Chapter Fourteen. Implied volatility

Outline Solutions to odd-numbered exercises from the book:

An Introduction to Financial Option Valuation:

Mathematics, Stochastics and Computation,

by Desmond J. Higham, Cambridge University Press, 2004

ISBN 0521 83884 3 (hardback)

ISBN 0521 54757 1 (paperback)

This document is © D.J. Higham, 2004

14.1 We know that $\frac{\partial C}{\partial \sigma}$ has a turning point when $\frac{\partial^2 C}{\partial \sigma^2} = 0$. Using (14.4), this gives $d_1 = 0$ or $d_2 = 0$. Now, using $\frac{\partial d_1}{\partial \sigma} = -\frac{d_2}{\sigma}$ and the analogous identity $\frac{\partial d_2}{\partial \sigma} = -\frac{d_1}{\sigma}$, we have, from (14.4),

$$\frac{\partial^{3}C}{\partial \sigma^{3}} = \frac{\partial d_{1}}{\partial \sigma} \frac{d_{2}}{\sigma} \frac{\partial C}{\partial \sigma} + \frac{\partial d_{2}}{\partial \sigma} \frac{d_{1}}{\sigma} \frac{\partial C}{\partial \sigma} + \frac{d_{1} d_{2}}{\sigma} \frac{\partial^{2}C}{\partial \sigma^{2}} - \frac{d_{1} d_{2}}{\sigma^{2}} \frac{\partial C}{\partial \sigma}$$
$$= -\frac{d_{2}^{2}}{\sigma} \frac{\partial C}{\partial \sigma} - \frac{d_{1}^{2}}{\sigma} \frac{\partial C}{\partial \sigma} + \frac{d_{1} d_{2}}{\sigma} \frac{\partial^{2}C}{\partial \sigma^{2}} - \frac{d_{1} d_{2}}{\sigma^{2}} \frac{\partial C}{\partial \sigma}.$$

Since $\frac{\partial C}{\partial \sigma} > 0$ it follows that $\frac{\partial^3 C}{\partial \sigma^3} < 0$ at $d_1 = 0$ and at $d_2 = 0$.

Hence $d_1 = 0$ and $d_2 = 0$ give max. values.

Solving
$$d_1 = 0$$
 for σ gives $\sigma^2 = -2 \left[\frac{\log(S/E) + r(T-t)}{T-t} \right]$.

Solving
$$d_2 = 0$$
 for σ gives $\sigma^2 = 2 \left[\frac{\log(S/E) + r(T-t)}{T-t} \right]$.

Since $\sigma^2 \geq 0$, we conclude that $\frac{\partial C}{\partial \sigma}$ has a unique max. over $(0, \infty)$ given by $\sigma = \hat{\sigma}$ in (10).

14.3 We have $\widehat{\sigma} > \sigma^*$ and (for $\sigma_0 = \widehat{\sigma}$)

$$0 < \frac{\sigma_1 - \sigma^*}{\sigma_0 - \sigma^*} < 1.$$

This tells us that $\sigma_0 > \sigma_1 > \sigma^*$.

Now, we know that $F''(\sigma) > 0$ for all $\sigma < \sigma_0 = \widehat{\sigma}$, hence $0 < F'(\xi_1) < F'(\sigma_1)$. (It might help to draw a picture.)

$$0 < \frac{\sigma_2 - \sigma^*}{\sigma_1 - \sigma^*} < 1.$$

The same argument now applies for $n=2,3,\ldots$ and hence (14.10) holds.