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QUANTUM CHARACTER VARIETIES AND MORITA THEORY FOR
BRAIDED TENSOR CATEGORIES

DAVID JORDAN

Abstract. In these lectures we review the Morita (i.e. representation) theory of tensor
and braided tensor categories, and discuss applications to topological field theory.

[These are the drafts as I go, they have not been proof-read or finalized. Most notably,
the bibliography will be filled in later. Some of the more technical/standard exposition is
lifted directly from various of my joint papers.]
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1. Lecture I: Overview

The goal of these lecture notes is to give an informal exposition of a number of recent
applications of “higher Morita theory” – i.e. the representation theory of presentable lin-
ear, tensor, and braided tensor categories – to low-dimensional topology. The bridges to
topology are the twin frameworks of fully local (a.k.a) fully extended topological field theory
(in dimension 2, 3, and 4), and of factorization homology (in these lectures specialized to
dimension 2). There is much more than can be said on this topic in these lectures, so we
will address the topology setup and its applications during the first lecture, in as colloquial
a manner as possible, and spend the second and third lectures on the development of both
foundational and computational tools for working with higher Morita theory.

In the direction of topology, we will cover: factorization homology, and the construction
of classical and quantized character varieties, the notion of fully extended topological field
theories, higher dualizability and the cobordism hypothesis.

In the direction of higher Morita theory, we will cover: the notion of locally presentable
categories, tensor and braided tensor categories; modules and bimodule categories, central
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tensor categories, relative tensor products, monadic reconstruction results; the Morita 3-
category of tensor categories

1.1. Classical character varieties and character stacks. Fix a compact, oriented topo-
logical surface Σ, with or without boundary. Hence, Σ is homeomorphic to Σg,r, the standard
surface of genus g and with r disks removed – however we do not fix such a homeomorphism.
Fix also a reductive group G, with a choice of Killing form (i.e, a non-degenerate, G-invariant
bilinear pairing) κg⊗ g→ C. The theory is already sufficiently rich in the case of G = SL2.

Associated to the data of Σ and G we have the character variety :

ChG(Σ) := {ρ : π1(Σ)→ G}/G,
∼= {G-local systems on Σ}/iso.

where, we recall that a G-local system is a principle G bundle E with a flat connection
∇ ∈ Ω(Σ, ad(E)). The equivalence between the two definitions is by taking monodrmies of
the connection (at a fixed base-point. We will need to more carefully distinguish between the
moduli stack, and the quotient variety; along the way we will recall an explicit presentation
of both moduli spaces.

Suppose that Σ has at least one boundary component, and choose the basepoint p ∈ Σ
lying on that component. Then the framed (a.k.a. gauge-fixed) moduli space is:

ChfrG (Σ) = {ρ : π1(Σ)→ G},
∼= {G-local systems on Σ, with a trivialization Ep ∼= G.}/iso.

Recall that π1(Σ) is a free group of rank 2g + r − 1, hence we have ChfrG (Σ) ∼= G2g+r−1 =
Spec(Og,r), the affine algebraic variety with coordinate algebra,

Og,r = O(G)⊗ · · · ⊗ O(G)︸ ︷︷ ︸
2g+r−1

.

We note that the natural G-action on ChfrG by conjugation induces the structure of a G-
module on Og,r. By definition, the character variety is Spec(OGg,r), the affine algebraic
vareity with coordinate algebra the subalgebra of G-invariant functions in Og,r. As we
will see throughout these lectures, this variety loses too much information, and should be
replaced by the character stack 1. This simply means that instead of studying modules for the
invariant algebra, we study “equivariant modules” M for Og,r, i.e. M is a G-representation,
and an Og,r-module, and the multiplication map Og,r ⊗ M → M is a homomorphism of
G-representations. In the sheaf-theoretic language of algebraic geometry, we have:

QC(ChfrG (Σ))
=O(G)g,r−mod

QC(ChG(Σ))
=Og,r−modRep G Invar.

((

Forget 66

,

QC(ChG(Σ))
=OG

g,r−mod.

1We do not assume any familiarity with formalism of stacks, and will develop the very few ideas we need as
we go.
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Hence, we use ChG(Σ) to denote the quotient variety, and ChG(Σ) to denote the stack.

1.1.1. Why stacks? Character varieties, while the most elementary to define, are deficient
in a few ways. The moduli problem defined by studying G-local systems is, in some precise
sense smooth – one way to say this is that the universal classifying space BG is a smooth
(2-shifted) symplectic stack. This means that when treated carefully (suitably stacky and
suitably derived), character stacks may be considered also to be smooth, and they enjoy
the abstract properties of smooth varieties. By contrast, character varieties are singular in
even very simple cases, and these singularities can be traced directly to careless treatment
of self-intersections, and of stabilizers.

Exercise 1.1. Let G = SL2. Show that

ChfrG (S1 × I) = G, ChG(S1 × I) = C×/(Z/2Z) = C

ChfrG (T 2) = {(A,B) ∈ G×G | AB = BA}, ChG(T 2) = (C× × C×)/(Z/2),

and show that the latter variety is singular at the points (±1,±1). Hints: use the presentation
of π1 ine each case, and for ChG use (generic) diagonalizability of matrices, and (generic)
simultaneous diagonalizability of commuting matrices.

More pragmatically, we will see in these lectures that character stacks (and their quanti-
zations):

(1) contain strictly more information than character varieties (and their quantizations),
yet

(2) are easier to compute with algebraically, and
(3) define a fully local topological field theory, and most importantly
(4) involve beautiful instances of higher algebra.

1.2. Atiyah-Bott/Goldman Poisson bracket. All three versions of the moduli space
carry a fundamentally important Poisson bracket, constructed independently by Atiyah-
Bott (in differential/G-local systems terms), and by Goldman (in more algebraic terms),
and subsequently reformulated by Fock-Rosly (in representation-theoretic terms). Recall
that a Poisson bracket on an affine variety X is a Lie bracket {, } on O(X), such that
f 7→ {f,−} defines a Lie algebra homomorphism to vector fields on X.

The basic ingredients of each construction is the same:

(1) The Poincare pairing on first cohomology of Σ, and
(2) The Killing form on g = Lie(G).

To give a brief idea: in case Σ is closed, the Atiyah-Bott construction begins by identifying
TEChG(Σ) = Ω1(Σ, ad E). The Poisson bracket is given instead in terms of a symplectic
pairing via the composition,

Ω1(Σ, ad E)⊗ Ω1(Σ, ad E)
∧−→ Ω2(Σ, ad E)

κ−→ Ω2(Σ,C)

∫
Σ−→ C.

That is, we use wedge product on differential forms then the Killing form, and then inte-
gration over the surface, to define the symplectic pairing, hence upon dualizing, the Poisson
bivector.

By contrast, Goldman’s construction relies on group cohomology of π1(Σ) for punctured
surface, and was completed by Alekseev-Malkin-Meinrenken for closed surfaces using “group-
valued Hamiltonian reduction”. Meanwhile Fock-Rosly present the Poisson bracket on ex-
plicitly using classical r-matrices, given a “ribbon graph” decomposition of Σ (more on this
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later). At the level of character varieties, the Poisson bracket can be described using graph-
ical calculus of G-colored ribbons, as was shown by Turaev (G = SL2, and Roche-Szenes
(general G).

The Poisson brackets so constructed are natural in a very strong sense: they pushforward
under embeddings of surfaces. When the surface is closed, the Poisson bracket is non-
degenerate; given a 3-manifold M with ∂M = Σ, ChG(M) defines a Lagrangian inside of
ChG(Σ).

1.3. A tale of three quantizations. Suppose thatA is an algebra (typically non-commutative)
defined over formal power series C[[~]], that A is in fact free as a C[[~]]-module, and that
upon setting ~ = 0 the algebra A0 = A⊗C[[~]] C becomes commutative. Then we may define,
for a, b ∈ A0 the Poisson bracket,

{a, b} =
ãb̃− b̃ã

~
mod ~,

where x̃ denotes an aribitrary lift of x to A (it is an exercise to see the Poisson bracket is
independent of this choice).

We say in this case that A is a deformation quantization of A0 with its Poisson bracket,
and we say that A0 is a degeneration of A. We note that degenerations are unique, but
deformation quantizations are not at all so. An important problem, the subject of these
lectures, is to give a deformation quantization which enjoys all the naturality of ChG(Σ).
Such quantizations feature in the quantum geometric Langlands, hence by Kapustin-Witten’s
construction, to quantization of N = 4, d = 4 super Yang-Mills theory, and more directly to
the Chern-Simons theory of knots and 3-manifolds, and as we shall see to the Crane-Yetter-
Kauffman invariants of 3- and 4-manifolds.

Let us review here three distinct mechanisms for constructing such deformation quantiza-
tions which have appeared in the literature in the past 25 years, and compare and constrast
their pro’s and con’s.

1.3.1. Skein modules, skein algebras, and skein categories. Recall that many knot
invariants such as the Alexander and Jones polynomials, as well as the Kauffmann and
Homflypt polynomials which refine them, are defined using “skein relations”. For example,
the Kauffmann polynomial satisfies the relations〈

L ∪
〉

= (−A2 − A−2)〈L〉,
〈 〉

= A
〈 〉

+ A−1
〈 〉

,

which hold for any link K ⊂ S3, and the equations indicate that the involved links are
identical outside the depicted ball, and differ as indicated within it. We can rephrase this by
defining the skein module, SkMod(S3) to be the vector space formally spanned by all links
in S3, modulo isotopy and the linear relations (and their variants for the other polynomials).
In these terms, we have that SkMod(S3) = C[A,A−1], which implies at once that we can
reduce an arbitrary knot to a multiple of the unknot (because the skein module is at most
one-dimensional), and that this is a well-defined invariant of the knot (because the space is
at least one-dimensional). Given this perspective, it is natural then to define skein modules
for arbitrary oriented 3-manifolds.

In [], Turaev proved:
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Theorem 1.2. Let G = SL2, and let SkAlg(Σ) denote the skein module of Σ× I, equipped
with the algebra structure coming from stacking in the I-direction. Then SkAlg(Σ) is a de-
formation quantization of the character variety of Σ, with the Atiyah-Bott-Goldman Poisson
bracket.

The proof relies on an expclit basis for the classical character variety. Using the Cayley-
Hamilton identity for 2× 2 matrices, one can identify a basis of O(ChG(Σ)) with the set of
crossingless multi-loop diagrams drawn on Σ. Multiplication is given by first superimposing
loops, and then recursively reducing to crossingless multi-loops using Cayley-Hamilton, which
in graphical form becomes2:〈

L ∪
〉

= 2〈L〉,
〈 〉

=
〈 〉

+
〈 〉

,

Turaev’s proof therefore consists of showing that the deformation defined by SkMod(Σ)
admits the same basis as a free module over C[A,A−1] (while this is a natural and beautiful
statement, its proof should not be considered easy!!). Hence, at least in the SL2 case, it is
know that to quantize the character variety, one may look to skein algebras.

Pros (+) and cons (-) of skein approach:

(+) Clear topological meaning
(+) No unnatural choices on Σ.
(+) Obvious extension to 3-manifolds.
( - ) The 3-manifold extension is not flat in q.
( - ) Only captures ChG(Σ).
( - ) Does not define a TFT.

1.3.2. Quantum cluster algebras. Fock and Goncharov’s proposal to quantize character
varieties treats the presence of stabilizers by introducing something between the framed
variety and the quotient variety, which we call the decorated character variety3. The algebraic
input is now the group G, its Borel subgroup B and its unipotent radical N , and we will

also use the Weyl group W . The topological data now is a decorated surface Σ̃ = (Σ,ΣT ),
consisting of the surface Σ together with a subset ΣT ⊂ Σ, which must be a union of disks on
the interior and half-disks on the boundary. We denote ΣG = Σ\ΣT , and ΣB = Σ\(ΣG∪ΣT ).4

A decorated local system on Σ̃ = (Σ,ΣT ) is the data of a local system on Σ, together with
a reduction to B on ΣB and to T on ΣT . Unwinding a bit, this means that, in addition to
the local system data, we fix the data of an ‘affine flag’ F ∈ G/N for each region ST , and
require further that the monodromies around interior points preserve the underlying flag
π(F ) ∈ G/B.

We denote by

ChdecG (Σ̃) = {Decorated G-local systems on Σ̃}/iso,

the corresponding moduli stack, and as before by ChdecG the associated quotient variety.
The key to Fock and Goncharov’s construction is that ChdecG has open charts where the

G action is actually free, and hence where ChdecG and ChdecG coincide, and moreover take

2hence in these conventions we degenerate at A = −1, rather than A = 1, for reasons we won’t get into here.
3Fock and Goncharov called their construction rather the framed character variety, but we will use the word
decorated instead to avoid confusion
4Fock and Goncharov considered rather “marked points” on the boundary, and “punctures” on the interior;
this is up to isotopy the same data, the reason for the shift will become apparent later.
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an extremely simple form. Specifically, for each triangulation ∆ of Σ, with vertices in the
region ST , and on each triangle a spelling of the longest word ω0 ∈ W in terms of simple
reflections – for SL2 this is unique. This extra data determines (in a way I won’t spell out

here) an open subset isomorphic to (C×)d, where d = ... is the dimension of ChdecG . Moreover,
on this chart, the Atiyah-Bott/Goldman bracket is log-canonical, meaning {zi, zj} = aijzizj
for some skew-symmetric integer matrix A = (aij); they like to encode the matrix A as a
quiver. The transition functions between different charts moreover take an especially nice
form, which can be expressed combinatorially as a “mutation”; the data of these charts
and mutations is what is called a cluster variety. They define their quantization by simply

declaring zizj = q
aij
2 zjzi (which is clearly a deformation quantization of each chart), and by

hand define q-deformations of the mutations.
Pros (+) and cons (-) of cluster approach:

(+) Explicit and combinatorial local structure.
(+) Flatness is built in.
( - ) Requires choices of ST and triangulations – topological meaning is unclear.
( - ) The global structure is mysterious – need to glue together all quantum charts.
(+) Cluster positivity, Unitarity (see Shapiro’s talk next week).

1.3.3. Alekseev-Grosse-Schomerus algebras. Following the “RTT” presentations known
to exist for quantum coordinate algebras, Alekseev introduced (and subsequently studied,
with Grosse and Schomerus) certain explicit deformation quantizations of the algebras Og,r
which we will denote simply Ag,r. These are defined as a braiding-twisted tensor product of
2g + r − 1 copies of an algebra Oq(G) – the ad-equivariant quantized coordianate ring of G
5 They are constructed via an explicit presentation as follows:

(1) The Fock-Rosly Poisson bracket has a matrix presentation, where each the Poisson
bracket {Xi, Xj} between pairs of coordinate matrices

Xi, Xj ∈ A1, B1, . . . Ag, Bg, P1, . . . , Pr−1

is expressed explicitly using the “classical r-matrices” (the same which define quan-
tum groups).

(2) Replacing sums with products and classical r-matrices onG with quantumR-matrices
for Uq(g) defines a deformation quantization of the Fock-Rosly Poisson bracket.

Pros (+) and cons (-) of AGS approach:

(+) Tools for representation theory of Uq(g).
(+) Relation to D-modules and geometric representation theory.
(+) Flatness in q is built into construction.

( - ) Only for framed ChfrG (Σ), where Σ is a surface with boundary. Unclear how to remove
framing, or to seal punctures.

( - ) Required a choice of ribbon graph decomposition to define it.

1.4. Factorization homology. To summarize the preceding section: each of these three
traditional approaches exposes a beautiful facet of the rich theory of quantizations of char-
acter varieties, and each is a priori a distinct perspective. Before the advent of factorization
homology, it remained a long-standing question how to unify the three constructions: by

5Hence, Oq(G) quantizes the ad-equivariant Semenov-Tian-Shansky, Poisson bracket, and is not to be con-
fused with the FRT quantization of G – often also denoted by Oq(G), which quantizes the Sklyanin bracket.
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virtue of each one being very explicit, and the cluster and AGS constructions depending
crucially on extra choices, it is very thorny to make direct comparisons. The non-canonicity
of the cluster and AGS constructions further prevent them from defining a 3D TFT, while
the skein construction suggests a TFT construction, but it works only when enhanced to
skein categories (discussed later on).

These lectures will focus on a new construction of quantizations of character varieties,
which unifies the three perspectives, allowing us to keep all the (+)’s and lose all the (-)’s.
The factorization homology construction:

(1) takes as basic algebraic input a braided tensor category A (e.g. A = Repq(G)),
(2) uses modern homotopical/ higher categorical methods, thereby
(3) describes the character stacks and their quantizations as primary objects, the varieties

as secondary objects, and thereby
(4) outputs categorical invariants of surfaces, which generalize Hochschild homology of

algebras, and
(5) recover each of the three traditions desrcibed above as special cases, and along the

way
(6) requires us to learn Morita theory for tensor and braided tensor categories.

The basic topological input is:

Definition 1.3. The (2, 1)-category Mfld2
fr (resp. Mfld2

or) has:

• As its objects, oriented (resp. framed) surfaces,
• As the 1-morphisms from S to T , all framed (resp, oriented) embeddings S ↪→ T ,
• As the 2-morphisms, the isotopies of embeddings, themselves considered modulo

isotopies of isotopies.

The disjoint union of surfaces equips Mfld2 with the structure of a symmetric monoidal
bicategory.

Definition 1.4. The bicategory Disk2
fr/or is the full subcategory of Mfld2

fr/or whose objects
are finite disjoint unions of framed/oriented disks.

Remark 1.5. Let us remark in passing that the notion of framed/oriented embeddings is
not the most obvious one: for example a framed embedding is an embedding, together with
the data of an isotopy between the push-forward framing and the framing on the image.

Remark 1.6. We will make free use the notion of bicategory – also known as a 2-category
in other sources – in these notes, but we will not recall complete definitions. Hence, we will
discuss objects, morphism, and 2-morphisms in a bicategory. By a (2, 1)-category, we will
mean a bicategory in which all 2-morphisms are invertible – this makes life much easier, and
is all that is needed in most of these notes. See NCatLab for a quick review. Later in the
notes we will discuss (∞, n)-categories [HigherAlgebra], for n = 1, 2, 3, 4, . . ., which we will
treat as a black-box, because all arguments to be presented in any detail can be reduced to
arguments in bicategories.

We will delay until tomorrow a precise definition. For today, it is enough to work with
the following informal (and incomplete) definition:

Definition 1.7 (Ayala-Francis, Lurie). Fix a braided tensor category A. The factorization
homology of surfaces with coefficients A is:

https://ncatlab.org/nlab/show/bicategory
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(1) A functorial assignment,

Z : Mfld2
fr/or →W ,

where W is some “world” (=symmetric monoidal higher category) in which to do
algebra. For example W = (Vect,⊗k), (Cat,×), (Pr,�), . . .

(2) It is monoidal for disjoint unions, and functorial for embeddings, and their isotopies :

(i : M ↪→ N) 7→ (Z(i) : Z(M)→ Z(N)),

(γ : i→ j) 7→ (Z(γ) : Z(i)
∼−→ Z(j)).

(3) We have an identification Z(D) = A, with its braided tensor structure coming from
applying (2) to disk inclusions.

(4) The assignment Z satisfies excision:

Z(Σ1 t
P×I

Σ2) = Z(Σ1) �
Z(P×I)

Z(Σ2),

(5) The functor Z is canonically determined by properties (1) - (4).

Definition 1.8. (Ben-Zvi–Brochier-J) The quantum character variety Zq(Σ) is the pre-
sentable (i.e. W = Pr) factorization homology of Σ with coefficients in the braided tensor
category Repq(G) of locally finite-dimensional Uq(g)-modules.

Example 1.9. An important object of Zq(Σ) is given simply by the empty disk embedding
∅ ↪→ Σ, which determines a functor Vect → Σ, hence an object we denote DistΣ ∈ Zq(Σ),
which we will see quantizes the structure sheaf in QC(ChG(Σ)).

The excision property is on the one hand eminently computable, and on the other hand,
uniquely determines the theory. This allows us to relate it to the traditional approaches:

(1) (BZBJ) For a surface Σ with at least one boundary component, we have (many)
equivalences of categories,

Zq(Σ) ' AΣ−modRepq(G),

for a canonical algebra object in AΣ ∈ Repq(G). A ribbon graph presentation of Σ
determines an isomorphism AΣ

∼= Ag,r with the AGS algebras.
(2) (BZBJ) For a closed surface Σ obtained by gluing a disk to a once-punctured Σ◦,

we have an equivalence of categories between Zq(Σ) and the quantum Hamiltonian
reduction of A◦Σ with respect to a canonical “quantum moment map.”

(3) (J-Le-Schrader-Shapiro) Fix in addition to A = Repq(G) the braided tensor category
Repq(T ), and the tensor category Repq(B). Then the factorization homology of
decorated surfaces with coefficients in the coefficients (Repq(G),Repq(B),Repq(T ))
recovers (generalizes, and amends) the Fock-Goncharov cluster quantization.

(4) (Cooke) For any surface Σ we have a canonical equivalence of categories,

Zcp
q (Σ) ' SkCat(Σ),

between the subcategory of compact-projective objects (=quantum vector bundles)
of Zq(Σ), and the so-called “skein category” of Σ. Equivalently, taking Yoneda free
cocompletions, we have:

Zq(Σ) ' ̂SkCat(Σ).

This uses a roadmap proposed by Johnson-Freyd, building on ‘blob homology’ ideas
of Morrison and Walker.
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(5) (Cooke) In particular, we have an isomorphism,

SkAlg(Σ) ∼= End(DistΣ),

for a canonical “distinguished object of Σ,

Beyond recovering and thereby unifying the three traditional approaches to quantization
of character varieties, the mechanism of factorization homology offers an important extension
to higher (and lower) dimensions.

(1) (Scheimbauer) The assignment Z extends down to define a fully local (a.k.a) fully
extended 2D TFT.

(2) (Brochier-J-Snyder) The assignment Z extends up to define fully local 3D (rigid)
and 4D (fusion) topological field theories. This relies on works of (Johnson-Freyd–
Scheimbauer and Haugseng in topology and Brandenburg–Chivrasitu–Johnson-Freyd
in category theory.

(3) (Costello-Gwilliam, Elliot-Safronov, Williams, . . . ) “Topological twists” of SUSY
quantum field theories give rise to factorization homology theories, hence fully local
topological field theories. Alternatively, holomorphic twists give rise to holomorphic
factorzation algebras, hence conformal field theories.

(4) (Ayala-Francis, AF-Tanaka, AF-Rozenblum) The role of algebras and their Morita
theoreis (e.g. of braided tensor categories in the coming lectures) can be replaced
by completely general higher categories, giving a constructive proof of the cobordism
hypothesis.

Prediction: In the coming two decades, the works (3) and (4) above and their ramifications
will reduce the entire era of topological field theory to a historical footnote in the saga of
factorzation homology.

2. Lecture II: Reconstruction theorems for tensor and braided tensor
categories

2.1. Finite categorical linear algebra. The kinds of categories we will consider in these
lectures are large, akin to the categories of representations of algebraic groups, in contrast
to small categories, like the categories of finite-dimensional representations of finite groups,
where many of these results are easier and more well-known. The large world (namely the
notion of locally presentable categories) takes some set-up, but then things work essentially
the same. To motivate the coming definitions, let’s recall some easy facts about finite semi-
simple abelian k-linear categories.

Suppose for the moment that C is a finite and semi-simple abelian and k-linear category,
in other words that we can write C as a finite sum,

C = Vectfd⊕ · · · ⊕ Vectfd,

of copies of the category Vect. Suppose D is another such category, and that F : C → D
is a linear functor. Let X1, . . . Xn and Y1, . . . , Ym denote the simple objects of C and D,
respectively. In this generality F always has a left and right adjoint6, determined uniquely
by the isomorphisms,

HomC(X,F
R(Y )) = HomD(F (X), Y ), HomC(F

L(X), Y ) = HomD(X,F (Y ).

6If you’re familiar with theorems about existence of adjoints, this might seem surprising, but the point is
that exactness is implied by semi-simplicity and k-linearity.
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In fact we can write a formulas for FR and FL; we have:

FR(Y ) =
⊕
Xi

HomD(F (Xi), Y )⊗Xi, FL(Y ) =
⊕
Xi

HomD(Y, F (Xi))
∗ ⊗Xi

Remark 2.1. A useful analogy is that C is a categorical analog of a finite-dimensional
Hilbert space, with the inner product 〈−,−〉 given by the Hom pairing. Then FL and FR

are the categorical analog of the transpose matrix. Indeed, writing

F (Xi) =
⊕
j

N j
i Yj =⇒ FR(Yj) =

⊕
i

N j
iXj,

so it just transposes the non-negative integer matrix N i
j of multiplicities.

Let’s phrase monadic reconstruction in this easy setting. Recall that one formulation of
the definition of adjoint functors is that we have a unit η : idC → FRF , and we have a counit
ε : FFR → idD, satisfying some natural axioms. We can use these maps to regard FRF as
a “monad”, i.e. a unital algebra in End(C): the unit is η, and the multiplication is:

(FR F )(FR︸ ︷︷ ︸F )
ε−→ FRF

Exercise 2.2. Show that the product defined above is associative.

Definition 2.3. A FRF -module in C is an object X of C, together with a morphism in
C, FRF (X) → X, which is associative in the obvious sense. Denote by FRF−modC the
category of such modules.

Note that the functor FR itself defines a functor F̃R : D → FRF−modC, since for Y ∈ D,
we have (FR F )(FR︸ ︷︷ ︸(Y ))

ε−→ FR(Y ).

Theorem 2.4 (Barr-Beck monadicity). Suppose that FR is conservative (i.e. that FR(Y ) =
0 ⇐⇒ Y = 0). Then the functor,

F̃R : D → FRF−modC,

is an equivalence of categories.

If the conditions of the theorem are satisfied we say that F (alternatively FR, or the pair
(F, FR)) is monadic.

Exercise 2.5. Dually, one can instead reconstruct C in terms of the co-algebra FFR in
End(D) (a ‘co-monad’). Work out the statement of this theorem.

Remark 2.6. Note that by the transpose formula, FR is conservative if and only if every
simple object appears as a summand of F (Xi) for some simple Xi ∈ C. The monadicity
theorem can be understood as a categorification of the obvious statement that, if V and W
are finite-dimensional Hilbert spaces, then a linear map f : V → W is surjective if and only
if its adjoint is injective, and in this case fTf defines a projection operator onto a subspace
of V , which is isomorphic to W via the inclusion fT

The monadicity theorem and its generalizations, despite being very easy to prove, are of
utmost utility: In a typical situation, we will presume to understand C very well, and D not
at all, so the theorem allows us to describe the entire category D internally in terms of C.
It is the most useful in the setting of tensor categories and their module categories
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Definition 2.7. A finite semisimple tensor category is a finite semisimple category A
equipped with a linear functor

⊗ : A×A −→ A,
a distinguished object 1A (the unit) and natural isomorphism

αx,y,z : (x⊗ y)⊗ z −→ x⊗ (y ⊗ z)

and

lx : 1A ⊗ x→ x rx : x⊗ 1A → x

such that the following diagrams commute:

(x⊗ (y ⊗ z))⊗ w

((x⊗ y)⊗ z)⊗ w x⊗ ((y ⊗ z)⊗ w)

(x⊗ y)⊗ (z ⊗ w) x⊗ (y ⊗ (z ⊗ w))

αx,y,z ⊗ idw αx,y⊗z,w

idx ⊗αy,z,w

αx,y,z⊗w

αx⊗y,z,w

(x⊗ 1A)⊗ y x⊗ (1A ⊗ y)

x⊗ y

αx,1A,y

rx lx

.

Remark 2.8. As customary, we suppress α, l and r when those are clear from the context,
as they can be uniquely filled in.

Definition 2.9. We say that the tensor category is rigid if, for every X ∈ A the left and
right adjoints to the functor Y 7→ Y ⊗X are representable, i.e. we want there to exist objects
X∗ and ∗X (the left and right duals), with evaluation ε : X∗ ⊗ X → 1, and coevaluation
η : 1→ X ⊗X∗ satisfying the usual adjunction axioms.

Remark 2.10. A rigid finite semi-simple tensor category is commonly called a multi-fusion
category; if the unit is a simple object, it is called a fusion category.

Definition 2.11. Let A be a finite semisimple tensor category. A left (resp, right) A-module
is a finite semisimple category M equipped with a linear functor, ⊗ : A ×M →M (resp,
⊗ : M× A → M), together with an associativity constraint and a natural isomorphism
1A ⊗m→ m for m ∈M making the analogous pentagon diagram commute.

Definition 2.12. LetM, N be two module categories over A. Then a left module functor,
or A-linear functor, is a pair of a functor F : M → N and a natural isomorphism f :
F (a ⊗m) → a ⊗ F (m) for a ∈ A,m ∈ M making the obvious diagrams commute. Right
module and bimodule functors are defined similarly.

Exercise 2.13. Let A be a rigid tensor category, and let M and N be (left, say) module
categories, with a module functor F :M→N . Then the right adjoint FR : N →M carries
a canonical module structure.
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Definition 2.14. Let A be a rigid tensor category, and letM be its right module category.
Let m ∈ M be an object, and define actm : A →M by actm(X) = X ⊗m. We define the
internal hom functor

Hom(m,n) = actRm(n), End(m) = Hom(m,m)

Exercise 2.15. By playing with adjunction formulas, construct associative “composition
maps”,

Hom(n, o)⊗ Hom(m,n)→ Hom(m, o),

hence construct in particular an algebra structure on End(m), and identify the action of
tensoring by this algebra with the action of the abstract monad (actRmactR).

Theorem 2.16. Suppose that m generatesM as an A-module, i.e. that actRm is conservative.
Then we have an equivalence of module categories,

M' End(m)−modA

Exercise 2.17. Take A = Vectfd, and suppose that C is a finite semi-simple category,
regarded as an A-module category. Show that

⊕
iXi is a generator of C, and hence define

an equivalence,

C '

(⊕
i

C

)
−mod.

Exercise 2.18. Take A = Rep(G) for a finite group G. Consider A as an A⊗Amop-module
category via (X, Y )·Z = X⊗Z⊗Y . Show that the monad for this module gives the function
algebra C[G], (with pointwise multiplication and not convolution!) as a G×G-module, and
that upon applying the multiplication functor again, we get k[G] with its adjoint action.

Exercise 2.19. Work out a variant of the previous exercise but for the comonadic ‘forgetful’
functor G−mod→ Vect to obtain the group algebra (with convolution structure).

Exercise 2.20. Repeat the previous two exercises for an arbitrary finite-dimensional Hopf
algebra

2.2. Presentable categorical linear algebra. Fix a field k (for many, but not all defini-
tions and construction, k could be a ring instead). In these lectures we will contend with
k-linear categories which are neither finite nor semi-simple, and therefore existence of ad-
joints is not guaranteed. However, we will develop tools to work with adjoint functors and
use these to prove reconstruction theorems for them.

Definition 2.21. A category is said to be k-linear if it is enriched and tensored over the
category of k-vector spaces.

Definition 2.22. Given a diagram D = (di, fj) in a category C, its colimit, is the initial
object colim(D) ∈ C, together with morphisms di → colim(D), commuting with all fj’s.
This means given any other candidate object colim(D)′, with its morphisms di → colim(D)′,
we have a unique morphism colim(D)→ colim(D)′ making the obvious diagram commute.

Definition 2.23. A functor F : C → D is cocontinuous if, for any diagramD, the comparison
morphism colimF (Di)→ F (colimDi) is an isomorphism.
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Exercise 2.24. Produce the necessary diagram D realizing each of the following as examples
of colimits: the cokernel of a morphism f : X → Y , the direct sums V ⊕W , and tensor
products V ⊗W of vector spaces, the relative tensor product M ⊗R N of modules over a
ring.

Definition 2.25. Let C be a k-linear category. An object c ∈ C is called

• compact-projective, if Hom(c,−) is cocontinuous.
• a generator if Hom(c,−) is conservative (injective on objects) and faithful (injective

on morphisms)

Exercise 2.26. Let A be a (possibly infinite-dimensional) k-algebra. Show that the com-
pact objects of A -mod are the finitely presented A-modules (modules which have finitely
many generators, and finitely many relations, equivalently cokernels of morphisms between
finite-rank free modules), while compact-projectives are direct summand of finite-rank free
modules.

Definition 2.27. We say that a k-linear category

• is locally finitely presentable if it admits arbitrary small colimits, and every object
is a filtered colimits of compact objects, the collection of which form an essentially
small category.
• has enough compact projectives if it admits arbitrary small colimits, and every object

is a filtered colimits of compact objects, the collection of which form an essentially
small category.

Remark 2.28. A typical filtered colimit to keep in mind is an infinite direct sum, or more
generally a directed system. A typical finite colimit is a cokernel of a morphism. An arbitrary
colimit can be written as a filtered system of finite colimits, hence compact-projective could
be rephrased as “commutes with finite colimits” and “commutes with filtered colimits”.

Remark 2.29. In some loose sense a cokernel of a map f : X → Y can be thought of a the
“difference” between X and Y , and the direct sum is their sum. Hence a locally presentable
category is akin to an infinite-dimensional Hilbert space, where infinite sums are allowed,
but we must contend with convergence issues.

To get a feel for the definitions, the best thing is to solve some exercises:

Exercise 2.30. Show that a category which has enough compact projectives in the above
sense is in particular locally finitely presentable.

Exercise 2.31. Show that the category A−mod has enough compact projectives, hence is
locally presentable, for an arbitrary algebra A (hint: show that every A-module is a colimit
of copies of A).

Exercise 2.32. Suppose thatX is a compact projective generator. Then show that Hom(X,−) :
C → End(X)op defines an equivalence of categories.

Definition 2.33. We denote by:

• Pr the (2,1)-category of locally presentable categories, cocontinuous functors and
natural isomorphisms.
• Pr◦ the full subcategory consisting of categories having enough compact projectives.
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The 2-category Cat (= Catk) of k-linear categories is symmetric monoidal: Given k-linear
categories C and D, their tensor product C ⊗ D has as its objects pairs of objects of C and
D, and morphisms defined by

HomC⊗D((c1, d1), (c2, d2)) := HomC(c1, c2)⊗k HomD(d1, d2).

However, the k-linear tensor product of two categories in Pr is not again in Pr. Each of Pr
and Pr◦ nevertheless admit a natural symmetric monoidal structure, extending the k-linear
tensor product, and defined as follows:

Definition 2.34. The Deligne–Kelly [Kelly1982; Deligne2007; Franco2013] tensor prod-
uct of categories C,D ∈ Pr is another category C �D ∈ Pr, equipped with a linear functor
C ⊗D → C�D, cocontinuous in each variable, which is moreover universal for this property,
in the sense that we have an equivalence of groupoids:

HomPr(C �D, E)× ' Linc,c(C ⊗ D, E)

where on the left hand side we throw away non-invertible natural transformations and Linc,c

denotes the groupoid whose objects are k-linear functors which are co-continuous in each
variable, and whose morphisms are natural isomorphisms.

Proposition 2.35 ([Franco2013] Lemma 8, [Kelly1982] Chapter 6, [Caviglia]). The
Deligne–Kelly tensor product C �D exists and is again locally presentable.

Corollary 2.36. The Deligne-Kelly tensor product of two categories with enough compact
projectives again has enough compact projectives, and is generated by the pure tensor products
of the compact projective generators in each component.

Remark 2.37. The Deligne-Kelly tensor product contains the “pure tensor products” of
pairs of objects in the two categories, plus arbitrary colimits freely built from those. Hence
it is analogous to the completed tensor product of Hilbert spaces.

Remark 2.38. In a bicategory such as Pr there is the notion of a bicolimit, over a diagram
D which now has objects, 1-morphisms and (necessarily, invertible) 2-morphisms. In fact
Pr and Pr◦ are “2-cocomplete”, meaning that given any such diagram the desired colimit
exists. This is a deep fact of enriched category theory.

Exercise 2.39. Construct the diagram D realizing C �D as a bicolimit.

The following elementary facts about locally presentable categories will be of the utmost
importance and utility. They are a special case of the Adjoint Functor Theorem, but are
much easier to prove.

Theorem 2.40. Every cocontinuous functor F : C → D between locally presentable cate-
gories (i.e. every morphism in Pr) has a right adjoint FR, and this FR is itself cocontinuous
if F preserves compact-projective objects.

Remark 2.41. Once again, intuition about Hilbert spaces applies, but it’s a bit more subtle:

• In presentable categories, Hom spaces are allowed to be infinite-dimensional.
• We lose symmetry of the pairing, Hom(X, Y ) 6∼= Hom(Y,X).
• Related to this, there is a very different behavior between left adjoints and right

adjoints.
• A functor which preserves compact objects can be thought of as analogous to a

bounded linear map. However, not every cocontinuous functor preserves compacts.
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• While the adjoint of a compact-preserving functor is co-continuous, it is not again
compact preserving.

2.3. Presentable tensor categories and their module categories. Tensor categories
in presentable categories are defined just as in the finite semi-simple case, except that the
multiplication functor ⊗ is required to be co-continuous in addition to k-linear.

Definition 2.42. A tensor category is cp-rigid if the underlying category has enough com-
pact projectives, and all compact-projective objects have left and right duals in the sense of
Definition ??.

Definition 2.43. Given a tensor category C, we define the multiplication opposite Cmop as
the tensor category with reversed multiplication and inverse associativity constraint.

The machinery of locally presentable tensor categories allows one to prove the most opti-
mistic generalizations of the monadicity theorems:

Theorem 2.44. Suppose that F : C → D is a cocontinuous functor, and that its right adjoint
FR is itself cocontinuous and conservative. Then we have an equivalence,

D ' FRF−modC.

Corollary 2.45. Suppose A is a cp-rigid tensor category, thatM is its right module category,
and that m ∈ M is an A-projective A-generator, meaning that actRm is conservative and
cocontinuous. Then we have an equivalence of A-module categories,

M' End(m)−modA.

Definition 2.46. Let A,B be tensor categories. An A− B-bimodule is an Pr category M
which is simultaneously a left A-module and a right B-module, together with an isomorphism

Γ : (a⊗m)⊗ b −→ a⊗ (m⊗ b)

making the obvious diagram commute.

Definition 2.47. Let A be a tensor category and M,N be a right and a left A-module
category respectively. An A-balanced functor is a pair of a functor F fromM�N to some
Pr category E and a natural transformation

f : F ((m⊗ a) � n) ∼= F (m� (a⊗ n))

for a ∈ A,m ∈M, n ∈ N making the obvious diagrams commute.

Definition 2.48. Let A be a tensor category and letM andN be a right and left A-module,
respectively. The balanced (or relative) Deligne–Kelly tensor product is another category
M�AN ∈ Pr together with an A-balanced functor �A :M�N →M�AN which induces
a natural equivalence of categories between balanced functor out ofM�N to some category
E , and morphisms in Pr from M �A N to E . The existence of the balanced Deligne-Kelly
tensor product follows from the cocompleteness of Pr, see [Ben-Zvi2015]. Constructions
of the balanced tensor product in special cases appear in [Etingof2010; Davydov2013;
Douglas2014].
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2.4. Presentable braided tensor categories and their factorization homology.

Definition 2.49. A braided tensor category is a tensor category (A,⊗, α) together with a
natural automorphism β of −⊗− making the following diagrams commute:

x⊗ (y ⊗ z) (y ⊗ z)⊗ x

(x⊗ y)⊗ z y ⊗ (z ⊗ x)

(y ⊗ x)⊗ z y ⊗ (x⊗ z)

βx,y⊗z

αy,z,x

idy ⊗βx,z

αy,x,z

βx,y ⊗ idz

αx,y,z

(x⊗ y)⊗ z z ⊗ (x⊗ y)

x⊗ (y ⊗ z) (z ⊗ x)⊗ y

x⊗ (z ⊗ y) (x⊗ z)⊗ y

βx⊗y,z

α−1
z,x,y

βx,z ⊗ idy

α−1
x,z,y

idx ⊗βy,z

α−1
x,y,z

Proposition 2.50. The data of a braided (resp. ribbon) tensor category A determines a
functor (also denoted A) A : Disk2

fr → Pr (resp, A : Disk2
or → Pr).

Convention 2.51. We fix the following data in applying Proposition 2.50: We denote by
D the standard unit disk with the right-handed orientation. The tensor product, braiding,
and ribbon element are given, respectively, by: the left-to-right embedding of a pair of disks
along the x-axis, isotopy interchanging those disks by rotating 180 degrees anti-clockwise,
and by the oriented isotopy on D rotating by 360 degrees. These are each depicted in Figure
??.

Definition 2.52. The factorization homology is the left Kan extension,

Disk2 A
//

$$

Cat

Mfld2

∫
A

;;
.

An equivalent reformulation of the left Kan extension is to say that the factorization
homology of Σ with coefficients in A is:

(1) a category,
∫

Σ
A, together with

(2) functors,
∫
i
A : Ak →

∫
Σ
A, for every disk inclusion Dtk → Σ, and

(3) natural isomorphisms,
∫
γ
A :

∫
i
A →

∫
j
A, for every isotopy γ : i→ j, and

(4) further coherence natural isomorphisms, making all commuting diagrams of disk
embeddings commute in W , and finally,
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A

R2

(A)

(B)

1 2 3 321'

(C)

1 2 2 1
∼

(D)

Figure 1. Braided tensor categories as functors Disk2
fr → Cat. (A)

depicts a basic open set; its inclusion onto R2 is a retract, so it is assigned the
category A canonically. (B) depicts an embedding D2tD2 ↪→ D2; this induces
the product functor T : A�A → A. (C) depicts an isotopy (with this choice
of representatives, it an identity) between two composite disk embeddings
D t D t D ↪→ D; this induces the associator natural isomorphism α on A.
(D) depicts an isotopy between two disk inclusions; this induces the braiding
isomorphism σ on A.

(5) a canonical functor
∫

Σ
A → C, for any C equipped with data (1)-(3).

Thus, the factorization homology of Σ with coefficients inA is the initial category receiving
functors indexed by disk embeddings, compatibly with the braided tensor structure on A
and with isotopies. This is a very nice and natural definition, but it isn’t one we can work
with. We will see in the next two lectures how to compute with it.

3. Lecture III: The Morita 4-category of braided tensor categories and
the cobordism hypothesis

Definition 3.1. Let A be a braided tensor category. We define braiding reverse of A to
be the braided tensor category Abop to have the same underlying tensor category, but with
braiding isomorphism σV,W replaced by σ−1

W,V .

Remark 3.2. The opposite braiding comes from reflecting the discs about the x-axis in
the E2 operad and can be thought of as the opposite in the second multiplication direction.
The opposite in the first multiplication direction is Amop with the reversed tensor product
and the braiding given by σ−1

V,W : V ⊗op W = W ⊗ V → V ⊗W = W ⊗op V . Again Amop
corresponds to a reflection, this time about the y-axis. It is not difficult to see that Amop and
Abop are isomorphic using the braiding. Note that the double opposite Amopbop = Abopmop
has underlying tensor category Amop but with the braiding given by σW,V . Since Amopbop
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corresponds to rotation by 180-degrees it is orientation preserving and should not be thought
of as an opposite (it is isomorphic to the original A and not to either of the opposites).

Finally, let us recall the following well-known construction of a braided tensor category
out of a tensor category.

Definition 3.3. Let (C,⊗, α) be a tensor category. Then its Drinfeld center, or simply
center, is a braided tensor category Z(C) defined as follows

• objects are pairs (y, β) where β is a natural isomorphism

βx : x⊗ y −→ y ⊗ x
making the obvious analog of the second diagram in Definition 2.49 commutes.
• a morphism (y, β)→ (y′, β′) is a morphism f : y → y′ such that

∀x ∈ C, (f ⊗ idx)βx = β′x(idx⊗f)

• the tensor product of (y, β) and (y′, β′) is the pair (y ⊗ y′, β̃) where β̃ is defined by
the first diagram of Definition 2.49 with y′ instead of z
• the braiding of (y, β)⊗ (y′, β′) is simply given by β′y.

Remark 3.4. Once again this turns out to be a particular case of the general formalism of
En-algebras: to any En-algebra in a sufficiently nice symmetric monoidal 1-category (typi-
cally, non-discrete) one associates its Hochschild cohomology (also called its center), which
has a natural structure of an En+1-algebra.

The following properties of the center are straightforward and well-known:

Proposition 3.5. Let C be a tensor category. The assignment (y, β) 7→ (y, β−1) induces a
braided tensor equivalence

Z(Cmop) −→ Z(C)bop.

Proposition 3.6. Let A be a braided tensor category with braiding β. Then there are braided
tensor functors

A −→ Z(A) Abop −→ Z(A)

x 7−→ (x, β−,x) x 7−→ (x, β−1
x,−)

which assemble into a single braided tensor functor A�Abop → Z(A).

It is a general fact that the category of modules over an E2-algebra is an E1, i.e. monoidal,
category. Specializing in the case at hand this recovers the following well-known

Proposition 3.7. Let A be a braided tensor category with braiding β.

• Every left A-module category M (which we assume to be strict) has a canonical
structure of a right A-module, with the same action, and associativity constraint
given, for a, b ∈ A,m ∈M

(a⊗ b)⊗m
βa,b−−→ b⊗ (a⊗m).

• Given two left A-modules M,N , the balanced tensor product M �A N where M is
given the above right module structure, turns the category of left A-modules into a
monoidal 2-category.
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