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24.1 General equation of (23.9) for this F and p’ is
Ut = (1 —rk)U; + 1ko®(7°) {Uj,y —2U; + Uj_y } + 1krj {Ul,; — Ui},

which rearranges to
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So (24.6) is reproduced. The boundary conditions are dealt with correctly,

because 4 4 4 .
ph = ko’ (1P UG — skr(1)Us = k(o® —r)U;

and

Py, -1 = $ko?(No=1)*)Uy, +kr(No—1)Uy, = $k(No—1)(0*(No—1)+7)U, .
General equation of (23.11) for this B is

Uy rkUst —1ko® (5%) {U T — 20 + U =1k {USE = UL} = U,
which rearranges to
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So (24.6) is reproduced. The boundary conditions are dealt with correctly,
because

gy = tko? (UG = thr(HUGH = 3k(0® — r)UgH!
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and

div,—1 = tho*(No=1))UR - 3kr(No—DUR! = 3k(No=1)(0* (Noe—=1)+r) U



24.3 The FTCS form (23.9) applies with

F = (1—rk)I+ ko®DyTy + krDy Ty,
where ) )
B0 L 0
B+2h
~ 0 == 0
— : B+3h
D, = : 0 J}rl
: 0
B+(Ny—1)h
0 0 )b ]
and Dy = D?, with
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Similarly, the BTCS form (23.11) applies with

B = (1+rk)] — tko®DyTy — tkrDy T,
and _
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Crank-Nicolson is then given by (24.8).

24.5 Repeating the analysis that leads to (23.17), we simply need to re-define
v = k/h?® to v = lo?k/h%* So (23.17) becomes 1o%k/h? < 1, that is,
o’k < h.



