
IMA Journal of Numerical Analysis(2010)30, 195−207
doi:10.1093/imanum/drp047
Advance Access publication on December 30, 2009

Periodic reordering

PETER GRINDROD

Department of Mathematics and Centre for Advanced Computing and Emerging
Technologies, University of Reading, Reading RG6 6AX, UK

AND

DESMOND J. HIGHAM† AND GABRIELA KALNA

Department of Mathematics and Statistics, University of Strathclyde, Glasgow G1 1XH, UK

[Received on 28 April 2008; revised on 9 November 2009]

Dedicated to the memory of A. R. Mitchell, 1921–2007.

For many networks in nature, science and technology, it is possible to order the nodes so that most
links are short-range, connecting near-neighbours, and relatively few long-range links, or shortcuts,
are present. Given a network as a set of observed links (interactions), the task of finding an ordering
of the nodes that reveals such a range-dependent structure is closely related to some sparse matrix
reordering problems arising in scientific computation. The spectral, or Fiedler vector, approach for
sparse matrix reordering has successfully been applied to biological data sets, revealing useful structures
and subpatterns. In this work we argue that a periodic analogue of the standard reordering task is also
highly relevant. Here, rather than encouraging nonzeros only to lie close to the diagonal of a suitably
ordered adjacency matrix, we also allow them to inhabit the off-diagonal corners. Indeed, for the classic
small-world model ofWatts & Strogatz(1998, Collective dynamics of ‘small-world’ networks.Nature,
393, 440–442) this type of periodic structure is inherent. We therefore devise and test a new spectral
algorithm for periodic reordering. By generalizing the range-dependent random graph class ofGrindrod
(2002, Range-dependent random graphs and their application to modeling large small-world proteome
datasets.Phys. Rev. E, 66, 066702-1–066702-7) to the periodic case, we can also construct a computable
likelihood ratio that suggests whether a given network is inherently linear or periodic. Tests on synthetic
data show that the new algorithm can detect periodic structure, even in the presence of noise. Further
experiments on real biological data sets then show that some networks are better regarded as periodic
than linear. Hence, we find both qualitative (reordered networks plots) and quantitative (likelihood ratios)
evidence of periodicity in biological networks.

1. Background

Large, sparse networks arise naturally when we describe the interconnectedness of components in com-
plex systems (Strogatz, 2001; Newman, 2003; Alon, 2006). The need to extract useful information
creates challenging computational problems that, at least in part, overlap with sparse linear algebra
tasks dealt with by numerical analysts. In this work we look at a matrix reordering problem that arises
naturally from recent work in network modelling and computational biology. The reordering comes
with a twist—a periodic analogue of the more usual ‘envelope reduction’ or ‘two-sum minimization’ is
required.
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196 P. GRINDRODET AL.

The presentation is organized as follows. In Section 2 we outline some recent random graph mod-
els that motivate the inverse problem. In Section3 we give a brief overview of the use of spectral
methods for graph reordering, based on the graph Laplacian. We then derive a spectral algorithm for
the periodic reordering problem and illustrate its use on specially constructed test data. In Section4
we show that, under the hypothesis that the data come from a random network class with range-
dependent edge probabilities, it is possible to compare the likelihoods of linear and periodic structure. In
Section5 we apply the algorithm to biological network data and, in some cases, find evidence of periodic
structure.

2. Network models

Classical random graph theory studies models where either (a) an edge is placed between a pair of nodes
with some fixed, independent, probability or (b) a graph with a specified number of nodes and edges
is chosen uniformly at random from the collection of all such graphs (Erdös & Rényi, 1959; Gilbert,
1959). Strogatz(2001) makes the point that networks in nature and technology neither look like classical
random graphs nor look like regular lattices.Watts & Strogatz(1998) proposed a new model that aimed
to capture this ‘between order and disorder’ appearance. Their model begins with a periodick-nearest
neighbour ring and proceeds byrewiring. Given some fixed probability,ρ say, we consider each edge
in turn, and with probabilityρ we exchange (rewire) one of its end nodes with a node chosen uniformly
across the network. The average degree thus remains constant.

In Newmanet al. (2000), instead of rewiring, the authors addedshortcutsto create a very similar
effect. For each node in turn, with some probabilityρ we insert a new edge that connects it to another
node chosen uniformly across the network. This construction has the benefit of guaranteeing to maintain
connectivity, though it increases the average degree.

Watts and Strogatz coined the termsmall-world networkto describe the seemingly unlikely combi-
nation of small typical pathlength (randomly chosen nodes can be connected by small chains of edges)
and high clustering coefficient (neighbours of neighbours tend to be neighbours). They showed via sim-
ulations that the rewired periodic ring has the small-world property for suitable values ofρ, and also
showed that many real-life networks are small worlds. Hence, the small-world model goes some way to
capturing an essential feature of complex networks.

Grindrod (2002) proposed a variation of the Watts–Strogatz and Watts–Newman–Moore models
called range-dependent random graphs (RDRGs;Higham, 2005). Here, shortcuts arise with a probability
that depends on the lattice distance between nodes, that is, therange. Grindrod argued that this type of
connectivity can be used to describe interactions between proteins. The model uses a linear, rather than
periodic, node ordering: this assumption was largely pragmatic, anticipating that the number of nodes
would be very large in applications.

DEFINITION 2.1 For a given decay function,f , that maps from{1, 2, . . . , N − 1} to [0, 1], the RDRG
model generates an edge between nodesi and j with independent probabilityf (| j − i |).

The case of geometric decay, wheref (k) = αλk−1 for constantsα, λ ∈ [0, 1], allows for ex-
plicit analysis (employing a generating function method) to calculate the clustering coefficient and
other macro properties of the network (Grindrod, 2002). Here we will focus on the case whereα =
λ and consider geometric decayf (k) = λk. An RDRG is illustrated in the upper left picture of
Fig. 1.

Given the inherent periodicity in the influential Watts–Strogatz model, it is natural to define a
periodic version of the RDRG model in the following manner.
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PERIODIC REORDERING 197

FIG. 1. Linear (RDRG) withN = 100 andλ = 0.9 (upper left) and its linear (lower left) and periodic (lower right) reorderings.
Scatter plots ofv[2] andv[3] (upper right).

DEFINITION 2.2 For a given decay function,f , that maps from{1, 2, . . . , N − 1} to [0, 1], the peri-
odic RDRG (pRDRG) model generates an edge between nodesi and j with independent probability
f (min{| j − i |, N − | j − i |}).

Here we have defined a pRDRG by using periodic lattice distance, or periodic range, in the decay
function, so, for example, nodes 1 andN are a unit distance apart; in the RDRG their separation distance
would beN − 1. The upper left picture in Fig.2 illustrates a pRDRG.

We will show that pRDRGs not only form a useful class of test networks but also can be used to
motivate a measure of periodicity.

3. Spectral reordering

In addition to proposing a model,Grindrod(2002) pointed out that there is, in practice, the need to solve
a related inverse problem.

In situations where edges represent observed interactions, they are typically presented in some con-
trived or an arbitrary order. So given such a data set, it is of interest to look for a new node ordering
that reveals a ‘regular lattice plus short cuts’ pattern. (This concept is illustrated on real biological data
in Section5.) This locates (near) cliques close together in the embedded lattice, allowing for some
long-range edges. The resultant ordering and the inferred interaction ‘ranges’ provide insight resulting
directly from the imposition of the RDRG structure on the data.
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198 P. GRINDRODET AL.

FIG. 2. Periodic (pRDRG), withN = 100 andλ = 0.9 (upper left) and its linear (lower left) and periodic (lower right) reorderings.
Scatter plots ofv[2] andv[3] (upper right).

To achieve this in the case of linear structure, Grindrod proposed a discrete reordering technique
that attempted to optimize a log-likelihood function (that given in (4.4) below), essentially tackling a
discrete optimization problem by genetic search.Higham(2003) showed that existing spectral reorder-
ing algorithms can be much quicker and more effective. We note that very similar aims arise in many
other application areas, including pattern recognition (Shi & Malik, 2000), data mining (Eldén, 2007),
high performance computing (Van Driessche & Roose, 1995) and sparse matrix computations (Duff
et al., 1986; Hu & Scott, 2003). In this work our aims are

1. to develop a spectral algorithm that reveals ‘regular lattice plus short cuts’ in the case where the
underlying regular lattice has a periodic, rather than linear, structure and

2. to devise a computational test that determines whether a network is inherently more linear or
periodic.

Suppose thatA = (ai j ) ∈ RN×N denotes the adjacency matrix for an unweighted, undirected graph
with N nodes; soai j = aji = 1 if nodesi and j share an edge andai j = aji = 0 otherwise. A
spectral reordering approach can be motivated by the idea of finding a permutation vectorp (a vector
containing each integer from 1 toN) so as to minimize the two-sum

∑N
i =1

∑N
j =1(pi − pj )

2ai j (Barnard
et al., 1995; Higham, 2003, 2005; Spenceet al., 2007; Strang, 2008; Van Driessche & Roose, 1995).
Here, we must seekp so that the edges tend to arise between nodes that are close in this new ordering.
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PERIODIC REORDERING 199

In matrix terms we require nonzeros to lie near the diagonal in the reordered adjacency matrix. This
discrete optimization problem is computationally intractable for large networks, but by relaxing to an
optimization over real-valued vectorsp ∈ RN and imposing suitable constraints, we obtain a quadratic
positive semidefinite problem that can be solved with an eigenvector. We could look for a periodic ver-
sion of the two-sum, such as

∑N
i =1

∑N
j =1(min(|pi − pj |, N −|pi − pj |))2ai j . Minimizing this quantity

would encourage nonzeros to lie either near the diagonal or close to the off-diagonal corners. How-
ever, the relaxed version is no longer in the form of a tractable quadratic variational problem. Instead
we will look for motivation from the Watts–Strogatz model (Watts & Strogatz, 1998), whosek-nearest
neighbour ring can be regarded as a one-dimensional structure embedded into two dimensions. We will
therefore look for a projection of the nodes intoR2 rather thanR1 and then infer a one-dimensional
ordering from the angular polar coordinate.

Spectral projection of the nodes into a low-dimensional space is itself a well-studied problem, with
many algorithmic variants (Alpert & Yao, 1995; Van Driessche & Roose, 1995; Shi & Malik, 2000;
Eldén, 2007; Skillicorn, 2007; Kalnaet al., 2008; Strang, 2008). Here we outline an approach based on
thenormalized Laplacianthat we have found to be useful. For more details the referenceKalnaet al.
(2008) covers projection into more than one dimension andHighamet al.(2007) looks at unnormalized
versus normalized Laplacians. Our starting point is to consider mapping thekth node into position
(xk, yk)

T ∈ R2 by solving the minimization problem

min
N∑

i =1

N∑

j =1

∥
∥
∥
∥

(
xi

yi

)
−
(

xj

yj

)∥∥
∥
∥

2

2

ai j ,

where‖ ∙ ‖ denotes the Euclidean vector norm. Here we are attempting to place nodes close together
if they are connected by an edge. Letx = (x1, . . . , xN)T andy = (y1, . . . , yN)T. Then our expression
may be rewritten as

min(xT(D − A)x + yT(D − A)y), (3.1)

whereD is theN × N diagonal matrix, diag(d1, . . . , dN), containing the vertex degreesdi =
∑N

j =1 ai j .

We let D
1
2 denote the corresponding half power ofD: diag

(
d

1
2
1 , . . . , d

1
2
N

)
. We also set1 ∈ RN to be the

vector with each component equal to one.
To avoid trivial solutions and redundancy we must add some constraints. First we must normalize

the vectorsx andy to keep them away from the origin. We impose

xT Dx = 1 and yT Dy = 1. (3.2)

Here scaling each component by the corresponding node degree has the effect of down-playing the
influence of highly connected nodes. Second we use

1T D
1
2 x = 0 and 1T D

1
2 y = 0 (3.3)

to ensure that the nodes are well spread, with the
√

di scaling forcing relatively well-connected nodes
to lie closer the origin.

It follows from standard linear algebra arguments, see, for example,Kalnaet al. (2008), that (3.1)

with (3.2) and (3.3) has solution given byx = D
1
2 v[2] andy = D

1
2 v[3] , where the normalized Lapla-

cian D− 1
2 (D − A)D− 1

2 has eigenvaluesλ1 6 λ2 6 ∙ ∙ ∙ 6 λN with corresponding eigenvectors
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200 P. GRINDRODET AL.

v[1], v[2], . . . , v[N] . By construction,λ1 = 0 andv[1] = D
1
2 1/‖D

1
2 1‖. The eigenvalues are bounded

above by 2 andλ2 > 0 if and only if the underlying network is connected (Van Driessche & Roose,
1995).

We may therefore summarize our new algorithm for computing a permutation vectorp that gives a
periodic reordering as follows.

Periodic Reordering Algorithm

1. Compute a subdominant eigenvector pairx := v[2] andy := v[3] for the normalized Laplacian

D− 1
2 (D − A)D− 1

2 .

2. Letθi = tan−1 (yi /xi ).

3. Construct a permutation vectorp according topi 6 pj ⇐⇒ θi 6 θ j .

For comparison a corresponding linear version (Van Driessche & Roose, 1995; Shi & Malik, 2000;
Highamet al., 2007; Skillicorn, 2007; Strang, 2008) could be written:

Linear Reordering Algorithm

1. Compute a subdominant eigenvectorx := v[2] .

2. Construct a permutation vectorp according topi 6 pj ⇐⇒ xi 6 xj .

These algorithms are illustrated in Figs1 and2. The upper left picture in Fig.1 shows an RDRG
with N = 100 andλ = 0.9. The upper right picture scatter plots the components ofv[2] andv[3] . It
is clear that the normalized Fiedler vector,v[2] , does a good job of uncovering the linear ordering and
v[3] can add nothing further. The lower left picture shows the matrix reordered according to the linear
reordering algorithm, and the linear range-dependent structure is apparent. The lower right picture shows
the result of the periodic reordering algorithm. In this case the algorithm has encouraged some nonzeros
into the off-diagonal corners, but we see an unnatural break in the node density as we look down the
diagonal.

We emphasize that in practice we would not expect to be given the matrix with the ‘correct’ ordering
shown in the upper left picture. Instead, the nodes would arrive in some arbitrary order (Grindrod, 2002;
Higham, 2003), and our task is to find the hidden structure. However,v[2] andv[3] are invariant under
reordering (which, of course, corresponds to a similarity transformation), and hence the algorithms
would perform exactly the same way if we started with any other node order.

In Fig.2 we change to a pRDRG. In this case it is clear that bothv[2] andv[3] carry useful reordering
information. The linear algorithm is forced to increase the spread of nonzeros, whereas the periodic
algorithm packs them tightly along the diagonal or in the off-diagonal corners.

4. Likelihood ratio

In Figs1 and2 it is visually obvious whether the graphs are inherently linear or periodic and whether
one algorithm is more appropriate than the other. For real networks, of course, the issue will not be so
clear cut. The idea in this section is to develop a test that gives a quantitative answer to the linear versus
periodic question. Such inference issues require assumptions to be made, either implicitly or explicitly
(Sivia, 2006), and we will start by assuming that the network comes from either one of the RDRG or
pRDRG classes, each with a geometric decay function. We note thatGrindrod(2002) used the RDRG
model in order to define an objective function that could be maximized over all possible orderings and
to find the most likely (linear) ordering under the hypothesis that the data come from that class. In our
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PERIODIC REORDERING 201

case the orderings arise from the two algorithms, corresponding to alternative hypotheses, in Section3,
and we compare

1. the likelihood of the linear ordering given that the data came from the RDRG class with geometric
decay and

2. the likelihood of the periodic ordering given that the data came from the pRDRG class with
geometric decay.

The first step is to fit the geometric decay rate,λ. We do this by matching the total number of edges
in the given network to the expected number of edges arising in the RDRG and pRDRG models. In the
RDRG case, the expected number of edges is

∑∑
j >i λ j −i , which has the analytic form

Nλ

1 − λ
−

λ(1 − λN)

(1 − λ)2
. (4.1)

In the pRDRG case, the expected number of edges,
∑∑

j >i λmin( j −i,N− j −i ), has the form

Nλ

1 − λ
−

Nλ(N+1)/2

1 − λ
(4.2)

whenN is odd and
Nλ

1 − λ
−

1 + λ

1 − λ

N

2
λN/2 (4.3)

when N is even. In each case a monotonically increasing scalar function inλ must be matched to the
given edge count, so it is a simple numerical task to produce the valuesλlin andλper for the linear and
periodic models, respectively.

Then for any reorderingi 7→ pi , the likelihood of this network arising for the RDRG model is

Llin(p) :=
∏

edgepi ↔pj

λ
|pi −pj |
lin

∏

no edgepi ↔pj

(1 − λ
|pi −pj |
lin ). (4.4)

Similarly, for any reorderingi 7→ pi , the likelihood of this network arising for the pRDRG model is

Lper(p) :=
∏

edgepi ↔pj

λ
min(|pi −pj |,N−|pi −pj |)
per

∏

no edgepi ↔pj

(1 − λ
min(|pi −pj |,N−|pi −pj |)
per ). (4.5)

Effectively, the algorithms from Section3 select suitable reorderings that are close to maximizing
Llin(p) andLper(p) independently. Lettingplin and pper denote the ordering arising from those linear
and periodic algorithms, respectively, thelog-likelihood ratio, L, is defined as

L =
2

N(N − 1)
log

(
Llin(plin)

Lper(pper)

)
, (4.6)

with a positive ratio indicating that the network is more likely to be linear and a negative ratio indicating
the opposite. Note that we normalize by the termN(N − 1)/2, representing the number of possible
edges, which corresponds to the number of factors within both (4.4) and (4.5): this allows us to contrast
results for different sized data sets (if we doubleN then we roughly quadruple the number of terms in
the sum that forms the log-likelihood ratio).
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202 P. GRINDRODET AL.

In Figs 1 and2 we generated RDRG and pRDRG instances withN = 100 andλ = 0.9. In the
RDRG case we foundλlin = 0.9004 andλper = 0.8908 from (4.1) and (4.2), respectively. Sinceλlin is
the closer toλ = 0.9 and the likelihood ratioL = 1.75×10−2 is positive, we conclude that the network
is more likely to be linear. In the pRDRG caseλlin = 0.9091 andλper = 0.8994. Hereλper is closest
and the negative likelihood ratio ofL = −1.37× 10−1 supports the hypothesis that the network is more
likely to be periodic.

To test the likelihood ratio further, in Tables1and2we summarize the results of a larger scale experi-
ment. Further tests of a more statistical nature are presented inGrindrodet al.(2008). Here we generated
instances of RDRG and pRDRG linear and periodic networks and tested whether the likelihood ratio
correctly identified the appropriate structure. We used dimensionsN = 100, 200, 500, 1000, 2000 and a
range ofλ values in the interval [0.6, 1); smaller values ofλ produce unreasonably sparse networks—at
λ = 0.6 the leading termNλ/(1 − λ) in (4.1)–(4.3) indicates an average of only 1.5 edges per node.
Each entry records the frequency of successful predictions over 1000 instances of the random graph. We
see that the performance is perfect over a large range of parameter values and generally worsens as we
increaseN for a fixedλ and generally improves as we increaseλ for a fixedN. This is consistent with
the fact that decreasing the sparsity provides more information to the algorithm; the same argument ac-
counts for the slightly improved performance on periodic networks in Table2 over linear in Table1. Of
course, at the extreme case ofλ = 1 all graphs are completely full and hence there can be no meaningful
distinction, which explains the poor performance forλ = 0.999 and smallN.

TABLE 1 Linear RDRD networks: frequency with which the likelihood ratio correctly
predicted that the network is linear rather thanperiodic

N
λ 100 200 500 1000 2000
0.6 0.544 0.570 0.532 0.487 0.541
0.7 0.898 0.904 0.886 0.860 0.763
0.8 0.964 0.997 1 1 1
0.9 0.993 1 1 1 1
0.95 1 1 1 1 1
0.99 0.995 1 1 1 1
0.999 0.025 0.184 1 1 1

TABLE 2 pRDRG networks: frequency with which the likelihood ratio correctly predicted
that the network is periodic rather thanlinear

N
λ 100 200 500 1000 2000
0.6 0.610 0.491 0.466 0.513 0.479
0.7 0.986 0.987 0.956 0.929 0.756
0.8 1 1 1 1 1
0.9 1 1 1 1 1
0.95 1 1 1 1 1
0.99 1 1 1 1 1
0.999 0.718 1 1 1 1
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PERIODIC REORDERING 203

Overall, Tables1 and2 give us some confidence that the biological data sets to be studied in Section
5 are amenable to analysis.

5. Biological data sets

Existing and improving high-throughput technologies in experimental biology produce large-scale data
that are often represented by networks. In protein–protein interaction (PPI) networks, nodes stand for
proteins and edges between pairs of nodes indicate that, according to the results of an experiment, those
proteins interact. We applied the linear and periodic spectral reordering algorithms to publicly available
PPI networks to test whether periodic structure is present in real-world networks and, consequently,
close and long-distance neighbours can be better differentiated with the new algorithm.

We analysed 13 PPI networks of three different eukaryotic organisms: yeast, worm and human.
Two yeast PPI networks are described invon Meringet al. (2002): a network defined by the top 11000
interactions (denoted Y11000 in Table3) and its high confidence part (Y2455). Here an increase in
confidence corresponds to keeping only those links that are consistent with other sources of biological
data, so higher confidence networks have fewer edges and should contain fewer false positives. A further
three yeast PPI networks are the ‘core’ fromIto et al. (2000), the network fromUetzet al. (2000) and
the union of both, denoted YItoCore, YUetz and YItoCoreUetz, respectively.

Human PPI networks used in our experiments include three networks of different confidence level:
high (hStelzlH), high and medium (hStelzlHM) and high, medium and low (hStelzlHML) fromStelzl
et al. (2005) and a network fromRualet al. (2005) (hRual). A further two networks were downloaded
from databases BIND and MINT (Zanzoniet al., 2002; Baderet al., 2003) (hBIND and hMINT). Finally,
two worm PPI networks were tested: WCore denotes the wormClostridium elegans‘core’ PPI network
(Li et al., 2004) and WZhSt denotes the worm PPI network fromZhong & Sternberg(2006).

Note that PPI networks generally consist of a set of disconnected components orsubnetworks. It is
known that if a network hask subnetworks then the lowestk eigenvalues of the Laplacian (or normalized
Laplacian) matrix are zero (Ding et al., 2001). The total number of subnetworks is shown as ‘sub’ in
Table3. In each case we studied the largest connected subnetwork. Thus, the original number of proteins

TABLE 3 Linear versus period reordering for PPI datasets

PPI sub orig.n red.n orig.edge red.edge λper L

Y11000 103 2401 2137 11000 10816 0.84 −1.39× 10−2

Y2455 132 988 573 2455 2097 0.79 −1.25× 10−2

YItoCore 132 786 417 789 511 0.55 −2.83× 10−2

YUetz 163 991 473 915 543 0.53 −1.23× 10−2

YItoCoreUetz 160 1417 970 1520 1229 0.56 −9.03× 10−3

hStelzlH 22 363 314 756 727 0.70 −3.69× 10−2

hStelzlHM 34 1159 1076 2167 2116 0.66 −5.62× 10−4

hStelzlHML 47 1529 1411 2667 2594 0.65 1.31× 10−3

hRual 84 1873 1686 3463 3359 0.66 1.50× 10−2

hBIND 136 2181 1818 3005 2725 0.60 −9.93× 10−3

hMINT 109 1753 1446 3113 2896 0.67 −1.23× 10−2

WCore 58 1356 1218 1983 1902 0.61 −1.80× 10−2

WZhSt 67 2254 2060 18185 18000 0.90 −1.21× 10−2
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204 P. GRINDRODET AL.

‘orig.n’ and edges ‘orig.edge’ from the published networks were reduced to ‘red.n’ and ‘red.edge’,
corresponding to the largest subnetworks. The last two columns in Table3 show the decay parameter
λper (λlin are similar toλper) and log-likelihood ratioL.

We see from Table3 that 11 of the 13 networks studied, including the high and high–medium
confidence networks, have a negative likelihood ratio, indicating periodicity. Further, the values of the
ratio are comparable with those arising when we tested data generated from the pRDRG and RDRG
models.

To back up these results we now show some qualitative pictures. The yeast PPI network Y11000
consists of 11000 interactions between 2401 proteins. There are 103 subnetworks and the largest com-
ponent involves 2137 proteins and 10816 interactions. Note that by reducing the original network to
its largest subnetwork we removed only 264 proteins (11%) and 184 edges (1.7%). Figure3 shows the
adjacency matrices for linear and periodic spectral reorderings of these 2137 proteins. We see that the
periodic reordering places interactions (edges) into the off-diagonal corners, thereby reducing the en-
velope around the diagonal, relative to the linear version. This supports the negative likelihood ratio of
L = −1.39× 10−2.

Figure4 shows linear and periodic reorderings of YItoCore. The largest component consists of 417
proteins (out of 786) and 511 interactions (reduced from 789). This network is very sparse, with less
than two edges per node on average. We obtained narrow envelopes with both reorderings; but in the
periodic case the interactions are more tightly arranged along the diagonal, and this is reflected in the
negative valueL = −2.83× 10−2.

FIG. 3. Y11000—PPI network fromvon Meringet al. (2002): 2137 proteins and 10816 interactions: original adjacency matrix,
the linear and periodic reorderings. The network is classified as periodic (L = −1.39× 10−2 < 0).

FIG. 4. YItoCore—PPI network fromIto et al. (2000): 417 proteins and 511 interactions. The network is classified as periodic
(L = −2.83× 10−2 < 0).
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PERIODIC REORDERING 205

FIG. 5. hStelzlHML—PPI network fromStelzl et al. (2005): 1411 proteins and 2594 interactions. The network is classified as
linear (L = 1.31× 10−3 > 0).

FIG. 6. hStelzlH—PPI network fromStelzlet al. (2005): 314 proteins and 727 interactions. The network is classified as periodic
(L = −3.69× 10−2 < 0).

The human PPI network of 1411 proteins and 2594 interactions at high, medium and low confidence
level, hStelzlHML, is one of the two cases that were classified as linear rather than periodic,L =
1.31 × 10−3 > 0. Figure5 illustrates the reorderings. We see that the periodic algorithm is not able
to place nonzeros in the off-diagonal corners and does not tighten the envelope around the diagonal.
However, the PPI network with only high confidence interactions (hStelzlH) was classified as periodic
L = −3.69× 10−2 < 0 rather than linear; see Fig.6.

6. Summary

Our aim here was to develop a new computational tool that finds an underlying periodic structure, if it
exists, in large, complex, sparse networks. The new algorithm allows for both qualitative plots of the re-
ordered adjacency matrix and a quantitative likelihood ratio for linear versus periodic structure. Applied
to protein interactions, the algorithm produced strong evidence of periodicity. We believe that this is a
promising approach for extracting meaning from complex networks, and in the context of bioinformat-
ics it has the potential to reveal new insights concerning similarity between proteins and the nature of
‘long-range’ and ‘short-range’ interactions, both of which could be followed up experimentally.
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