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For many networks in nature, science and technology, it is possible to order the nodes so that most
links are short-range, connecting near-neighbours, and relatively few long-range links, or shortcuts,
are present. Given a network as a set of observed links (interactions), the task of finding an ordering
of the nodes that reveals such a range-dependent structure is closely related to some sparse matrix
reordering problems arising in scientific computation. The spectral, or Fiedler vector, approach for
sparse matrix reordering has successfully been applied to biological data sets, revealing useful structures
and subpatterns. In this work we argue that a periodic analogue of the standard reordering task is also
highly relevant. Here, rather than encouraging nonzeros only to lie close to the diagonal of a suitably
ordered adjacency matrix, we also allow them to inhabit the off-diagonal corners. Indeed, for the classic
small-world model ofWatts & Strogat1998 Collective dynamics of ‘small-world’ network®ature

393 440-442) this type of periodic structure is inherent. We therefore devise and test a new spectral
algorithm for periodic reordering. By generalizing the range-dependent random graph cBrgsdobd

(2002 Range-dependent random graphs and their application to modeling large small-world proteome
datasetsPhys. Rev. E66, 066702-1-066702-7) to the periodic case, we can also construct a computable
likelihood ratio that suggests whether a given network is inherently linear or periodic. Tests on synthetic
data show that the new algorithm can detect periodic structure, even in the presence of noise. Further
experiments on real biological data sets then show that some networks are better regarded as periodic
than linear. Hence, we find both qualitative (reordered networks plots) and quantitative (likelihood ratios)
evidence of periodicity in biological networks.

1. Background
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Large, sparse networks arise naturally when we describe the interconnectedness of components in corﬁ-
plex systems $trogatz 2001, Newman 2003 Alon, 2006. The need to extract useful information g
creates challenging computational problems that, at least in part, overlap with sparse linear algebrg
tasks dealt with by numerical analysts. In this work we look at a matrix reordering problem that arisesS
naturally from recent work in network modelling and computational biology. The reordering comes
with a twist—a periodic analogue of the more usual ‘envelope reduction’ or ‘two-sum minimization’ is
required.
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The presentation is organized as follows. In Section 2 we outline some recent random graph mod-
els that motivate the inverse problem. In Sect®we give a brief overview of the use of spectral
methods for graph reordering, based on the graph Laplacian. We then derive a spectral algorithm for
the periodic reordering problem and illustrate its use on specially constructed test data. In &ection
we show that, under the hypothesis that the data come from a random network class with range-
dependent edge probabilities, it is possible to compare the likelihoods of linear and periodic structure. In
Section5 we apply the algorithm to biological network data and, in some cases, find evidence of periodic
structure.

2. Network models

sdjy wouy pepeojumoq

Classical random graph theory studies models where either (a) an edge is placed between a pair of nodes
with some fixed, independent, probability or (b) a graph with a specified number of nodes and edges
is chosen uniformly at random from the collection of all such grafiskis & Rényi, 1959 Gilbert,

1959. Strogat2001) makes the point that networks in nature and technology neither look like classical
random graphs nor look like regular lattic¥gatts & Strogat1998 proposed a new model that aimed

to capture this ‘between order and disorder’ appearance. Their model begins with a pemnediest
neighbour ring and proceeds bgwiring. Given some fixed probability; say, we consider each edge

in turn, and with probabilityy we exchange (rewire) one of its end nodes with a node chosen uniformly
across the network. The average degree thus remains constant.

In Newmanet al. (2000, instead of rewiring, the authors addglbrtcutsto create a very similar
effect. For each node in turn, with some probabijityve insert a new edge that connects it to another
node chosen uniformly across the network. This construction has the benefit of guaranteeing to maintain
connectivity, though it increases the average degree.

Watts and Strogatz coined the tesmall-world networko describe the seemingly unlikely combi-
nation of small typical pathlength (randomly chosen nodes can be connected by small chains of edges)
and high clustering coefficient (neighbours of neighbours tend to be neighbours). They showed via sim-
ulations that the rewired periodic ring has the small-world property for suitable valyesaofd also
showed that many real-life networks are small worlds. Hence, the small-world model goes some way to
capturing an essential feature of complex networks.

Grindrod (2002 proposed a variation of the Watts—Strogatz and Watts—Newman—Moore models
called range-dependent random graphs (RDR{Egham 2005. Here, shortcuts arise with a probability
that depends on the lattice distance between nodes, that imripe Grindrod argued that this type of
connectivity can be used to describe interactions between proteins. The model uses a linear, rather than
periodic, node ordering: this assumption was largely pragmatic, anticipating that the number of nodes
would be very large in applications.

e//

DEFINITION 2.1 For a given decay functior, that maps from{1,2,..., N — 1} to [0, 1], the RDRG
model generates an edge between nodasl j with independent probability (|j —i|).

The case of geometric decay, whefé) = ak~1 for constantsz, 2 e [0, 1], allows for ex-
plicit analysis (employing a generating function method) to calculate the clustering coefficient and
other macro properties of the networ&rindrod 2002. Here we will focus on the case whese=
4 and consider geometric decdyk) = /. An RDRG is illustrated in the upper left picture of
Fig. 1.

Given the inherent periodicity in the influential Watts—Strogatz model, it is natural to define a
periodic version of the RDRG model in the following manner.
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FiG. 1. Linear (RDRG) withN = 100 andA = 0.9 (upper left) and its linear (lower left) and periodic (lower right) reorderings.
Scatter plots 062 andw[3! (upper right).

DEFINITION 2.2 For a given decay functiorf,, that maps from{1, 2, ..., N — 1} to [0, 1], the peri-
odic RDRG (pRDRG) model generates an edge between riodled | with independent probability
f(min{]j =i, N =[] —i]}).
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Here we have defined a pRDRG by using periodic lattice distance, or periodic range, in the deca
function, so, for example, nodes 1 aNdare a unit distance apart; in the RDRG their separation distance
would beN — 1. The upper left picture in Fi@ illustrates a pRDRG.

We will show that pRDRGs not only form a useful class of test networks but also can be used to
motivate a measure of periodicity.

3. Spectral reordering

In addition to proposing a modekrindrod(2002 pointed out that there is, in practice, the need to solve
a related inverse problem.

In situations where edges represent observed interactions, they are typically presented in some co
trived or an arbitrary order. So given such a data set, it is of interest to look for a new node ordering
that reveals a ‘regular lattice plus short cuts’ pattern. (This concept is illustrated on real biological data
in Section5.) This locates (near) cliques close together in the embedded lattice, allowing for some
long-range edges. The resultant ordering and the inferred interaction ‘ranges’ provide insight resulting
directly from the imposition of the RDRG structure on the data.
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FIG. 2. Periodic (ERDRG%, wittN = 100 andl = 0.9 (upper left) and its linear (lower left) and periodic (lower right) reorderings.
Scatter plots 064 andv[3! (upper right).

To achieve this in the case of linear structure, Grindrod proposed a discrete reordering technique
that attempted to optimize a log-likelihood function (that given4rd) below), essentially tackling a
discrete optimization problem by genetic seatdlyham (2003 showed that existing spectral reorder-
ing algorithms can be much quicker and more effective. We note that very similar aims arise in many
other application areas, including pattern recogniti®hi & Malik, 2000, data mining Eldén, 2007,
high performance computing/é¢n Driessche & Roosel995 and sparse matrix computatior3u(f
et al, 1986 Hu & Scott 2003. In this work our aims are

1. to develop a spectral algorithm that reveals ‘regular lattice plus short cuts’ in the case where the
underlying regular lattice has a periodic, rather than linear, structure and

2. to devise a computational test that determines whether a network is inherently more linear or
periodic.

Suppose thah = (ajj) € RN*N denotes the adjacency matrix for an unweighted, undirected graph
with N nodes; saj = ajj = 1if nodesi and j share an edge argl; = ajj = 0 otherwise. A
spectral reordering approach can be motivated by the idea of finding a permutationw¢ateector
containing each integer from 1 t¢) so as to minimize the two—suﬁi”=l Z}\lzl(pi —Pj )Zaij (Barnard
et al, 1995 Higham 2003 2005 Spenceet al, 2007 Strang 2008 Van Driessche & Roose€ 995.

Here, we must seef so that the edges tend to arise between nodes that are close in this new ordering.
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In matrix terms we require nonzeros to lie near the diagonal in the reordered adjacency matrix. This
discrete optimization problem is computationally intractable for large networks, but by relaxing to an
optimization over real-valued vectopse RN and imposing suitable constraints, we obtain a quadratic
positive semidefinite problem that can be solved with an eigenvector. We could look for a periodic ver-
sion of the two-sum, such @i'\‘zl Zszl(minq pi — Pjl, N—pi — pj |))2aij . Minimizing this quantity o
would encourage nonzeros to lie either near the diagonal or close to the off-diagonal corners. How=
ever, the relaxed version is no longer in the form of a tractable quadratic variational problem. Instead®
we will look for motivation from the Watts—Strogatz modeVétts & Strogatz1998, whosek-nearest
neighbour ring can be regarded as a one-dimensional structure embedded into two dimensions. We wiif
therefore look for a projection of the nodes i3 rather thanR® and then infer a one-dimensional
ordering from the angular polar coordinate.

Spectral projection of the nodes into a low-dimensional space is itself a well-studied problem, with
many algorithmic variantsAlpert & Yao, 1995 Van Driessche & Roos€l995 Shi & Malik, 200Q
Eldén 2007 Skillicorn, 2007 Kalnaet al,, 2008 Strang 2008. Here we outline an approach based on
the normalized Laplaciarthat we have found to be useful. For more details the referatea et al.
(2008 covers projection into more than one dimension Highamet al. (2007 looks at unnormalized
versus normalized Laplacians. Our starting point is to consider mappingthheode into position
(X, Yk)T € R? by solving the minimization problem

N N
. X Xj
mn> > (3)-(})
i=1j=1 Yi Yi
where| - || denotes the Euclidean vector norm. Here we are attempting to place nodes close togeth

if they are connected by an edge. et (x1,...,xn)" andy = (y1, ..., yn)'. Then our expression
may be rewritten as

pap
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2
aij,
2

min(x" (D — A)x + y' (D — A)y), (3.1)
whereD is theN x N diagonal matrix, dia@s, ..., dy), containing the vertex degreds= Z?:l ajj .

1 1
We letD? denote the corresponding half powerfdiag(df, cees d,f,) We also sel € RN to be the
vector with each component equal to one.

To avoid trivial solutions and redundancy we must add some constraints. First we must normaliz
the vectorsx andy to keep them away from the origin. We impose
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x'Dx=1 and y'Dy=1. (3.2)

Here scaling each component by the corresponding node degree has the effect of down-playing th
influence of highly connected nodes. Second we use

1"D2x =0 and 1'DZy=0 (3.3)

Lc0cg aunr g U lesn y

to ensure that the nodes are well spread, with\ffue scaling forcing relatively well-connected nodes
to lie closer the origin.
It follows from standard linear algebra arguments, see, for exar{pleaet al. (2008, that 3.2)

with (3.2 and @.3) has solution given bx = D352 andy = D200, where the normalized Lapla-
cian D—%(D - A)D‘% has eigenvalued; < 12 < --- < An with corresponding eigenvectors
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ol [ [N By constructioni; = 0 andoll = D31/ D31||. The eigenvalues are bounded
above by 2 and., > 0 if and only if the underlying network is connectédaq Driessche & Roose
1995.

We may therefore summarize our new algorithm for computing a permutation yettat gives a
periodic reordering as follows.

Periodic Reordering Algorithm

1. Compute a subdominant eigenvector pait= 02l andy := v for the normalized Laplacian
D=3(D — A)D"3.

2. Letg = tanmt (yi/xi).

3. Construct a permutation vectpraccording top; < pj < 6 < 0.

For comparison a corresponding linear versigan Driessche & Roosd.995 Shi & Malik, 200Q
Highamet al,, 2007 Skillicorn, 2007 Strang 2008 could be written:

Linear Reordering Algorithm

1. Compute a subdominant eigenvectae= /2.
2. Construct a permutation vectpraccording top; < pj & X < Xj.

These algorithms are illustrated in Figand2. The upper left picture in Figl shows an RDRG
with N = 100 and/ = 0.9. The upper right picture scatter plots the componentg®dfando[3!. It
is clear that the normalized Fiedler vectol], does a good job of uncovering the linear ordering and
o3 can add nothing further. The lower left picture shows the matrix reordered according to the linear
reordering algorithm, and the linear range-dependent structure is apparent. The lower right picture shows
the result of the periodic reordering algorithm. In this case the algorithm has encouraged some nonzeros
into the off-diagonal corners, but we see an unnatural break in the node density as we look down the
diagonal.

We emphasize that in practice we would not expect to be given the matrix with the ‘correct’ ordering
shown in the upper left picture. Instead, the nodes would arrive in some arbitrary Gradedrpod 2002
Higham 2003, and our task is to find the hidden structure. HowevB, andv!3! are invariant under
reordering (which, of course, corresponds to a similarity transformation), and hence the algorithms
would perform exactly the same way if we started with any other node order.

In Fig. 2 we change to a pRDRG. In this case it is clear that b&thandy[®! carry useful reordering
information. The linear algorithm is forced to increase the spread of nonzeros, whereas the periodic
algorithm packs them tightly along the diagonal or in the off-diagonal corners.

4. Likelihood ratio

In Figs1 and2 it is visually obvious whether the graphs are inherently linear or periodic and whether
one algorithm is more appropriate than the other. For real networks, of course, the issue will not be so
clear cut. The idea in this section is to develop a test that gives a quantitative answer to the linear versus
periodic question. Such inference issues require assumptions to be made, either implicitly or explicitly
(Sivia, 2006, and we will start by assuming that the network comes from either one of the RDRG or
pRDRG classes, each with a geometric decay function. We not&tiradrod (2002 used the RDRG

model in order to define an objective function that could be maximized over all possible orderings and
to find the most likely (linear) ordering under the hypothesis that the data come from that class. In our
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case the orderings arise from the two algorithms, corresponding to alternative hypotheses, in3Section
and we compare

1. the likelihood of the linear ordering given that the data came from the RDRG class with geometric
decay and

2. the likelihood of the periodic ordering given that the data came from the pRDRG class with
geometric decay.

The first step is to fit the geometric decay rateVWe do this by matching the total number of edges
in the given network to the expected number of edges arising in the RDRG and pRDRG models. In th
RDRG case, the expected number of edge€s 3 ;. ; /™', which has the analytic form

NA 2@ -=2N)

_ . 4.1
1—7 @—i2 “.1)
In the pRDRG case, the expected number of edey,;; A™"U~-N=I=D has the form
NA N/I(N-H‘)/Z
- (4.2)
1-2 1-1
whenN is odd and
NA 1+4AN
T AN N2 (4.3)

1—-1 1-12

whenN is even. In each case a monotonically increasing scalar functiérmnst be matched to the
given edge count, so it is a simple numerical task to produce the valnesd/pe for the linear and
periodic models, respectively.

Then for any reordering— pj, the likelihood of this network arising for the RDRG model is

. [pi—pjl |pi—pjl
Lin@:= ] ™ I @-am ™. (4.4)
edge pi & pj no edgep; <> pj
Similarly, for any reordering — pj, the likelihood of this network arising for the pRDRG model is
Loed(p) = H lgg?(lp pjl.N—=Ipi—pjD) H 1- irpnérr\(lp Pjl,N—|pi—pj I))_ (4.5)
edgenp; <> pj no edgep; <> pj

Effectively, the algorithms from Sectidhselect suitable reorderings that are close to maximizing
Liin(p) and Lper(p) independently. Lettingjin and pper denote the ordering arising from those linear
and periodic algorithms, respectively, tlog-likelihood ratiq L, is defined as

2 Liin (Plin) )
L= | , 4.6
N(N —-1) °d (ﬁper( Pper) (4.6)
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with a positive ratio indicating that the network is more likely to be linear and a negative ratio indicating
the opposite. Note that we normalize by the tekN — 1)/2, representing the number of possible
edges, which corresponds to the number of factors within Bbth &nd @.5): this allows us to contrast
results for different sized data sets (if we doubleéhen we roughly quadruple the number of terms in
the sum that forms the log-likelihood ratio).
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In Figs 1 and 2 we generated RDRG and pRDRG instances With= 100 andi = 0.9. In the
RDRG case we foundjj, = 0.9004 andiper = 0.8908 from @.1) and @.2), respectively. Sinceji, is
the closer tol = 0.9 and the likelihood ratid. = 1.75x 102 is positive, we conclude that the network
is more likely to be linear. In the pRDRG caég = 0.9091 andiper = 0.8994. Herelper is closest
and the negative likelihood ratio &f = —1.37 x 10~! supports the hypothesis that the network is more
likely to be periodic.

To test the likelihood ratio further, in Tablésind2 we summarize the results of a larger scale experi-
ment. Further tests of a more statistical nature are presen@ihdrodet al.(2008. Here we generated
instances of RDRG and pRDRG linear and periodic networks and tested whether the likelihood ratio
correctly identified the appropriate structure. We used dimen$ioas100, 200, 500, 100Q 2000 and a
range ofl values in the interval [®, 1); smaller values of produce unreasonably sparse networks—at
/4 = 0.6 the leading termN /(1 — 1) in (4.1)—(4.3) indicates an average of only5ledges per node.

Each entry records the frequency of successful predictions over 1000 instances of the random graph. We &
see that the performance is perfect over a large range of parameter values and generally worsens as w@
increaseN for a fixed/ and generally improves as we increds®r a fixed N. This is consistent with

the fact that decreasing the sparsity provides more information to the algorithm; the same argument ac-
counts for the slightly improved performance on periodic networks in Tableer linear in Tablel. Of

course, at the extreme caselof 1 all graphs are completely full and hence there can be no meaningful
distinction, which explains the poor performance foe 0.999 and smalN.

peoe//:sdny wolj pepeojumoq

TABLE 1 Linear RDRD networks: frequency with which the likelihood ratio correctly
predicted that the network is linear rather thaeriodic

N
A 100 200 500 1000 2000
0.6 0.544 0.570 0.532 0.487 0.541
0.7 0.898 0.904 0.886 0.860 0.763
0.8 0.964 0.997 1 1 1
09 0.993 1 1 1 1
0.95 1 1 1 1 1
0.99 0.995 1 1 1 1
0.999 0.025 0.184 1 1 1

TABLE 2 pRDRG networks: frequency with which the likelihood ratio correctly predicted
that the network is periodic rather thdmear
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N
A 100 200 500 1000 2000
0.6 0.610 0.491 0.466 0.513 0.479
0.7 0.986 0.987 0.956 0.929 0.756
0.8 1 1 1 1 1
0.9 1 1 1 1 1
0.95 1 1 1 1 1
0.99 1 1 1 1 1
0.999 0.718 1 1 1 1
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Overall, Tabled and2 give us some confidence that the biological data sets to be studied in Section
5 are amenable to analysis.

5. Biological data sets o

Qo
Existing and improving high-throughput technologies in experimental biology produce large-scale datas
that are often represented by networks. In protein—protein interaction (PPI) networks, nodes stand fo§
proteins and edges between pairs of nodes indicate that, according to the results of an experiment, thoge
proteins interact. We applied the linear and periodic spectral reordering algorithms to publicly available3’
PPI networks to test whether periodic structure is present in real-world networks and, consequently3
close and long-distance neighbours can be better differentiated with the new algorithm.

We analysed 13 PPI networks of three different eukaryotic organisms: yeast, worm and human:
Two yeast PPI networks are described/am Meringet al. (2002: a network defined by the top 11000
interactions (denoted Y11000 in Tal#® and its high confidence part (Y2455). Here an increase in
confidence corresponds to keeping only those links that are consistent with other sources of biologicaf
data, so higher confidence networks have fewer edges and should contain fewer false positives. A further
three yeast PPI networks are the ‘core’ frétm et al. (2000, the network fronlJetz et al. (2000 and
the union of both, denoted YltoCore, YUetz and YltoCoreUetz, respectively.

Human PPI networks used in our experiments include three networks of different confidence level:
high (hStelzIH), high and medium (hStelzIHM) and high, medium and low (hStelzIHML) febeizl
et al. (2005 and a network fronRualet al. (2005 (hRual). A further two networks were downloaded
from databases BIND and MINE@&nzoniet al., 2002 Baderet al., 2003 (hBIND and hMINT). Finally,
two worm PPI networks were tested: WCore denotes the walostridium elegan&ore’ PPI network
(Li et al, 2004 and WZhSt denotes the worm PPI network frdimong & Sternberd20086.

Note that PPI networks generally consist of a set of disconnected componentsnetworkslt is
known that if a network hals subnetworks then the lowdseigenvalues of the Laplacian (or normalized
Laplacian) matrix are zerd{ng et al, 2001). The total number of subnetworks is shown as ‘sub’ in
Table3. In each case we studied the largest connected subnetwork. Thus, the original number of protein

wapeoE// sd

TABLE 3 Linear versus period reordering for PPI dasets

202 2UNr 61, U0 J8Sn YBINGUIPT J0 ANSIONIUCT 12201 2/S6H/L/0E/PPNE/RBWY 0D

PPI sub orig.n red.n orig.edge red.edge Aper L

Y11000 103 2401 2137 11000 10816 0.84 —1.39x 102
Y2455 132 988 573 2455 2097 0.79 —1.25x 1072
YlitoCore 132 786 417 789 511 0.55 —2.83x 102
YUetz 163 991 473 915 543 053 —1.23x 1072
YlitoCoreUetz 160 1417 970 1520 1229 0.56 —9.03x 1073
hStelzIH 22 363 314 756 727 0.70 —3.69x 1072
hStelzIHM 34 1159 1076 2167 2116 0.66 —5.62x 1074
hStelzIHML 47 1529 1411 2667 2594 0.65 31x 1073
hRual 84 1873 1686 3463 3359 0.66 50 x 1072
hBIND 136 2181 1818 3005 2725 0.60 —9.93x 1073
hMINT 109 1753 1446 3113 2896 0.67 —1.23x 10?2
WCore 58 1356 1218 1983 1902 0.61 —1.80x 1072

WZhSt 67 2254 2060 18185 18000 0.90 —1.21x 1072
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‘orig.n” and edges ‘orig.edge’ from the published networks were reduced to ‘red.n’ and ‘red.edge’,
corresponding to the largest subnetworks. The last two columns in 3adflew the decay parameter
Aper (Aiin are similar tolper) and log-likelihood ratid_..

We see from Table& that 11 of the 13 networks studied, including the high and high—-medium
confidence networks, have a negative likelihood ratio, indicating periodicity. Further, the values of the
ratio are comparable with those arising when we tested data generated from the pRDRG and RDRG
models.

To back up these results we now show some qualitative pictures. The yeast PPl network Y11000
consists of 11000 interactions between 2401 proteins. There are 103 subnetworks and the largest com-
ponent involves 2137 proteins and 10816 interactions. Note that by reducing the original network to
its largest subnetwork we removed only 264 proteins (11%) and 184 edges (1.7%).3ghmes the
adjacency matrices for linear and periodic spectral reorderings of these 2137 proteins. We see that the
periodic reordering places interactions (edges) into the off-diagonal corners, thereby reducing the en-
velope around the diagonal, relative to the linear version. This supports the negative likelihood ratio of
L =-1.39x 1072,

Figure4 shows linear and periodic reorderings of YItoCore. The largest component consists of 417
proteins (out of 786) and 511 interactions (reduced from 789). This network is very sparse, with less
than two edges per node on average. We obtained narrow envelopes with both reorderings; but in the
periodic case the interactions are more tightly arranged along the diagonal, and this is reflected in the
negative valug. = —2.83 x 1072,

Original Data i Periodic

1000

1500

2000

0 1000 2000 0 1000 2000 0 1000 2000

FIG. 3. Y11000—PPI network fromon Meringet al. (2002: 2137 proteins and 10816 interactions: original adjacency matrix,
the linear and periodic reorderings. The network is classified as periodic£1.39 x 1072 < 0).

Original Data Linear Periodic

100 100 100

200 200 200

3007 - 300 300

; 400 400 |

400 [ it T R
0 200 400 0 200 400 0 200 400

FiG. 4. YItoCore—PPI network fronito et al. (2000: 417 proteins and 511 interactions. The network is classified as periodic
(L =-283x10"2 < 0).
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Orlglnal Data Linear Periodic

500 500 | i£i% 500

b : Y, .
1000 o 1000 1000 : ¢
B =R

0 500 1000 0 500 1000 0 500 1000

FiG. 5. hStelzZlHML—PPI network fronStelzl et al. (2005: 1411 proteins and 2594 interactions. The network is classified as
linear L = 1.31 x 1073 > 0).

Original Data Linear Periodic

100 100 100 f-:

200 200 200, "

3003 i .- 300 B 300 ).- . .. - )
0 100 200 300 0 100 200 300 0 100 200 300

FiG. 6. hStelzZlIH—PPI network frortelzlet al. (2005: 314 proteins and 727 interactions. The network is classified as periodic
(L =-369x 1072 < 0).

The human PPI network of 1411 proteins and 2594 interactions at high, medium and low confidenc
level, hStelzlHML, is one of the two cases that were classified as linear rather than petiodic,
1.31 x 103 > 0. Figure5 illustrates the reorderings. We see that the periodic algorithm is not able
to place nonzeros in the off-diagonal corners and does not tighten the envelope around the dlagonﬁ\
However, the PPI network with only high confidence interactions (hStelzIH) was classified as periodic=
L = —3.69 x 1072 < O rather than linear; see Fi.

mun £qP2201 2/561/1/0€/01001B /R UlR OO dNO"DIWLIBPEDE//:SARY W01} POPEOUMOQ

6. Summary

ybinquip3 jo

Our aim here was to develop a new computational tool that finds an underlying periodic structure, if it 5
exists, in large, complex, sparse networks. The new algorithm allows for both qualitative plots of the re-g
ordered adjacency matrix and a quantitative likelihood ratio for linear versus periodic structure. Applied =
to protein interactions, the algorithm produced strong evidence of periodicity. We believe that this is a;°
promising approach for extracting meaning from complex networks, and in the context of bioinformat- §
ics it has the potential to reveal new insights concerning similarity between proteins and the nature of3

‘long-range’ and ‘short-range’ interactions, both of which could be followed up experimentally. =
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