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14.1 We know that o has a turning point when 507 = 0. Using (14.4), this
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gives dy = 0 or do = 0. Now, using % = ——2 and the analogous identity
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% = —é, we have, from (14.4),
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Since — > 0 it follows that — < 0 at d; = 0 and at dy = 0.
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Hence d; = 0 and dy = 0 give max. values.
log(S/E) +r(T —t)
T—1t '

Solving d; = 0 for o gives 02 = —2 [

log(S/E) 4+ r(T — t)} .

Solving dy = 0 for o gives 02 = 2 { T
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Since 02 > 0, we conclude that 2 has a unique max. over (0, c0) given by
o
o =0 in (10).

14.3 We have ¢ > ¢* and (for oy = 0)

oy —0"

0< < 1.

og—O0*
This tells us that og > o1 > o*.

Now, we know that F”(c) > 0 for all 0 < 09 = 7, hence 0 < F'(&) <
F'(o1). (It might help to draw a picture.)
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So, in (14.8),

o9 — 0

0< < 1.

o1 —o0*

The same argument now applies for n = 2,3, ... and hence (14.10) holds.



