
Remark on Algorithm 669

DESMOND J. HIGHAM

University of Toronto

Algorithm 669 [1, 21 is one of the few widely available, high-quality

Runge-Kutta integrators with an efficient interpolation facility. The purpose

of this note is to point out that the first derivative approximations computed

from the interpolant can be made less sensitive to rounding errors.

In solving

dy/dx = f(x, y), y(xo) = yOe Rs,

the method in [11 advances from y. = y(x.) to y.+ ~ =

y(xm + 2 h) by forming

6

9

Here the k, are values of the derivative function

intermediate points x = x. + oh, for o e (O, 1) U (1,2)

polynomial

y(x. + h) and ym+2 =

(1)

(2)

f. Approximations at

are obtained using the

[

6

P(xn + ah) =y~ + uhkl + U2 h~ bltk, – hkl
L=l 1

[
+02(u– 1) hk7 – 2h$ bl, k,+ hkl

L=l \

[

(3)

+~a2(u – 1)2 h: b2, k, – 4hk7 – 2hkl + 4h: bl, k,
~=1 Z=l 1

[I

+~u2(o– 1)2(0–2) 2hk10+8hk7 +2hkl–6h~ b2, k, .
L=l

Authors’ address: Department of Computer Science, Umversity of Toronto, Toronto, Ont.,

Canada, M5S 1A4

Permission to copy without fee all or part of this material is granted provided that the copies are

not made or distributed for direct commercial advantage, the ACM copyright notice and the title

of the publication and its date appear, and notice is given that copying is by permmslon of the

Association for Computing Machinery, To copy otherwise, or to repubhsh, reqtures a fee and/or

specific permission.

@ 1991 ACM 0098-3500/91/0900-0424 $0150

ACM TransactIons on Mathematical Software, Vol 17, No 3, September 1991, Pages 424-426

Remark on Algorithm 669 . 425

Table I. Errors in the Interpolant

Unmodified Modified

h E E E E

1 3.63e0 – 7.74e0 3.63e0 –7.74e0

le-1 3.30e-6 2. 09e-5 3.30e-6 2.07e-5
le-2 1.98e-8 –2.46e-6 1.98e-8 6.36e-7

le-3 – 1.35e-8 – 4.69e-5 – 1.35e-8 5 .39e-8

Note that P(x) is the quintic Hermite polynomial interpolant to the solution

data y., y.+l, y,+z and derivative data kl:= ~(x., y.), ky:= f(x. + h, Yn+l),

klo: = f(X. + 2 h, y~+z). The subroutine EXTRA that evaluates p(x) and

P’(x) is passed the data y,,, y.+ ~, y.+ ~, k ~, k~ and klo. The increments

h E:. lbl,k, and h X:. ~bz,k, appearing in (3) are computed as Y.+l – y. and

Yn+2 – yn respectively (see ((1) and (2)). Now standard error analysis shows

that using (yn + h~~=lbl,k,) – ym to recover h ~~=lbl,kl can generate

rounding errors of order y. u, where u represents the machine unit roundoff.

This can be a relatively large error when h is small. The rounding error

above is unlikely to pose a problem in the evaluation of p(x) via (3), since

here roundoff of order y. u is inherent. However, in the evaluation of the first

derivative of the interpolant, p’(x):= h- ld/ du(p(x. + oh)), the rounding

error arising from the formation of the increments makes a potentially

significant order h – 1y. u contribution. Here the value we are attempting to

compute is the order of f.

The difficulty can be overcome by computing the increments ~ ~=~bl, k, and

X:. ~bz, k, directly, in the main integration routine. This can be done without
an increase in storage; for example, the local arrays Yl and F3 in the code

are free to be used once y. +Z has been computed. The increments, rather

than y., ~ and y~+z, can then be passed to the interpolation routine EXTRA.

To illustrate the effect of this modification we give some results for the

scalar test problem y’ = 4(2 – y), y(0) = 1. We forced the code to take a

single step of size h and computed the errors E = p(X. + .75h) – y(XO +

.75h) and E’ = p’(xo + .75h) – y’(xo + .75h). (The value .75 was chosen

arbitrarily.) The single precision version of the code was used (u = 1.2 x

10- 7), with the errors computed in double precision. The results are recorded

in Table 1, The effect of the order h – 1u rounding error in the unmodified

evaluation of p’(x) can be seen clearly.

It is worth stressing that the instability in the original implementation of

p’(x) is only likely to cause severe loss of significant figures in fairly unusual

circumstances—typically when “hard” problems requiring h <10-2 are be-

ing solved to almost full machine accuracy.

A revised version of the algorithm now documents the changes described

above. The changes can be implemented in a straightforward manner by
deleting certain lines and ‘ umcommenting’ others.

ACM Transactions on Mathematical Software, Vol 17, No 3, September 1991

426 . Desmond J. Higham

REFERENCES

1, CASH, J. R Ablock6(4) Runge-Kutta formula fornonstiff initial value problems. ACM

Trans. Math. Softw. 15, 1(1989)15-28

2. CASH, J. R. Algorithm 669, BRKF45: A FORTRAN subroutine for solving first-order

systems of nonstiff initial value problems for ordinary differential equations. ACM Trans.

Math, Sofhu. 15, 1 (1989) 29-30

ACM TransactIons on Mathematical Software, Vol 17, No 3, September 1991

