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10.1 By definition,

F ′(x) = lim
δ→0

F (x + δ) − F (x)

δ

so F (x + δ) ≈ F (x) + δF ′(x) for |δ| small.

[If F ∈ C2 we can write F (x + δ) = F (x) + δF ′(x) + O(δ2), from a Taylor
series expansion.]

This relation tells us that if we change x by a small amount, δ, then F
changes by an amount δF ′(x). So F ′(x) measures how much a change in x
is amplified or diminished to become a change in F .

10.3 We have

Θ =
∂C

∂t

= SN ′(d1)
∂d1

∂t
− Ere−r(T−t)N(d2) − Ee−r(T−t)N ′(d2)

∂d2

∂t
.

Using
∂d1

∂t
=

∂d2

∂t
− 1

2

σ√
T − t

(from (8.22)) and the identity (10.1), we find

Θ = −Er e−r(T−t)N(d2) −
SN ′(d1)σ

2
√

T − t
,

as required.

Now

vega =
∂C

∂σ
= SN ′(d1)

∂d1

∂σ
− Ee−r(T−t)N ′(d2)

∂d2

∂σ
.

Using
∂d1

∂σ
=

∂d2

∂σ
+
√

T − t (from (8.22)) and the identity (10.1), we find

vega = SN ′(d1)
√

T − t,

as required.
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10.5 In Section 2.6 we saw that C is always a non-decreasing function of T .
This means that ∂C/∂T ≥ 0. But in the Black–Scholes expression for
C(S, t), the parameter T always appears in the form T −t. Hence, ∂C/∂t =
−∂C/∂T , and we deduce that ∂C/∂t ≤ 0.

10.7 The put-call parity relation (8.23) says P = C − S + Ee−r(T−t).

So
∂P

∂S
=

∂C

∂S
− 1 = N(d1) − 1.

(We could also write
∂P

∂S
= −N(−d1), since N(−z) = 1 − N(z) for all z.)

Further,
∂2P

∂S2
=

∂2C

∂S2
=

N ′(d1)

Sσ
√

T − t
,

and

∂P

∂r
=

∂C

∂r
− (T − t)Ee−r(T−t)

= (T − t)Ee−r(T−t)N(d2) − (T − t)Ee−r(T−t)

= (T − t)Ee−r(T−t)[N(d2) − 1]

= −(T − t)Ee−r(T−t)N(−d2),

and

∂P

∂t
=

∂C

∂t
+ Er e−r(T−t)

=
−Sσ

2
√

T − t
N ′(d1) − rEe−r(T−t)N(d2) + Ere−r(T−t)

=
−Sσ N ′(d1)

2
√

T − t
+ rEe−r(T−t)[1 − N(d2)]

=
−Sσ N ′(d1)

2
√

T − t
+ rEe−r(T−t)N(−d2),

and
∂P

∂σ
=

∂C

∂σ
= SN ′(d1)

√
T − t,

and

∂P

∂E
=

∂C

∂E
+ e−r(T−t) = e−r(T−t)[1 − N(d2)] = e−r(T−t)N(−d2).

We have
∂P

∂S
< 0. This makes sense, because an increase in asset price

decreases the likely payoff.
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We have
∂P

∂r
< 0. Increasing the interest rate, r, is equivalent to lowering

the exercise price, E, This decreases the likely payoff.

We have
∂P

σ
> 0. This can be understood by considering that an increase

in volatility leads to a wider spread of asset prices. However, assets moving
deeper out of the money have no effect on the option price (the payoff
remains zero) while assets moving deeper into the money lead to a greater
payoff. Because of this asymmetry, increasing σ has a net positive effect.

We have
∂P

E
> 0. This is reasonable because increasing E increases the

likely payoff.

We have
∂P

∂t
= −SN ′(d1)σ

2
√

T − t
+ rEe−r(T−t)N(−d2).

First term is ≤ 0 and second term is ≥ 0. Overall sign may be positive or
negative, e.g.

• if log(S/E) = 0 , r = 0, σ = 1, T − t = 1, then d1 > 0 and we get
∂P/∂t < 0.

• if log(S/E) = −1 , r = 1, T − t = 1, and σ is very small, then we get
d2 ≈ 0 and ∂P/∂t > 0.

More specifically,

• S = E = 1 , r = 0, σ = 1, T − t = 1 gives d1 = 1

2
, so N ′(d1) =

e−1/8/
√

2π and
∂P

∂t
=

−1e−1/8

2
√

2π
< 0.

• E = 1, S = e−1 , r = 1, T − t = 1 gives d2 = − 1

2
σ. Choosing σ ≈ 0

we can make N(−d2) ≥ 1

4
, so

∂P

∂t
= 1e−1N(−d2) ≥

e−1

4
> 0.

Finally, check the Black–Scholes PDE:

∂C

∂t
+ 1

2
σ2S2∂2C

∂S2
+ rS

∂C

∂S
− rV =

−Sσ N ′(d1)

2
√

T − t
+ rEe−r(T−t)N(−d2) + 1

2

SσN ′(d1)√
T − t

+ rS(N(d1) − 1) − r
(

Ee−r(T−t)N(−d2) − SN(−d1)
)

= 0.
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