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11.1 The explanation is not valid. For example, the hockey stick result holds
when µ < 0 but the ‘explanation’ does not work in this case.

11.3 We have
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Also,
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Then, using (8.19), and noting that e−m = e−r(T−t)E/S,
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and
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11.5 Replacing σ by −σ changes d1 to −d1 and d2 to −d2. Hence, N(d1) becomes
1−N(d1) and N(d2) becomes 1−N(d2), and the result follows immediately.
(Note that the relation does not hold if we write
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