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 Evolving graphs: dynamical models, inverse
 problems and propagation

 By Peter Grindrod1 and Desmond J. Higham2'*

 1 Department of Mathematics and Centre for Advanced Computing and
 Emerging Technologies, University of Reading, RG6 6AX, UK

 2 Department of Mathematics and Statistics, University of Strathclyde,
 Glasgow Gl 1XH, UK

 Applications such as neuroscience, telecommunication, online social networking,
 transport and retail trading give rise to connectivity patterns that change over time.
 In this work, we address the resulting need for network models and computational
 algorithms that deal with dynamic links. We introduce a new class of evolving
 range-dependent random graphs that gives a tractable framework for modelling and
 simulation. We develop a spectral algorithm for calibrating a set of edge ranges from
 a sequence of network snapshots and give a proof of principle illustration on some
 neuroscience data. We also show how the model can be used computationally and
 analytically to investigate the scenario where an evolutionary process, such as an
 epidemic, takes place on an evolving network. This allows us to study the cumulative
 effect of two distinct types of dynamics.

 Keywords: birth and death process; epidemiology; network; neuroscience; random graph;
 reproduction rate

 1. Introduction

 The last decade has seen a huge rise in interest in complex networks and
 their applications to mass communication, social and natural phenomena. Until
 recently, one characteristic of such networks that is fundamental within almost
 all applications has received only marginal attention: that the networks may
 evolve (Saramaki & Kaski 2005; Kao et al 2007; Borgnat et al 2008; Gautreau
 et al. 2009; Vernon & Keeling 2009). This issue is distinct from network growth,
 or aggregative phenomena: it embodies the property that all edges within the
 network are transient to some extent. Very recently, general classes of dynamic
 networks have been proposed and studied in the theoretical computer science
 literature (Avin et al. 2008; Clementi et al. 2008, 2009) from a complexity theory
 perspective. Our work looks at complementary issues driven by the need for
 practical tools in modelling, calibration and data analysis.

 In Borgnat et al. (2008), it is pointed out that network evolution can be
 approached from distinct directions: at the macro-level, it may be observed within
 real datasets by studying the time course of global parameters from one snapshot
 * Author for correspondence (aas96106@maths.strath.ac.uk).
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 754 P. Grindrod and D. J. Higham

 to another, or at the micro-level, dynamic properties could be ascribed to the
 individual birth-death rules for each edge; and that specific applications will
 require some analytical methods to approach an inverse problem: given some
 data from a time-dependent evolving network, how best may one represent it
 within a suitably defined class of models?

 In this paper, we consider these problems and offer an operational approach
 to each.

 In ?2, we consider micro-to-macro-models that produce evolving networks,
 considered as classes of Markov processes defined over the set of all possible
 undirected graphs on a finite set of n vertices. This space grows as 0(2n ), so we
 suggest simplifying to the case of independent dynamics for each edge.

 As a further simplification, we may then allow the dynamics to depend only
 on the range of the edge. This extends the static concepts of 'lattices plus
 shortcuts' (Kleinberg 2000a; Newman et al 2000; Higham 2007) and more
 general range-dependent random graphs (Grindrod 2002; Higham 2005) to the
 dynamic setting. In many applications, vertices are fixed within some Euclidean
 or underlying metric space and each edge has a natural 'range' representing
 the distance between the end vertices, which may impact on the possibility of
 that edge arising. For example, in traditional acquaintanceship networks physical
 neighbours have a good chance of knowing each other. These ideas are pervasive
 in the literature (e.g. the recent treatment in Franceschetti &; Meester 2008). But
 in many applications, there is no obvious, fixed lattice topology. For example:

 (i) in communication networks, individuals may be mobile,
 (ii) in online social networks, or telecommunications networks, physical

 position does not determine the cost or likelihood of interaction,
 (iii) in cyberspace, hyperlinks are not constrained by the underlying Internet

 connectivity structure,
 (iv) in high-frequency functional connectivity networks from neuroscience,

 cognitive processing tasks may be distributed across the brain, and
 (v) in proteomic interaction networks, connections may be caused by a

 combination of features, including electrostatic, hydrophobic or chemical
 similarities rather than any obvious sequence-level or geographical
 commonalities.

 In all these cases, the concept of 'range' is more elusive, not corresponding directly
 to a simple distance, but can still have some meaning. The range of an edge reflects
 the transitive nature of the connection. If vertex a is connected to vertex b which
 is in turn connected to vertex c, how likely is it that vertex a is also connected to
 vertex c? If it is very likely then we will say that connection is (locally) transitive
 and the edge from a to c is short range, if it is very unlikely then the edge from
 a to c is long range. Cliques are full of short-range edges. Hence, when we are
 presented with data from an evolving graph as just a transient set of connections
 between an arbitrarily ordered list of vertices, there is potential to add insight
 by inferring a range for every possible edge. This is the inverse problem we will
 address: that of representing a given evolving graph as a range-dependent evolving
 graph within an imposed class and thus inferring a range for every possible edge.

 Section 2 briefly discusses evolving networks in a general setting. In ?3, we
 review the formal concept of range dependency, introduce the new extension to
 evolving networks and look at the inverse problem of discovering the ranges.

 Proc. R. Soc. A (2010)

This content downloaded from 
������������192.41.114.229 on Sat, 19 Jun 2021 11:08:14 UTC������������� 

All use subject to https://about.jstor.org/terms



 Evolving graphs 755

 The spectral algorithm that we develop is then illustrated in ?4 and tested on some
 real brain activity networks. In ??5 and 6, we turn our attention to propagation
 problems defined on evolving graphs. Unlike percolation problems for static
 graphs, or dynamic propagation of infections or information on static graphs, here
 the dynamics and the sequential behaviour of the evolving graph interferes with
 the dynamics assumed for propagation of changes to vertex-dependent states.

 We thus consider the role of evolving graphs in transmission and threshold
 behaviour as well as achievable expected path lengths and shortest transit times.

 We believe that this work taps into an exciting and novel field for analysis with
 many potential applications?from information theory and neuroscience through
 to viral, or buzz, marketing.

 2. Independent edge-dependent dynamics

 Let Vn denote a set of n labelled vertices. Let Sn denote the space of all undirected
 graphs defined on Vn. Then \Sn\ = 2n(n_1)/2. Any element of Sn, denoted by a, may
 be represented by an n x n symmetric adjacency matrix, which we will denote
 by A.

 We will consider discrete-time Markov processes defined over Sn, whose paths
 consist of time-dependent sequences of elements, {aj} in 5n, each representing
 the evolving graph at time tj=j8t. Even when we restrict to the case where
 the transition matrix is time independent, to fully specify such a process, in
 general, requires 2n(n~1) non-negative graph-to-graph transition probabilities. We
 therefore continue with a simplified class of models where the time-dependent
 appearance or disappearance of each individual edge is governed by a random
 process that is independent of all other edges. More precisely, consider an
 evolving graph {aj} defined as follows. Let a(e) denote the probability that any
 edge, e, not part of the network at time t may be added to it over the time
 step St. Let co(e) denote the probability that any edge, e, that is part of the
 network at time t will be removed over the time step St. So a and oo specify
 the birth and death probabilities, respectively, that we assume to be 0(St) for
 St small.

 For any pair a, af g Sn, let P(af\a) denote the probability that Q>j+i ? o!
 given that a3; = a, and let E(a) denote the set of edges belonging to a. Then,
 the 'independent edge-dependent' model yields the graph-to-graph transition
 probability

 P(a'\a)= n a(e) II (!-a(e))
 eeE(a'), e<?E(a) e$E(a'), e$E(a)

 x n w(e) n c1-^))- (2.i)
 e<?E(a'), eeE(a) eeE(a'), eeE(a)

 This expression gives the probability that exactly the right subsets of edges
 are added and deleted to achieve the required transition. As a result of the edge
 independence assumption, there are now n(n ? 1) parameters (a(e) and 00(e))
 rather than the 2n(n_1) required in the general case.

 Proc. R. Soc. A (2010)
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 756 P. Grindrod and D. J. Higham

 It is straightforward to calibrate such a model, given sufficient data. Suppose
 that we observe a sequence {aj\j = 1,..., J}. Then we may estimate the
 parameters a(e) and co(e) independently for each edge, using Laplace's law from
 the sequence data. Specifically, suppose that an edge e is absent within the first
 J ? 1 terms of the observed sequence of graphs on exactly M(e) occasions and
 of these graphs exactly m(e) are followed by graphs that contain e (so e appears
 in those transitions), then we have the following estimate

 ^, N m(e) + 1 , ?(e) = _Li?- 2.2) v J M(e) + 2 v ;
 Similarly, suppose an edge e occurs within the first J ? 1 terms of the observed
 sequence of graphs on exactly M*(e) occasions and of these graphs, exactly m*(e)
 are followed by graphs that do not contain e (so e is lost in the transition). Then

 ^{e) = p?tl (2.3) v } M*(e) + 2 v )
 We may then use these estimates in equation (2.1) to generate any graph

 to-graph transition probability that is required. In particular, we could simulate
 and analyse sequences of networks.

 3. Range dependency

 (a) Review of the static case

 In Grindrod (2002), the class of range-dependent random graphs was introduced
 as a parameterized model that can reproduce important properties seen in real
 networks. Protein-protein interaction data were used to motivate and justify the
 concept. Closely related models based on similar principles include:

 (i) the original small world networks of Watts & Strogatz (1998), and their
 counterparts based on adding shortcuts rather than rewiring (Newman
 et al. 2000), where edges are either long or short range,

 (ii) the two-dimensional lattice-based model of Kleinberg (2000a,6), and
 (iii) the geometric model used by Przulj and co-workers (Przulj et al. 2004;

 Kuchaiev et al. 2009) to describe protein-protein interactions.

 Range-dependent random graphs are best introduced by imagining the vertices
 set out in a line and labelled by their integer positions. To simplify things further,
 if n, the number of vertices, approaches infinity, then we may approximate the
 graph by one on infinitely many vertices (...,? 2,?1,0,1,2,...), since the edge
 effects become less important.

 Range-dependent random graphs are then defined as follows: an edge is present
 between any vertices i\ and vi with probability piui2 =f(\h ? hi), where / is a
 given monotonically decreasing function of the edge range \i\ ? i^\. Thus, in this
 model the presence or absence of an edge depends only on its range, and each
 edge is independent. Letting Pk be the consequent probability that any vertex
 has degree k, the generating function Go(x) = J2T=i xk^k can be used to study
 the Watts-Strogatz clustering coefficient (Watts & Strogatz 1998) and the mean
 degree (see Grindrod 2002 for details).

 Proc. R. Soc. A (2010)
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 Evolving graphs 757

 In the protein-protein interaction case, and in most realistic network scenarios,
 the vertices will be labelled in a way that does not reflect any edge range
 information. Therefore, there is a natural inverse problem of reordering the
 vertices to reveal the range dependency. Genetic algorithms (Grindrod 2002) and
 more efficient spectral methods (Higham 2003; Grindrod et al. submitted) have
 proved successful in this context.

 Our aim is now to develop these static ideas into the evolving graph framework.

 (b) Evolving range-dependent random graphs

 Consider a set of n vertices labelled by location i = l,...,n. As in ?2 we
 consider a discrete Markov process over Sn where all edges evolve independently.
 Suppose further that each edge e has transition probabilities that depend only on
 its range: if an edge connects vertices i\ and Z2, then we will write k(e) = \ i\ ? i%\
 to denote its range. Then, an evolving range-dependent random graph has birth
 and death transition probabilities

 a(e) =fa(k(e)) and co(e) =f(0(k(e)),

 given by functions fa(k) and feo(k) that map the positive integers onto [0,1].
 Now let p(ej) denote the probability that the edge e is present within aJ5

 the graph at time tj. Then using the transition probabilities above, we have the
 dynamical equation

 Vie, j + 1) =fa(k(e))(l - p(e,j)) + (1 - Mk(e))p(e,j)).

 A steady distribution must then satisfy

 P0[k[e)) - a(e) + co(e) ~ fa(k(e)) + fm{k{e))'

 which depends only upon k(e). Hence, at equilibrium any single observation of
 the evolving graph appears as a range-dependent random graph with each edge
 present according to this range-dependent probability function po(k).

 Now consider the natural inverse problem. Given an observed sequence, {aj\j =
 1,...,J}, with the vertices in some given ordering i=l,...,n, how can we
 best represent that evolving graph within the class of evolving range-dependent
 random graphs? It is clearly reasonable to reorder the vertices with a mapping
 q(i) so as to maximize the likelihood of the actual observations.

 The simplest way forward is to consider each edge in turn within the evolving
 sequence. Suppose that e ? (ii, ^), in the original ordering, is observed on exactly
 r^2 occasions (and is absent on J ? r^2 occasions). Let R denote the symmetric
 non-negative matrix with elements r^2. Under a reordering q(i) the edge range
 becomes k(e) = \ q(h) ? q(iv)\ and the likelihood of the observations for this edge
 is given by

 PD(l9(*i) - q(h)\Y'^ (1 -po(l?(*i) - q{ia)\))J-r .
 Trivially, we can rewrite this as

 Proc. R. Soc. A (2010)
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 758 P. Grindrod and D. J. Higham

 Since all edges are independent, we may write the likelihood over the entire graph
 by taking a product over all possible edges to give

 n (i -n[m) _ ,(i2)i)),,., n (i-?(W'.)-?))' e=(zi,z2) e=(n,z2)
 But the second product is independent of q since all possible edges appear and
 are raised to the same power. Thus, the likelihood of these observations, given
 any g, has the proportionality

 So we should choose a reordering q to maximize From equation (3.1), we
 thus have , ? , , x , x , x r. .

 e(4)= n ^-^ V" (3.2)
 Maximizing C in equation (3.2) over all reorderings q is a hard combinatoric
 optimization problem. We can make progress through two types of simplification.
 First, we assume that the ratio of birth and death transition probabilities has

 the functional form

 ?H*' <3-3>
 for some constant 9. Then taking logarithms in equation (3.2), we have

 log?<xlog(0) rlui2(q{h) ~ q(k))2. (3.4)
 il>i2

 The second step is to relax the problem so that q is allowed to be a real-valued
 vector. The right-hand side in equation (3.4) may be written as the quadratic
 form qTAjiq. Here A#, the Laplacian matrix associated with i?, has the form
 D-R, where the diagonal matrix D contains the row/column sums of R. To
 remove shifting and scaling redundancies we also impose the constraints ||^||2 = 1
 and Er=1 ?(*) = 0.

 We now have a tractable optimization problem. For applications where the
 death rate exceeds the birth rate at long range, so 0 < 1, it is solved by a Fielder
 vector?an eigenvector corresponding to the smallest non-zero eigenvalue of A#.
 A reordering of the vertices can be recovered by sorting the components of q; that
 is, vertex i is placed before vertex j if <^ < qj. This approach has been found to be
 effective for static networks (Van Driessche & Roose 1995; George & Pothen 1997;
 Ding et al 2001; Higham 2003, 2005; Strang 2008; Grindrod et al submitted);
 here we are showing that in the evolving case it is possible to justify from first
 principles the idea of reordering on the cumulative (non-binary) matrix R.

 We point out that it is not necessary to know the actual value of 6 in
 equation (3.3). The derivation assumes only that this functional form exists
 and 0 is not required by the algorithm. We have found in practice that
 performance is not sensitive to the precise form of range dependency (Higham
 2003), especially in the long range, or large regime. Furthermore, this approach
 of spectral reordering based on R can be used for any dataset, and the validity
 of equation (3.3) may then be tested a posteriori.

 Proc. R. Soc. A (2010)

This content downloaded from 
������������192.41.114.229 on Sat, 19 Jun 2021 11:08:14 UTC������������� 

All use subject to https://about.jstor.org/terms



 Evolving graphs 759

 40 ~^^^^^B?/^j|j|^^^^^^^^^l

 20 HFy/ld[^^^^^^^^^^^^^|

 0 20 40 60 80 100

 Figure 1. The reordered sum (superposition) of the evolving graph after maximizing the relaxed
 likelihood. Elements close to the diagonal, i&j, represent edges that are inferred to be at short
 range.

 We also note that the reordering approach continues to make sense when 6 > 1
 in equation (3.3). This includes the case where long ranges are very unlikely to
 emerge, but those that do are long lived. In this case, because log(0) > 0, the
 expression in equation (3.4) is maximized by an eigenvector of the Laplacian that
 corresponds to a dominant eigenvalue.

 4. Computational results for reordering an evolving graph

 To test the reordering approach, we generated some synthetic data from the
 appropriate underlying model. With n = 100 vertices, we chose a birth rate
 fa(k) = 0.1(0.98)^ and death rate fa>(k) = 0.2. After ordering the nodes arbitrarily
 and letting the network evolve for 200 time steps, we applied the reordering
 algorithm. In this new ordering, figure 1 shows the binarized sum of adjacency
 matrices over all 200 time steps; a light dot denotes that an edge was present for
 at least one time step. Figure 2 shows a typical member of the sequence in this
 new ordering. We see from figures 1 and 2 that the hidden range dependency has
 been revealed by the algorithm.

 Next, we illustrate the algorithm in an electroencephalography application,
 using data from Sweeney-Reed & Nasuto (in press). Here, the measurements
 represent electrical activity produced by the firing of neurons within the brain
 over a short period of time, reflecting correlated synaptic activity caused by
 post-synaptic potentials of nearby cortical neurons.

 Proc. R. Soc. A (2010)
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 100 \ ^^^^^^^^^^^^^^^^^^^^^

 60 -^^^^^^^^^^^wU^^^^^m

 40 -^^^^^ HBb^^^^^^^^H

 20 HRn^^^^^^^^^^^^^^H

 0 20 40 60 80 100

 Figure 2. A typical reordered element of the evolving network. This node ordering places non-zeros
 close to the diagonal, revealing the propensity for short-range edges.

 In these experiments, the subject carried out a specific task?tapping in time
 to music. We use 4 s worth of data sampled at 500 Hz, with 2 s prior to tap
 and 2 s after. Hence, the finger tap starts around 1000 samples into the data.
 Measurements were taken at each of 128 electrodes arranged at fixed points on
 the scalp. Figure 3 shows the electrode locations (see Sweeney-Reed & Nasuto
 in press for further details).
 Results from nearby electrodes may possibly be correlated due to the volume

 integrative effects of the skin and scalp. On the other hand, transient correlations
 between channels corresponding to electrodes located some distance apart on
 the scalp may represent dynamic, synchronous, locking as some otherwise
 separate tasks become briefly coordinated; or the need for specific tasks that
 rely on a distributed processing effort. The high-resolution data allow us to
 examine whether such wide-scale transient correlations occur, as some separate
 cognitive processes become (briefly) coordinated to manage a combination of
 processing, sensory and motor responses that may be distributed across the
 cortex.

 We therefore let each electrode represent a vertex within an evolving graph.
 We subdivided the time-dependent data into windows of 50 consecutive time
 steps, each lasting 0.08 s. Within each time step we first obtained the all versus
 all channel correlation matrix and defined an edge between vertex i and vertex
 j if this correlation exceeded 0.8. This resulted in an evolving sequence of 50
 adjacency matrices.

 We note that correlation between signals is a far from perfect measure,
 especially in the search for noisy, transient, synchronous components within time
 series, but it will serve for our current purpose of illustrating how naturally

 Proc. R. Soc. A (2010)
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 127 ^ 126

 / 17 \\

 /A8 33 ^^18 lsX 1 >/^7 94 19 16 10 3 y 39 3^ 24 5 >02 121 \
 A4 / 28 25 20 11 4 124 123 \ 120y

 / J 35 29 ? 12 5 119 118 X \ 45 /J 30 13 6 H3 H2 \_ 115 \ 49 n4l 36 7 107 1U lion H4

 ^? 52 53 ? 62 7, " ? [
 \ 66 /J 85 ^

 Figure 3. Location on the scalp of the 128 electrodes.

 the concept and methods of evolving (organizational) graphs, introduced in this
 paper, may represent the coordinated emergent, transient, responses (both local
 and non-local) of the brain.
 Figure 4 shows the evolving sequence of 50 networks. Here time increases along

 each row in the picture?as shown by the indicative labelling of times 1,2,3,4,5
 and 47,47,48,49,50. The effect of the subject's 'task' after 2 s can be seen clearly
 in time steps 26,27,28. In this figure, vertices are ordered according to the
 default values provided by the recording equipment, as shown in figure 3, and
 we note that some vertices with neighbouring indices (i.e. successive row/column
 indices in the adjacency matrix) correspond to electrodes that are geographically
 close on the scalp, but in other cases they do not. In particular, there is an
 artificial periodicity or 'wrap around effect' in this default vertex ordering; the
 earliest vertices are geographically close to the latest. This effect manifests itself
 through the significant non-zero blocks in the off-diagonal corners of the adjacency
 matrices.

 Figure 5 repeats the information in figure 4, with vertices reordered via the
 spectral algorithm. In this case, we see that the activity has been arranged into
 coherent blocks. At the latter end of this new ordering (lower right corner),

 Proc. R. Soc. A (2010)
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 ^^1^^ ^^^^m ^^^^ ^^^^ ^^^^ ^^^^ ^^^^

 mn j^^^m mmi n^^i^^ m ij^i^i i^^i i^^i i^li i^^ii
 Figure 4. An evolving sequence of 50 adjacency matrices that represent correlations between brain
 activity at 128 regions. Vertices are ordered using the default provided by the recording equipment.

 a ^^^^ ^^^^ ^^^H

 a 46 47 48 49 50

 Figure 5. The adjacency matrices from figure 4, reordered according to the range
 dependency algorithm.

 one set of vertices appears to have a consistently strong set of mutual correlations,
 whereas at the start (upper left corner) a more transient set of correlations is
 captured. The apparent periodicity from figure 4 has been removed and there
 is a clear propensity for 'short-range' edges, that is, connections between near
 neighbours.

 In figure 6, we show the binarized cumulative matrix R under the new ordering.
 We also give the new electrode ordering; so electrodes numbered 55, 22 and 17
 in the equipment are placed in positions 1, 2 and 3, respectively, and so on. Of
 particular interest are electrodes 81, 102, 108, 48, 101, 57, 56, 95, 50, 63, 100
 and 51, which appear to provide crosstalk between the two otherwise isolated

 Proc. R. Soc. A (2010)
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 {55,22,17,14,45,32,27,128,
 23,26,15,16,33,18,127,11,12,
 10,25,20,49,13,21,19,8,24,28,
 9,123,41,46,34,39,4,40,5,2,3,
 29,119,42,124,44,7,1,30,118,
 35,31,122,112,106,126,107,
 115,37,125,121,113,116,36,
 120,109,6,114,117,110,111,47},

 {81,102,108,48},
 {101},
 {57},
 {56,95},
 {50,63,100,51},

 {69},

 {65,105,43,104,103,98,64,
 66,70,94,99,58,38,88,97,59,
 93,87,86,92,60,62,79,71,53,
 67,74,96,75,85,91,52,72,80,
 73,90,84,89,78,83,61,68,77,76,54,82}

 Figure 6. The cumulative edge matrix R, with blocks of highly correlated electrodes indicated.

 -0.004- ^^^^
 -0.006- T.'A'W' 1 * * . .

 -0.008 - ' * nJ\ *

 Figure 7. Scatter plot (grey) and average (dark line) of the scaled log birth data ratio
 (log(a(A;)/co(k))Ik2) as a function of predicted range, k.

 groups. Looking at their physical locations, which are highlighted in figure 3, we
 see that these regions cover two physically separate areas close behind both ears,
 and hence it is plausible that these edges correspond to auditory activity.

 As an a posteriori check on the relevance of the evolving network model, in
 figure 7 we scatter plot the values

 1 /a(*)\
 ^logUwJ'

 where a(k) and c5(k) are computed from equations (2.2) and (2.3). If assumption
 (3.3) is valid, then these values provide estimates for logc?. For each predicted

 Proc. R. Soc. A (2010)
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 764 P. Grindrod and D. J. Higham

 range, fc, the solid line in the figure shows the average of the scattered points,
 and we see that the results are consistent with the 6 < 1 scenario to which the
 algorithm applies.

 Although it would of course be possible to customize this computational
 technique to account for the specific nature of the problem, we believe that
 this experiment on real neuroscience data confirms that the basic modelling
 and algorithmic approach has potential for understanding, calibrating and
 summarizing evolving networks. In particular, it allows the transient nature of
 the interactions to be quantified and compared across different settings.

 5. Simulating propagation within an evolving graph

 In this section, we present two sets of computational results that arise when we
 put dynamics on the evolving network model. These results are then explained
 analytically in ?6.

 (a) An epidemic model

 Suppose we have a binary state variable defined at each vertex and at each
 time step. To be specific, let this variable take values 'infected' and 'susceptible'.
 Initially all vertices except one are labelled susceptible.

 From one time step to the next, we impose the following simple dynamics,
 depending on a single parameter /x.

 (i) A susceptible vertex has no effect on the fate of any other vertex.
 (ii) Each infected vertex passes on the infection to all of its current immediate

 neighbours.
 (iii) Having passed on the infection, each infected vertex becomes susceptible

 with probability 1 ? /x, or else remains infected, with probability /x.

 Intuitively, we foresee two possibilities depending on the infection dynamics
 and the evolving network dynamics: (i) that the evolving graph is sparse so
 the infection spreads only for large /x (where the infection tends to remain at
 individual vertices for a long time and these vertices eventually acquire edges),
 but not for small /x, or (ii) the evolving network is dense enough to support
 spreading for all values of /x?even when /x = 0 the infection lasts for just one
 time step at each infected vertex. In the special case where /x = 1 and every a
 is positive, we are in the successive percolation or flooding (Clementi et al. 2008,
 2009) regime where all vertices are certain to become infected.

 The novelty in this area lies in the dynamic coupling between the evolution of
 the contact network and the time course of the infection, in contrast to most
 of the existing work in this field, which has been carried out with percolation
 type models or susceptible, infected, recovered (SIR) dynamics on static graphs.

 In figure 8, we depict a threshold case, where the elements of the evolving
 (range-dependent) network are individually very sparse; the expected degree is
 0.79. All elements are highly disconnected. In this example, we use the same
 evolving network in each case with 100 vertices, for which fa(k) = 0.1(0.9)fc2
 and fco(k) = 0.5. We seed the infection at a single vertex (vertex 40), with a
 different value of /x for each run. We emphasize that recovery at each infected
 vertex is decided independently at random in all cases (a Poisson process).

 Proc. R. Soc. A (2010)
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 Figure 8. Propagation of infection through the evolving graph as recovery rate lessens.

 We employ values for [i between 0.1 (where the infection dies out quickly)
 and 0.625, where it propagates over the whole evolution. The threshold was
 observed to be approximately between 0.55 and 0.575. So, we have an example of
 how occasional long-range transient connections between otherwise short-range,
 isolated communities may propagate disease providing that the infectious period
 for individuals (and hence of the isolated communities) is long term enough.

 (6) A message passing viewpoint

 Suppose that /x = 1, and that we are transmitting a message rather than an
 infection. Starting out from a specific vertex, called the sender, at each time step
 the message is relayed to any vertices directly connected to previous message
 holders. Hence, the message spreads according to the successive edges added at
 each time step to the existing message holders. Eventually, all vertices will receive
 the message (since /i = l so a vertex never forgets the message). Suppose also
 that a vertex is designated as the desired receiver. Then, in the range-dependent
 graph setting, there is a natural range between sender and receiver, which we will
 denote by &mess- We will say the minimum number of time steps needed for the
 first arrival of the message at the receiver is the shortest transmission time (STT).
 It is clearly of interest to study the distribution of the STT and related quantities,
 such as the natural 'path length' measured by taking whichever message-holding
 vertex is currently closest in range to the receiver. This path length is important
 if, for example, the message propagation from one vertex to another along any
 single edge during any single time step is noisy, so that a 'Chinese Whisper' effect
 accentuates such noise.

 For fa(k) =0.1(0.9)fc2 and fo>(k) = 0.5, we have an average degree at any time
 step given by z = 0.792. For n = 200 we selected both a sender vertex and a
 receiver vertex randomly and carried out an experiment with a fresh evolving
 graph in each case. Then over 17300 such experiments, we obtain the results
 shown in figure 9 for the mean, mode and distribution of the STT.

 Proc. R. Soc. A (2010)
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 Figure 9. (a) Mean and mode of the STT versus message range, and (b) density plot for STT versus
 message range, obtained from 17300 experiments.

 6. Analysing propagation within an evolving graph

 We now show that the evolving random network model used in figures 8 and 9 is
 sufficiently compact to allow for some theoretical analysis.

 (a) Analysis of the message passage simulations

 In order to understand the behaviour seen in figure 9, we will make two
 simplifying assumptions.

 (i) At each time step, the nearest vertex to the receiver, say A, either remains
 the nearest vertex, or the new nearest vertex arises from an edge that has
 appeared from vertex A. We may then assume that each new edge utilized
 is independent of the previous ones (since we make no assumption about
 any edge leaving A, prior to the arrival of the message at A).

 (ii) The 'edge effects' caused by the requirement that the message exactly
 reaches the receiver can be ignored, so that we can focus on the general
 phase where the message progresses as quickly as possible away from the
 sender.

 In any element of the evolving graph, we have the equilibrium probability that
 any edge of length k is present at a particular time step given by equation (3.1).

 Consider any particular vertex that the message has reached, and let n(k)
 denote the probability that the longest range of any edge connected to it is exactly
 equal to k. Then, we have directly

 oo

 n(0) = l\(l-p0(j))2
 oo

 and n(k) = (2p0(k) - p0(k)2) f](l " Po(k + k>l.

 Proc. R. Soc. A (2010)
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 Evolving graphs 767

 The sequence {n(k)} sums to one, and we can use these forms to calculate the
 expected range of the longest range edge connected to any vertex (= ^ kn(k)).

 Similarly, let n*(k) denote the probability that the longest range of any edge
 connected to the particular vertex in the direction of the receiver is exactly equal
 to k. Then, we have

 00

 n*(0) = Y\(l-Po(3))
 3=1

 oo

 and n*(k) = p0(k) Y\(l ~ Po{k + j)), k > 1.

 The expected range of the longest range edge (LRE) in the direction of the receiver
 is thus ^2 kn*(k).

 For the choices of fa(k) and fco(k) in figure 9, the expected range of the longest
 range edge is given by 1.3598 in any direction. Similarly, the expected range of
 the longest range edge in the direction of the receiver is given by LRE = 0.773.

 Under our simplifying assumption that edges transmit the message in the
 direction of the receiver, we have

 h
 STT = = = 1.293?^ess.

 This explains the slope of the mean and mode curves in figure 9. Over long
 message ranges we may appeal to the central limit theorem: the message
 propagates according to a process that could be subdivided into independent
 increments, for much shorter message ranges, successively drawn from a
 distribution of paths for the shorter ranges. Thus, the message arrival behaviour
 and time resembles that for a diffusion-advection process.

 Of those successive time steps, we expect that a fraction 7T*(0) = 0.657 made
 no progress towards the receiver?the range of the longest edge in the receiver's
 direction being zero?for that time step at the closest vertex.
 Hence, the message travels a total message range of A^ess? over 1.293

 A^ess successive time steps, along approximately 1.293(1?0.657)^688 = 0.442/^ness
 edges. Notice that the expected range of the longest range edge in the direction
 of the receiver, given that it is not zero, is simply ^ k7t*(k)/(l ? 7T*(0)), which
 is approximately 2.25.

 (b) Analysis of the epidemic simulations

 For the computations shown in figure 8, we observed a threshold value for \x
 governing overall growth or decay of the disease. To understand this behaviour
 and estimate the critical /x, we consider, at equilibrium, a single infected vertex, A.
 Our aim is to estimate the number of new vertices that A infects before its
 eventual recovery. The expected degree of node A on the next step is the sum
 over the probability of all possible edges,

 00

 d:=2 ?po(fc), (6.1)
 k=l

 Proc. R. Soc. A (2010)
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 where po(k) is defined in equation (3.1). Some of the vertices that A points to
 may already be infected, of course. In particular, the most likely already-infected
 neighbour is the vertex, say B, that infected A. Because the edge death rate, fa,
 is constant in this experiment, this value gives the probability that the edge
 connecting B to A remains over one step. So the probability that the edge
 A-B remains and vertex B has not recovered is fail. Hence, correcting d in
 equation (6.1) to discount 'infection' of an already-infected node B, we arrive at

 d:=d- fafi
 as our approximation to the expected number of new infections caused by A after
 one step.

 Now let us consider new edges appearing at subsequent steps. Suppose we
 consider any such edge of length k. This edge is not present on the first time-step
 post-infection with probability 1 ? po(k). The probability that it first appears as
 a new edge on exactly the jth time-step post-infection (j = 2,3,...) is thus

 (i-Po(k))(i-fa(k)y-2fa(k).
 (This expression arises as the product of the probabilities that the edge (i) is

 missing on the first step, (ii) does not appear in steps 2 through to j ? 1, and
 (iii) appears at step j.) The expected number of edges connecting to vertex A for
 the first time at the jth time-step post-infection is thus

 oo

 2j2(i-po(k))(i-fa(k)y-2fa(k).
 k=l

 The probability that vertex A is still infectious at the jth step following
 infection is So, summing over all times, our overall approximation of the
 expected number of new vertices that A infects before recovery is

 oo oo

 R(H) :=~d + 2j2 I> ~ Pd(*))(l - f*(k)y-2fa(k). (6.2)
 j=2 k=l

 This quantity is analogous to the basic reproduction rate, usually called Ro, that
 arises in classical epidemiology (Diekmann et al 1990), and we are therefore
 interested in the critical value R(ii) = 1.
 For the case fa = 0.5, fa(k) = 0.1(0.9)^ used in figure 8, we show in figure 10 the

 behaviour of R(n) in equation (6.2). Solving numerically, we find that R(ti) = 1
 at \i ? 0.575, which matches well with the experimentally observed threshold.

 7. Discussion

 Many new challenges arise when we move from fixed networks to the more general
 case where connections are time dependent. In this work, we highlighted some fun
 damental tasks in the modelling and calibration of evolving networks and propos
 ed a novel range-dependent birth and death mechanism. This framework permits
 a variety of evolutionary behaviours but also imposes enough structure to make
 it possible for some analysis and algorithm development. We showed that the
 evolving network model adds value to some real brain activity data, but we believe

 Proc. R. Soc. A (2010)
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 Figure 10. Plot of in equation (6.2) for the experiment in figure 8.

 that, due to the generic nature of the modelling assumptions, the same approach
 will be applicable to many other scenarios where sparse network 'snapshots' are
 observed, including applications in telecommunications, sociology and business.
 Although our evolving network model was set up as a discrete-time

 Markov chain, we remark that an analogous continuous time framework could
 be developed, which might be more suited to rigorous probabilistic analysis.
 The evolving network model can also be combined with a time-dependent

 process that acts over the network. We showed via simulation and analysis that
 the overall behaviour of the resulting stochastic process depends strongly on the
 interaction between the two sets of dynamics. There is much scope here for adding
 realistic topological dynamics to the traditional static network models of disease
 propagation and message passing.

 We thank Slawomir Nasuto for making available some data from Sweeney-Reed & Nasuto (in press)
 and a template for figure 3, and for helpful discussions about the computational results in ?4. The
 authors acknowledge support from EPSRC through project grant GR/S62383/01 and Bridging
 the Gaps 'Cognitive System Science' grant EP/F033036/1, and from MRC through project grant
 G0601353.
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