgð2þ gÞ2 1
2
s2b2 j2 lg

� �
jð12 2uÞ2 lg
� �

Dt

¼: Uðj;m;s; l; g; u;DtÞ: ð22Þ

To get a feel for the sharpness of this bound, we may choose b ¼ ðj2 lgÞ=2jm and

consider the limit as Dt! 0, which gives

lim
Dt!0

Uðj;m;s; l; g; u;DtÞ ¼
jmð2jmþ s2Þ

ðj2 lgÞ 2j2 lgð2þ gÞ2 1
4
s2 j2lg

jm


 � :
This is close to the second moment limit for the true problem (and hence, from (19), to the

corresponding lower bound at small step sizes) when the term s2=ðj2 lgÞ is small.

4. Numerical results

To demonstrate the replication of mean and mean-square reversion of the approximation

versus the model, we simulated 1 million sample paths for the following parameter set:

j ¼ 0:3; m ¼ 0:1; s ¼ 0:1; g ¼ 0:15, and l ¼ 0:05 over various time intervals ½0; T�with
an initial value of Xð0Þ ¼ 0:111. For this parameter combination, the critical value is

u* ¼ 0:4875.
Figures 1 and 2 depict the successful replication of mean and mean-square reversion,

respectively, by the theta-method, with 0:5875 ¼ u . u* for a fixed time-step chosen to

be Dt ¼ 0:01, where T ¼ 50. We have included 99% confidence intervals, confirming that

variance of the generated trajectories remains bounded.

In Figure 2, the shaded region illustrates the range given by the lim inf and lim sup

bounds derived in Sections 3.3.1 and 3.3.2, respectively. We see that our numerically

solved second moment lies within this region, in agreement with our analysis. In further

concurrence, we observe that the lower bound is sharp for the small Dt used here.

In Figures 3 and 4 trajectories are simulated using Dt ¼ 10 and T ¼ 2000 to

demonstrate that reversion is achieved even for large Dt. We observe successful

replication of the mean and also stability of the mean-square. The fact that the scheme no

longer closely approximates the theoretical mean-square path is consistent with the fact

that the upper and lower bounds are sharp only for small time-steps.

For the case of u , u*, we chose for simplicity u ¼ 0, corresponding to the Euler–

Maruyama scheme. Again we implement 1 million Monte Carlo simulations, this time for

three types of step-size:
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Figure 1. u . u *: mean reversion for Dt ¼ 0:01.

Figure 2. u . u *: mean-square reversion for Dt ¼ 0:01.
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Figure 3. u . u *: mean reversion for Dt ¼ 10.

Figure 4. u . u *: mean-square reversion for Dt ¼ 10.
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(a)

Dt ,
2j2 lgð2þ gÞ

ðj2 lgÞ2

(b) 2j2 lgð2þ gÞ

ðj2 lgÞ2
, Dt ,

2

j2 lg

(c) 2

j2 lg
, Dt;

in order to observe mean and mean-square replication in the case of (a); mean reversion

but not mean-square reversion in the case of (b) and neither mean, nor mean-square

reversion for the final case, (c).

Results are presented in Figure 5. In the upper pair of plots, corresponding to case (a),

simulations are done at Dt ¼ 0:01 for T ¼ 50. Replication of the model’s moment

behaviour is achieved, supporting the preceding analysis.

The second pair of plots correspond to case (b), with a fixed step-size of Dt . 6:831,
which lies between the time-step constraints, and T ¼ 6000. Whilst mean-reversion

appears to be achieved, this is at the expense of sample variance which is observed to be

blowing up (as reflected in the expanding confidence interval as time gets large). This is in

agreement with the lack of mean-square reversion predicted by our analysis.

The final pair of plots in the figure correspond to case (c), for which we chose Dt ¼ 8

and T ¼ 500. In this case, we can see that both mean and mean-square rapidly become

unbounded, in agreement with the analysis of Sections 3.2 and 3.3.

5. Concluding remarks

In this work, we examined the ability of the implicit theta-method to successfully replicate

mean and mean-square reversion of fixed jump models featuring mean-reverting drift and

square-root diffusion. We characterized the model parameters under which both reversion

features occur and examined what further constraints, if any, must be placed on the step-

size of the implicit method used.

A novel result of this analysis was that given a choice of implicitness parameter, the

method is unconditionally stable for a larger range of u than the traditional u $ 1=2 found
to hold in the deterministic ODE setting. There exists a critical value u*, dependent on the

specified model parameters and defined by (13), for which if we choose u $ u* any fixed

time step-size Dt . 0 gives mean and mean-square reversion replication under the

method.

In the case where u , u* we found a constraint on the choice of step-size below which

we achieve replication of both the mean and mean-square reversion. There was also found

to be an intermediate range of step-size, the upper limit coming from the first moment

analysis, where a step-size within this range replicated mean but not mean-square

reversion. In this regime, sample means would be unreliable, however, due to the large

variances. Finally, choosing a time step above the constraint for mean-reversion, we

observed the method’s failure to replicate either mean or mean-square reversion.

It would be of interest to extend this analysis to the random jump-magnitude and to the

cases of higher dimensional models such as those described in the introductory discussion.
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