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6.1 Using
S(ti+1) = S(ti) + µδtS(ti) + σδtYiS(ti)

we find that (6.4) changes to

log

(

S(t)

S0

)

≈
L−1
∑

i=0

(µδt + σδtYi).

The RHS is a sum of i.d.d. normal random variables with mean µδt and
variance σ2δt2. Hence, using the result mentioned on page 26 (item (iii)
in the list), the sum is a normal random variable with mean Lµδt = µt
and variance Lσ2δt2 = σ2tδt. Because the variance is tiny, this looks like
a non-random quantity. As δt → 0 (i.e. L → ∞) the model looks like
log(S(t)/S0) = µt, that is,

S(t) = S0e
µt.

In other words, we are not adding enough randomness to the model, and
hence we get back the deterministic behaviour that we had for the interest
rate.

On the other hand, using

S(ti+1) = S(ti) + µδtS(ti) + σδt
1
4YiS(ti)

we find that (6.4) changes to (keeping only the term that looks biggest)

log

(

S(t)

S0

)

≈
L−1
∑

i=0

σδt
1
4 Yi.

The RHS is a sum of i.d.d. normal random variables with variance σ2δt
1
2 .

Using the result mentined above, the sum must look like a normal random

variable with variance Lσ2δt
1
2 = σ2t/

√
δt. This variance blows up as δt →

0, so we do not expect a well-defined continuous model. Intuitively, we are
adding too much randomness to the model: in the δt → 0 limit the noise is
swamping the behaviour.
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6.3 One explanation is that because Yi is normal with zero mean, the probability
that σ

√
δtYi lies in some interval [a, b] is the same as the probability that

−
√

δtσYi lies in that interval.

6.5 Using the fact that Z ∼ N(0, 1), we get

P (a ≤ S(t) ≤ b) = P

(

a ≤ S0e
(µ− 1

2
σ2)t+σ

√
tZ ≤ b

)

= P

(

log(a/S0) − (µ − 1
2
σ2)t

σ
√

t
≤ Z ≤ log(b/S0) − (µ − 1

2
σ2)t

σ
√

t

)

=
1√
2π

∫

log(b/S0)−(µ−
1
2

σ2)t

σ
√

t

log(a/S0)−(µ−
1
2

σ2)t

σ
√

t

e−
1
2
s2

ds

Now the subs. x = S0e
σ
√

ts+(µ− 1
2
σ2)t converts the integral to

1√
2π

∫ b

a

e
− 1

2

 

log(x/S0)−(µ−
1
2

σ2)t

σ
√

t

!2

xσ
√

t
dy

and we deduce that the required density function f(x) for x > 0 must be

f(x) =
exp

(

−(log(x/S0)−(µ−σ2/2)t)2

2σ2t

)

xσ
√

2πt
.

6.7 We have
∫ α

−α

1√
2π

e−
1
2
s2

ds = 0.95.

Hence,

∫ −α

−∞

1√
2π

e−
1
2
s2

ds +

∫ ∞

α

1√
2π

e−
1
2
s2

ds = 1 − 0.95 = 0.05.

The two integrals on the LHS are equal, so

∫ −α

−∞

1√
2π

e−
1
2
s2

ds =
0.05

2
,

i.e., N(−α) = 0.05/2. The idea used to solve Exercise 13.3 shows that
α =

√
2 erfinv(0.95).

6.9 If Z ∼ N(0, 1) then

P(−1.96 ≤ Z ≤ 1.96) = 0.95.
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Hence,

P(−1.96 ≤ log(S(t)/S0) − (µ − 1
2
σ2)t

σ
√

t
≤ 1.96) = 0.95.

So
P(S0e

−1.96σ
√

t+(µ− 1
2
σ2)t ≤ S(t) ≤ S0e

1.96σ
√

t+(µ− 1
2
σ2)t) = 0.95.

Hence,

[S0e
−1.96σ

√
t+(µ− 1

2
σ2)t, S0e

1.96σ
√

t+(µ− 1
2
σ2)t]

is a 95% confidence interval for S(t).
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