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Preface: what are these notes?

These notes were compiled as a record of the Hodge Institute’s Working Seminar on topo-
logical field theory, in Spring 2016. The aim of this seminar was to give an introduction
to the language of topological field theory, and to provide an overview of the construction
and classification of topological field theories in dimensions 1, 2, 3, and 4. Talks in the
seminar were given by the participants in turn, and notes were taken by the post-graduate
students, Jenny August, Matt Booth, Juliet Cooke, and Tim Weelinck. The seminar was
led by David Jordan. Given the informal nature of the seminar, many proofs are omitted;
when possible we have tried to provide references where complete details may be found.

Please feel free to email David Jordan, D.Jordan@ed.ac.uk, with any corrections,
amendments, or suggestions! Additional references for unproved or incompletely proved
claims are also very welcome, and we will add them in due time.

0.1 Layout
The organization of these notes is as follows. Chapter 1 gives a brief and informal
overview of some elements of quantum field theory, emphasizing those most important in
the formulation of topological field theory. In Chapter 2, we outline the well-known classi-
fication of 1-dimensional, 2-dimensional, and fully extended 2-dimensional field theories.
This material is largely elementary but gives nevertheless some feel for the notion of a
TQFT. In Chapter 3, we recall some basic definitions about quantum groups, focusing
largely on the case of SL2, and we recall the construction by Reshetikhin-Turaev of knot
invariants from their representation theory. As such, this chapter is not directly related to
TQFT’s, however in Chapter 4, we will discuss how a (3,2,1)-TFT, a.k.a a once-extended
3D TQFT, may be constructed from the data of a modular tensor category. In the com-
panion reference, Hodge Project: A construction of modular categories from quantum
groups, we explain how a certain modification of the quantum group category, when the
parameter q is a root of unity.

In Chapter 5, we return to the general theory needed to formally define cobordism cat-
egories: the language of higher categories and complete Segal spaces. This chapter ends
with a precise statement of the cobordism hypothesis. Chapter 6 is an introduction to
En-algebras and their factorization homology. These tools give a mechanism for defining
and explicitly computing TQFT’s, and are the most current mathematical topic covered
in these notes. Finally, in Chapter 7, we give an overview of the paper [5], which proves
that so-called fusion categories, i.e. tensor categories with a strong finiteness condition,
are fully dualizable in the 3-category of tensor categories, hence define fully extended
3D TFT’s. This leads to a “ground-up" construction of the Turaev-Viro fully extended
3-dimensional TFT.
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Chapter 1

Origins of Topological Field Theory

Speaker: David Jordan
Notes: Juliet Cooke

Date: 15-1-2016

1.1 Quantum Field Theory
Let us briefly and very informally survey the basic set-up of quantum field theory – QFT
– a central technique in mathematical physics, which served as the motivating origins for
the development of topological field theory. This lecture shouldn’t be taken too seriously,
it is just an impressionistic overview.

In quantum field theory, one starts with a base manifold, typically a 4-manifold M4

equipped with a metric with signature (+ + + −) (‘space time’), or a 3-manifold M3

equipped with a Riemannian metric, or a surface Σ = M2 with a conformal structure.
On this manifold M we study a space of ‘fields’ F . This means we have some bundle,

ξ

��
M

and we wish to study the vector space of sections F = Γ(M, ξ).1 In physical situations
there is a “Lagrangian"

L = f

(
ϕ,

∂ϕ

∂xi
,
∂2ϕ

∂xi∂xj
, . . .

)
, f ∈ C[x1, x1, . . . ],

i.e. a linear functional on F , valued in C. The main object of study is the so-called
‘partition function’

Z =
∫
ϕ∈Γ(M,ξ)

eπi
∫
M
L(ϕ) dϕ,

which integrates the complex exponential of the action
∫
M L(ϕ) of each field, over the

space of all fields.
The partition function serves as themeasure against which one computes correlations

of fields ψ1, ψ2, i.e. the likelihood of observing ψ1 given ψ2 and vice versa. These integrals
are ill-posed in general, not only divergent, but undefined because dϕ is meant to be a

1Often F arises as the associated jet bundle of a principal bundle for a gauge group G.
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translation invariant measure on the infinite dimensional vector space of fields, and by
Riesz’s lemma, such a measure necessarily assigns either 0 or ∞ to every open set.

QFT addresses these divergence issues in various ways to still get meaningful physical
quantities out, often by expanding partition functions formally in the neighborhood of the
critical points of L, which correspond to the classical physical states. We will not discuss
this very interesting topic in this seminar, but rather we will look at a mathematical
formalism for analyzing certain very simple QFT’s, which bypasses these issues entirely.

Note that in any case, the partition function Z depends, a priori, on the extra data
we have fixed on M , such as the metric. However, in certain field theories, especially
‘super symmetric’ ones, this dependence becomes trivial, and the field theory is said to
be topological.
Example 1.1.1. An example of a topological quantum field theory is based on the Chern-
Simons functional on a 3-manifold M3 with Riemannian metric. We have a trivial G-
bundle over M where G is a simply connected Lie group. We have

F = Ω1(M, g).

Let a field (i.e. connection) be given ∇ = Ai(m)dxi, then in local coordinates the
Lagrangian is given as

L(∇) = tr(F ∧ A− 1
3A ∧ A ∧ A) ∈ Ω3(M3)

where F = dA+A ∧A is the curvature of the connection, and the trace map is taken in
some representation of g

Ω3(M, g⊗3) tr−→ Ω3(M3).

We will discuss a treatment of the Chern-Simons TQFT later in the seminar.
The aim of this course is to present an alternative framework for working with topolig-

ical field theories, which bypasses from the state the technical difficulties involved in
setting up traditional QFT.

1.2 Topological Quantum Field Theories
In the 1980s Atiyah and Segal realised that the formal properties of the (ill-defined)
partition function may nevertheless lead to interesting invariants of manifolds; this led
them to propose an axiomatisation of topological quantum field theories, a.k.a. TQFTs.
In order to motivate the Atiyah-Segal axioms (stated at the end of the lecture), let us
highlight a few mathematical structures that would follow from the QFT formalism, were
it well-defined. These are compatibility with boundary conditions, cobordisms and
disjoint unions.

i) Given submanifolds M1,M2 ⊆ ∂M and fields supported in some collar neighbour-
hoods M1 × I ⊆M , M2 × I ⊆M we can heuristically define

Z(ϕ1, ϕ2) =
∫
ϕ∈Γ(M.Ω∗ξ)
ϕ|M1×I=ϕ
ϕ|M2×I=ϕ2

eiπ
∫
M
L(ϕ) dϕ

5



That is, we compute not the entire partition function, but rather its contributions
from fields on M which restrict to ϕ1 and ϕ2 on each boundary component. This
‘defines’ a map:

Z(M) : F(M1 × I)→ F(M2 × I).

M N

M1 M2 M2

N2

glue

ii) These compose under gluing of oriented cobordisms.

Z(N) ◦ Z(M) = Z(M glued to N)

A cobordism from M1 to M2 (both (n − 1)-manifolds) is a n-manifold M with
boundary ∂M = M1 tM2 = Min tMout. A manifold is orientable if Λ∗(TM) is
trivial and an orientation is decomposition of this line into ±.

iii) Let M1,M2 be manifolds of dimension n− 1. We have:

Z(M1 tM2) = Z(M1)⊗ Z(M2)

1.3 Cobordism category
In order to capture the structures above, Atiyah and Segal studied the cobordism cat-
egory Cob1(n). The cobordism category has

Objects: (n− 1)-dimensional, compact, oriented, closed manifolds.

Morphisms: Hom(M1,M2) consists of diffeomorphism classes of oriented cobordisms
Mn with ∂M = Min tMout = M1 tM2.

Composition is given by gluing of cobordisms, as above. Quotienting by diffeomorphism
is required for associativity. Orientation is needed to determine the ’source’ and ’target’
of cobordisms: the boundary has an orientation and those components which agree with
the global orientation are incoming, and disagree are outgoing.

Atiyah and Segal defined an n-dimensional TQFTs as a symmetric monoidal functor

Z : Cob1(n)t → V ect⊗k .

The mondoidal structure on Cob1(n)t is given by disjoint union t and on V ect⊗k given
by the usual tensor product on vector spaces.
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This definition is already very interesting but we will extend it in various ways. The
first way is to replace V ect⊗k with a general symmetric monoidal category C⊗. So we
define an n-dimensional TFT as a symmetric monoidal functor

Z : Cob1(n)t → C⊗.

We can also extend the definition to higher categories. Given k = 1, 2, . . . ,∞, will
introduce a higher cobordism category Cobk(n), and various examples of higher symmetric
monoidal categories C⊗, and study functors,

Z : Cobk(n)t → C⊗,

Example 1.3.1. We have the 2-category of k-algebras,

C⊗ = Alg2
k =


k algebras as objects
A−B bimodules as morphisms
bimodule maps as 2-morphisms

and
Example 1.3.2. The 3-category of tensor categories (which we may regard as algebra
objects in Vectk.

C⊗ = Alg2
Vectk =


tensor categories as objects
bimodule categories as 1-morphisms
bimodule functors as 2-morphisms
natural transformations as 3-morphisms

,

Similarly there is a 4-category of braided tensor categories, which will be discussed in
Chapter 6.

1.4 The Cobordism Hypothesis
We shall also encounter the cobordism hypothesis: roughly this says that we can find
’generators’ and ’relations’ presentations for each Cobk(n), and hence classify TQFTs in
terms of special objects in C⊗ which are called “(fully) dualizable" objects. The hypothesis
hypothesis has been worked on my many people including Baez-Dolan (conjecture), Lurie
(proof), Scheimbauer (Segal spaces) and Ayala-Francis Tannaka (factorisation homology).

In brief:

• Cob∞(n) is generated by a single object, the n-disc. Hence a fully extended TFT
is completely determined by Z(Rn) ∈ C⊗.

• Z(R) must be fully dualizable, which asserts the existance of many adjoints and
duals in C⊗ and is essentialy a strong finiteness condition.

See Chapter 5 for a more complete statement.
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Chapter 2

TQFTs in 1 and 2 Dimensions

Speaker: Juliet Cooke
Notes: Juliet Cooke

Date: 22-1-2016

In this lecture we review the classification of TFT’s in dimensions 1 and 2. We will
largely follow [17].

2.1 The Category Cob1(n)
Definition 2.1.1. A (n, n− 1)-dimensional TQFT is a symmetric monoidal functor

Z : Cob1(n)t → C⊗

we shall assume for simplicity that C⊗ = Vect⊗k , the category of vector spaces over a field
k equipped with the standard tensor product.

The superscript 1 of Cob1(n) tells us we are are dealing with a standard category;
higher values are used to denote higher categories which will be considered later in this
talk and in later talks. As result to describe Cob1(n)t we need to know its objects and
morphisms.

• The objects of Cob1(n) are (n− 1)-dimensional manifolds Σ which are closed, com-
pact and oriented.

• The morphisms of Cob1(n) are oriented cobordisms Σ0
M=⇒ Σ1 up to equivalence

of cobordisms.

Definition 2.1.2. An oriented cobordism from Σ0 to Σ1 is an oriented n-manifold M
together with maps

Σ0 →M ← Σ1

such that Σ0 maps diffeomorphically onto Min
1 and Σ1 maps diffeomorphically onto

Mout. We denote such a cobordism as Σ0
M=⇒ Σ1.

1The in and out boundaries of M are determined by how the choice of orientation M corresponds to
the choice of orientation on parts of its boundary. We shall not go into detail as to how this is exactly
done however the point is to add a directionality to our cobordism morphisms.
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MΣ1 Σ1

Min Mout

Two compatible cobordisms Σ0
M=⇒ Σ1 and Σ1

M ′=⇒ Σ2 can be composed by gluing
together the n-manifolds along their common boundary Σ1

2 to give a new cobordism
Σ0

M ′◦M=⇒ Σ2.
This composition operation is not strictly associative. However it is associate up to

diffeomorphism relative to the boundaries Σ0 and Σ1 which leads to a good definition of
morphisms by considering equivalence classes of cobordisms.

Definition 2.1.3. Two cobordisms Σ0
M=⇒ Σ1 and Σ0

M=⇒ Σ1 are equivalent cobor-
disms if they have the same boundaries Σ0,Σ1 and the n-manifold M is diffeomorphic to
M ′. This can be expressed by saying the following diagram commutes:

M

'

��

Σ0

==

!!

Σ1

aa

}}
M ′

Finally, Cob1(n) is a monoidal category with operation t, the disjoint union.

2.2 (1,0)-TQFTs
A (1, 0)-dimensional TQFT is a symmetric monoidal functor

Z : Cob1(1)t → Vect⊗k .

We shall now aim to classify such TQFTs. Unlike in higher dimensions where the aim
would be to use TQFTs to understand the category Cob1(n), we understand Cob1(1) as
this just requires knowledge of 0 and 1 dimensional manifolds and we can use this to
understand the TQFT. The objects of Cob1(1) are disjoint unions of oriented points{

+•, −•
}
.

The morphisms of Cob1(1) are disjoint unions of
2Technically it is only a common boundary up to diffeomorphism. In order to compose we should also

choose a small collar around the boundary in M and M ′. Different choices of collar will give diffeomorphic
cobordisms, so this choice will not matter given our final definition.
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−+

− + +

+

−

−

∅

∅

As Z : Cob1(1)t → Vect⊗k is monoidal, we have for disjoint unions Z(A t B) =
Z(A) ⊗ Z(B) where either both A,B are 0-manifolds or they are both cobordisms of
0-manifolds. As a result to define Z it suffices to specify values on the two points and
five cobordisms given above.

Z
(

+•
)

= V+ ∈ Vect⊗k

Z
(
−•
)

= V− ∈ Vect⊗k

Z

( ⋂
+t−

)
: V+ ⊗ V− → k

Z

(−t+⋃ )
: k → V− ⊗ V+

Z

(
−
|
−

)
: V− → V−

Z

(
+
|
+

)
: V+ → V+

Z (,) : k → k

The first thing to notice is that

+

+

−

−

are the identity cobordisms hence must be sent to identity maps in Vect⊗k by the functor
Z. Hence

Z

(
−
|
−

)
= IdV−

Z

(
+
|
+

)
= IdV+

The map Z
( ⋂

+t−

)
: V+ ⊗ V− → k gives a map V− → Hom(V+, k) and if this map is

bijective then V− can be identified with the dual vector space of V+ and thus it would
be sufficient to specify

(
+•
)

= V+ only. This is in fact the case and follows from Zorro’s
Lemma.
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Proposition 2.2.1 (Zorro’s Lemma 3). For any pair of basis vectors vi ∈ V− and ej ∈ V+,

Z

( ⋂
+t−

)
(vi, ej) = δij.

Proof.
−

− −

−

+ =

−

−

+

+ +

+

− =

+

+

The map Z
(−t+⋃ )

: k → V−⊗V+ must have the form k 7→ ∑n
i=1 vi⊗ ej for some finite

number of basis vectors vi ∈ V− and ej ∈ V+. Consider a vector ej ∈ V+ under the action
of the maps of the LHS of the lower diagram:

ej = ej ⊗ k 7→ ej ⊗
n∑
i=1

vi ⊗ ei 7→
n∑
i=1

ei

(
Z

( ⋂
+t−

)
(vi, ej)

)
.

The result must be the same as when we act on ej by the map on the RHS which is
just the identity map:

ej 7→ ej.

Hence we have that
n∑
i=1

ei

(
Z

( ⋂
+t−

)
(vi, ej)

)
︸ ︷︷ ︸

∈k

= ej

which implies that

Z

( ⋂
+t−

)
(vi, ej) = δij

as required.

We have shown that V− = (V+)∗. Finally we claim that V+ is a finite dimensional
vector space:

=
−

−

+

+

3Zorro’s Lemma also shows that Z(
⋃

) and Z(
⋂

) are adjoint, see chapter 5.
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Hence
(,) : 1 7→

n∑
i=1

ei ⊗ ei 7→
n∑
i=1

ei(ej) = dim V+,

so that dim V+ must be finite.

2.3 (2, 1)- TQFTs
We shall now consider a (2,1)-TQFT which is a symmetric monoidal functor:

Z : Cob1(2)→ Vect⊗k .

Again we know explicitly what Cob1(2) as we have a classification of surfaces. The
objects of Cob1(2) are 1-dimensional closed compact oriented manifolds thus must be
disjoint unions of

 ,


For the cobordisms we have the basic cobordisms given in Figure 2.1.

Figure 2.1: Basic Cobordisms

Using the classification of surfaces we can decompose any cobordism into a composi-
tion of these basis cobordism, such a decomoposition is some called the ’standard form’.
We shall illustrate how this is done with an example. Suppose we have a cobordism
S1 t S1 t S1 M=⇒ S1 t S1 t S1 t S1 such that M has genus 2 then the standard form is
given in Figure 2.2.

The first two of the basic cobordisms are used for constructing cobordism which are
closed or have a single boundary component.

Firstly, we do not have to specify both orientations of the circle in our TQFT. If
we denote Z(	) = A ∈ Vect⊗k then Z(	) = A∗, the vector dual of A and A is finite
dimensional. This is analgous to the (1, 0)-TQFT case and the proof uses a higher
dimensional version of Zorro’s lemma.

Definition 2.3.1. A (unital, associative) k-algebra is a k-vector space A together with
two k-linear maps

µ : A⊗ A→ A (multiplication), η : k → A (unit map),

12



Figure 2.2: Example of a cobordism in ’standard form’

=

Figure 2.3: The diagram for Zorro’s Lemma in 2-dimensions

satisfying the associativity and the unit axiom:

(µ⊗ IdA)µ = (IdA ⊗ µ)µ
(η ⊗ IdA)µ = IdA = (IdA ⊗ η)µ.

In other words, a k-algebra is precisely a monoid in the monoidal category Vect⊗k .

A = Z(	) is a k-algbera with maps defined:

η = Z
()

: k → A (unit)

µ = Z

 : A⊗ A→ A (multiplication)

IdA = Z
( )

: A→ A (identity)

These maps satisfy associativity and the unit axiom:

13



=

Figure 2.4: Associativity

= =

Figure 2.5: Unit axiom

Furthermore, A is a commutative algebra:

=

Figure 2.6: Commutativity

To conclude our classification of (1, 0), we shall show that A is a Frobenius algebra.

Definition 2.3.2. A Frobenius algebra is a k-algbera A equipped with an associate
non-degenerate pairing β : A⊗ A→ k called the Frobenius form.

The Frobenius form on A is defined as:

=

Figure 2.7: Frobenuis Form

The conditions of associativity and non-degeneracy are encoded in the following two
figures.
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=

Figure 2.8: Associativity Condition

= =such thatThere exists

Figure 2.9: Non-degeneracy Condition

Another example of a Frobenius algebra is a matrix algebra defined over a field k with
Frobenius form σ(a, b) = tr(a · b). To summarise: we have seen that for a (2, 1)-TQFT
the vector space Z

(
+•
)

naturally carries the structure of a Frobenius algebra. Using
the classification of surfaces to describe the morphisms and relations between them in
Cob1(2) one can show:

Proposition 2.3.3. (2,1)-TQFTs are completely determined by their value on Z
(

+•
)

=
A ∈ Vect⊗k where A is a finite dimensional, commutative Frobenius algebra. 4

2.4 Fully extended (2, 1, 0) TQFTs
The definition of a TQFT can be extended to be a functor from higher cobordism cate-
gories Cobk(n) for k > 1. How this is done generally will be covered in chapter 5 but in
this talk we shall consider an example where k = 2 = n.

Definition 2.4.1. A (2, 1, 0)-TQFT is a symmetric monoidal functor between weak 2-
categories:

Z : Cob2(2)→ Alg2
k.

We shall begin by defining the 2-category Alg2
k.

• The objects of Alg2
k are k-algebras (k is a field).

4This is reversible; every finite dimensional, commutative Frobenius algebra is a TQFT.
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• The 1-morphisms of Alg2
k are Bimodules.

Definition 2.4.2. An A−B bimodule AMB is an abelian groups such that

– M is a left A module and M is a right B module,
– (am)b = a(mb) for all (a,m, b) ∈ A× AMB ×B.

The composition of 1-morphisms is defined for compatible bimodules AMB and BNC

to be

AMB ⊗B BNC = AMB ⊗ BNC

〈mb⊗ n−m⊗ bn|m ∈ AMB, b ∈ B, n ∈ BNC〉

where the unadorned ⊗ is the usual tensor product on vector spaces. This compo-
sition is only associative up to isomorphisms of bimodules.

• The 2-morphisms of Alg2
k are bimodule morphisms.

We now need to define the 2-category Cob2(2). We shall actually be considering the
framed5 Cob2(2) category this ensures that gluing works properly.

• The objects of Cob2(2) are 2-framed points
{

+•, −•
}
.

• The 1-morphisms of Cob2(2) are compact 2-framed 1-manifolds.

• The 2-morphisms of Cob2(2) are diffeomorphism classes of compact 2-framed 2-
manifolds with corners. 6

Proposition 2.4.3. Fully extended (2, 1, 0)-TQFTs

Z : Cob2(2)→ Alg2
k

are completely determined by their value B = Z
( +•

)
∈ Alg2

k; which must be a finite
dimensional, semi-simple, Frobenuis algebra and Z(	)∗ is the centre of this Frobenius
algebra.

We will not have time to give a proof of this result however I shall give a sketch of
how the proof works.

If Z(+•) = A ∈ Alg2
k then Z(−•) = Aop. As gluing a straight line segment to a 1-

manifold has no effect on the topology
+
|
−
must map to the identity map in Alg2

k which is
the bimodule AAA:

Z

(
+
|
−

)
= AAA.

5A 2-framing of a smooth l-manifold M , l ≤ 2, is an isomorphism of the vector bundle R2−l ⊕ TM
with the trivial bundle M × R2.

6The source and target is determined by the choice of isomorphism R2−k ⊕ TM |B ∼= R2−k+1 ⊕ TB
from M onto part of its boundary B.
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Also

Z

( ⋂
+t−

)
= A⊗AopA

Z

(−t+⋃ )
= AA⊗Aop

so gluing them together gives

Z(S1) = A⊗A⊗Aop A ∼=
A

[A,A]

as a vector space. We can define a trace on A
[A,A] :

tr′ = Z
()

: A
[A,A] → k.

Thus we can define a trace on A by factoring through A
[A,A] :

tr : A→ A

[A,A]
tr′−→ k.

Then the pairing A⊗A→ k, defined by (a, b) 7→ tr(a·b) for all a, b ∈ A, is a Frobenius
form and thus A is a Frobenius algebra. To see that

(
A

[A,A]

)∗
is the centre you prove that

the map

z 7→
(
tr(z · _) : A→ k

)
is an isomorphism Z(A) ∼= ( A

[A,A])
∗ (Z(A) is the centre of A) using the associativ-

ity property of the Frobenius form. Finally to show the Frobenius algebra A is finite
dimensional is equivalent to showing it is separable.

1

2 4

3

1 3

2 4

Figure 2.10: Saddle

To do this we use the map

Z(saddle)1A2 ⊗ 3A4 → 1A3 ⊗ 2A4.

We define the element e to split the multiplication map m : A⊗A→ A into A⊗A =
A′ ⊕ A′′ by

e := Z(saddle)(1⊗ 1) ∈ A⊗ A.7

7e describes how the points (copies of A) are permuted.
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Chapter 3

Quantum Groups and Link
Invariants

Speaker: Jenny August
Notes: Jenny August

Dates: 29-1-16 & 5-2-16

3.1 Introduction
This lecture gives a first example of quantum groups and shows one of their applications;
knot invariants. It should be noted that this lecture will not make use of the definition
of a topological field theory and it may look out of place in the seminar but we will see
how it is connected in the following lecture. Unless otherwise stated, the reference for all
this material is Kassel’s Quantum Groups [9].

3.2 Quantum Groups
Unfortunately, there is no one definition for quantum groups and the term instead refers to
various classes of objects, usually noncommutative algebras with some sort of additional
structure. One such class consists of deformations of universal enveloping algebras of
lie algebras and the specific example we will consider is a deformation of the universal
enveloping algebra of sl2. This is an example of a Hopf Algebra and so we begin by
defining those.

3.2.1 Hopf Algebras
A Hopf Algebra is, in particular, an algebra and so we start with the definition of an
algebra.

Definition 3.2.1. An associative algebra over a field k is given by a triple (A, µ, η) where
A is a k-vector space and the k-linear maps µ : A⊗A→ A and η : k → A are such that
the following diagrams commute.
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A⊗ A⊗ A A⊗ A

A⊗ A A

µ⊗ id

id⊗µ
µ

µ

k ⊗ A A⊗ A A⊗ k

A

η ⊗ id

µ

id⊗η

∼= ∼=

The first diagram gives the associativity of the algebra and second diagram shows the
algebra is unital. Moreover, if we wish the algebra A to be commutative we ask that the
following diagram also commutes, where τA,A(a⊗ b) = b⊗ a.

A⊗ A A⊗ A

A

τA,A

µ µ

From this definition of algebra, it is very easy to define a coalgebra simply by reversing
all the arrows. However, to be explicit we give the following definition.

Definition 3.2.2. A coassociative coalgebra over a field k is given by a triple (A,∆, ε)
where A is a k-vector space and the k-linear maps ∆ : A → A ⊗ A and ε : A → k are
such that the following diagrams commute.

A⊗ A⊗ A A⊗ A

A⊗ A A

∆⊗ id

∆
∆

id⊗∆

k ⊗ A A⊗ A A⊗ k

A

ε⊗ id

∆

id⊗ε

∼= ∼=

The two diagrams give the coassociativity of the coalgebra and the fact the coalgebra
is counital. Moreover, if we wish the coalgebra A to be cocommutative we ask that the
following diagram also commutes.

A⊗ A A⊗ A

A

τA,A

∆ ∆

We call the maps ∆ and ε the coproduct and counit of the coalgebra respectively. Given
any two algebras, or coalgebras, we can define the notion of a morphism between them.

Definition 3.2.3. i) An algebra morphism between two algebras (A, µA, ηA) and (B, µB, ηB)
is a linear map f : A→ B such that µB ◦ (f ⊗ f) = f ◦ µA and f ◦ ηA = ηB.

ii) A coalgebra morphism between two coalgebras (A,∆A, εA) and (B,∆B, εB) is a
linear map f : A→ B such that (f ⊗ f) ◦∆A = ∆B ◦ f and εB ◦ f = εA.

This allows us to define a bialgebra.

19



Definition 3.2.4. A bialgebra is a quintuple (A, µ, η,∆, ε) such that (A, µ, η) is an alge-
bra and (A,∆, ε) is a coalgebra with the additional requirement that ∆ and ε are both
morphisms of algebras.

Note that we could have equivalently asked that µ and η were coalgebra morphisms. A
common example of a bialgebra is the group algebra of a finite group where ∆(g) = g⊗ g
and ε(g) = 1 for all g ∈ G. A Hopf Algebra is a bialgebra with some additional structure.

Definition 3.2.5. i) Let (A, µ, η,∆, ε) be a bialgebra. A linear map S : A → A is
called an antipode for A if

µ ◦ (S ⊗ idA) ◦∆ = µ ◦ (idA⊗S) ◦∆ = η ◦ ε

ii) A Hopf algebra is a bialgebra with an antipode.

Note that not all bialgebras have an antipode so Hopf Algebras are a special class of
bialgebras. Moreover, the antipode will be an antihomorphism i.e. S(ab) = S(b)S(a) for
all a, b ∈ A.

Now we turn our attention to the deformation of the universal enveloping algebra of
sl2, which will be the focus of this lecture. Recall that sl2 is the 3-dimensional lie algebra
generated by

E =
(

0 1
0 0

)
F =

(
0 0
1 0

)
and H =

(
1 0
0 −1

)

with relations

[E,F ] = H, [H,E] = 2E and [H,F ] = −2F.

We are interested in the representation theory of sl2 i.e. the sl2-modules. However, lie
algebras are not associative and so we can not use the array of tools developed for studying
the representation theory of associative unital algebras. Therefore, when studying a lie
algebra g, we often choose to study an associative unital algebra which in some sense
has “the same” representation theory as our original lie algebra. Such an algebra can
be chosen in a universal way and is called the universal enveloping algebra of g, denoted
U(g).

Note that U(sl2) is a cocommuative bialgebra with coproduct

∆(x) = 1⊗ x+ x⊗ 1 ∀x ∈ sl2.

However, for reasons which will become clear later, we choose to study the deformed
algebra Uq(sl2) which can be defined as follows. Pick q ∈ C× such that q is not a root of
unity. Then Uq(sl2) is the C(q)-algebra generated by E,F,K,K−1, with relations

KEK−1 = q2E, KFK−1 = q−2F and [E,F ] = K −K−1

q − q−1 .

To motivate these relations, note that the generators act on the irreducible two dimen-
sional representation of Uq(sl2) as

E =
(

0 1
0 0

)
F =

(
0 0
1 0

)
K =

(
q 0
0 q−1

)
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and that these matrices satisfy the relations above. In fact, we can think of K as qH and
if we take a certain limit as q → 1 we get the original U(sl2) back.

The Hopf Algebra structure on Uq(sl2) is given by

∆(E) = 1⊗ E + E ⊗K; ∆(F ) = K−1 ⊗ F + F ⊗ 1;
∆(K) = K ⊗K; ∆(K−1) = K−1 ⊗K−1;
ε(E) = ε(F ) = 0, ε(K) = ε(K−1) = 1

S(E) = −EK−1, S(F ) = −KF, S(K) = K−1, S(K−1) = K.

In particular, note that Uq(sl2) is not cocommutative which, although it seems like we are
making things more complicated, is precisely what allows us to obtain knot invariants.

3.3 Knot Theory Basics
Knot theory is essentially studying what we get when we take a piece of string, tangle it up
and then tie the ends together. We are actually going to look at a generalisation of knots,
called links, in which more than one piece of string is allowed. A more mathematical
definition is as follows.

Definition 3.3.1. A link is a collection of finitely many circles smoothly embedded in
R3. A knot is a link consisting of a single circle.

Examples are shown in Figure 3.1. Note that (a) and (c) are examples of knots where
as (b) is only a link.

(a) Unknot (b) Two linked circles (c) Trefoil

Figure 3.1: Examples of links.

The fundamental question of knot theory is to ask when two knots are “the same”.
Intuitively, two links are the same if you can get from one to the other without cutting
the string anywhere.

Definition 3.3.2. Two links are considered isotopic if there exists an isotopy of R3 which
maps one link to the other.

Figure 3.1 shows that we can draw links in the plane by keeping track of whether cross-
ings are over-crossings or under-crossings. However, there are multiple ways of drawing
the same link so we would like to know when two such diagrams represent the same link.

Proposition 3.3.3. Two links are isotopic if and only if you can change from one to the
other using the following Reidemeister moves:

21



Despite this very useful characterisation, it can still be very difficult to tell whether
or not two diagrams represent the same link. As a tool to help prove that two links are
different, mathematicians have developed various link invariants.

Definition 3.3.4. A link invariant assigns to each link an object such that, if two links
are isotopic, they are assigned the same object.

These are useful because, if two different objects are assigned to two links, we know
they can not be isotopic. A simple example is to assign to each link the number of circles
which make up the link. It’s clear that this is a link invariant but unfortunately it’s not
a very useful one. For example, it can’t tell the difference between the unknot and the
trefoil in Figure 3.1. Therefore, mathematicians looked for more sophisticated invariants
and, since the 1920’s, they have been assigning polynomials as link invariants. One such
example is the Jones Polynomial.
Example 3.3.5. Let L be a link. We define the Jones Polynomial, PL(t), of L inductively.

• If L is the unknot then PL(t) = 1.

• If L+, L− and L0 are three links, identical except at a single crossing point where

L+ ∼ L− ∼ L0 ∼

then t−1PL+(t) − tPL−(t) = (t 1
2 − t− 1

2 )PL0(t). This is called the Skein relation of
the Jones Polynomial.

As an example, we find the Jones Polynomial of the link consisting of two unlinked circles.
We define L0 to be our desired link and the others as follows:

L0 = L+ = L− =

We can see that both L+ and L− are isotopic to the unknot and so we get

(t 1
2 − t−

1
2 )PL0(t) = t−1 − t and so PL0(t) = t−1 − t

(t 1
2 − t− 1

2 )
.
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Since we can always put a link in terms of simpler links using this inductive method,
we can calculate the Jones Polynomial of any link. To show it is a link invariant, you just
need to show that it doesn’t change when we alter a link by any of the Reidemeister moves.

The goal of the rest of the lecture is to construct link invariants, including the Jones
Polynomial, using the category Uq(sl2)-mod. The idea is that we will relate morphisms
in Uq(sl2)-mod to tangles. Tangles are a generalisation of links where we don’t require
the two ends of the string to be tied together.

Definition 3.3.6. A tangle is a smooth embedding of arcs and circles into R2× I where
the endpoints of the arcs lie on R2 × ∂I.

Note that a link can be viewed as a tangle with only circles embedded. As with links,
tangles can be drawn in the plane and two diagrams represent the same tangle if and
only if they are related by the Reidemeister moves.

We are going to relate to each tangle a morphism in Uq(sl2)-mod and, in particular,
to each link, a morphism C(q) → C(q). This map can be thought of as an element of
C(q) and will be the link invariant. The reason this is going to work is because Uq(sl2) is
a Hopf Algebra which ensures Uq(sl2)-mod is a balanced, rigid, braided tensor category
which we discuss in more detail now.

3.4 Tensor Categories
Definition 3.4.1. A tensor category is a category C with a functor ⊗ : C × C → C and:

• A natural isomorphism a : ⊗(⊗×id)→ ⊗(id×⊗) called the associativity constraint;

• An object I ∈ C called the unit and natural isomorphisms l : ⊗(I × id)→ id and
r : ⊗(id×I)→ id called the left and right unit constraints respectively,

such that the Pentagon and Triangle Axioms hold i.e. the two diagrams in Figure 3.3
commute for all objects U, V,W,X ∈ C.

(U ⊗ (V ⊗W ))⊗X

(U ⊗ V )⊗W )⊗X U ⊗ ((V ⊗W )⊗X)

(U ⊗ V )⊗ (W ⊗X) U ⊗ (V ⊗ (W ⊗X))

aU,V ⊗W,XaU,V,W ⊗ idX

aU⊗V,W,X idU ⊗aV,W,X

aU,V,W ⊗X

(a) The Pentagon Axiom

(V ⊗ I)⊗W (V ⊗ (I ⊗W ))

V ⊗W

rV ⊗ idW idV ⊗lW

aV,I,W

(b) The Triangle Axiom

Figure 3.3: The Pentagon and Triangle Axiom for Definition 3.4.1.

Example 3.4.2. i) The obvious example of a tensor category is the category of k-vector
spaces, denoted Vect(k), with the usual tensor product. Here, the unit is given by
k.
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ii) Over a k-algebra A, every A-module is a k-vector space and so A-mod is a subcat-
egory of Vect(k). Thus, it will inherit the tensor category structure from Vect(k)
if, for any two A-modules V and W , we can give the vector space V ⊗W an action
of A. For a general k-algebra there is no canonical way to do this but if A has a
coproduct ∆ : A→ A⊗ A (such as Uq(sl2)), we can define the action as

a · (v ⊗ w) = ∆(a)(v ⊗ w).

Thus Uq(sl2)-mod is a tensor category.
As discussed, our link invariants are going to come from relating morphisms in Uq(sl2)

to tangles. In Figure 3.4, we begin introducing how we might draw these morphisms to
make this connection. We emphasise that the tensor product of two morphisms is simply
the two morphisms drawn next to each other and composition by a morphism g means
adding the picture related to g on top of the original morphism.

f

U

V

(a) f : U → V

=g ◦ f

f

g

U

W

U

V

W

(b) Composition of f : U → V and
g : V →W .

=idV

V

V

V

(c) idV : V → V

==f ⊗ g f ⊗ g f g

U1 ⊗ U2

V1 ⊗ V2

U1 U2

V1 V2

U1 U2

V1 V2

(d) Tensor product of f : U1 → V1 and g : U2 → V2.

Figure 3.4: Morphisms in a tensor category.

The definition of tensor category had a notion of associativity built into it but we
would also like a notion of commutativity as this often makes structures easier to work
with.

Definition 3.4.3. i) Define the flip functor, τ : C × C → C × C, such that τ(V,W ) =
(V,W ).
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ii) A braided tensor category is a tensor category (C,⊗) with a natural isomorphism

c : ⊗ → ⊗ ◦ τ

called the commutativity constraint satisfying the Hexagon Axiom.

Note that this just means we have an isomorphism cV,W : V ⊗W → W ⊗ V for every
V,W ∈ C satisfying some compatibility relations.
Example 3.4.4. i) In Vect(k), we can take c such that cV,W (v ⊗ w) = w ⊗ v. Notice

that cW,V ◦ cV,W = idV⊗W for all V,W ∈ C and so we say Vect(k) is a symmetric
braided tensor category.

ii) In Uq(sl2)-mod, the commutativity constraint from Vect(k) is not compatible with
the action of Uq(sl2) and so we need to look for a different braiding.

Definition 3.4.5. In a bialgebra A, a universal R-matrix is an invertible element of
A⊗ A such that

τA,A ◦∆(x) = R∆(x)R−1 ∀x ∈ A.

If an R-matrix exists we can define a braiding in A-mod by

cV,W (v ⊗ w) = τV,W (R(v ⊗ w)).

where τV,W (v ⊗ w) = w ⊗ v. If A is a cocommutative bialgebra, then you can take the
R-matrix to be 1 ⊗ 1 and A-mod becomes a symmetric braided tensor category with c
as in Vect(k). However, when A is not cocommutative, these R-matrices may not exist
and can be very difficult to find even when they do. For Uq(sl2), you need to pass to the
completion to find the R-matrix which has the expression

R = q
H⊗H

2 expq(q − q−1)E ⊗ F ).

More information about this can be found [14]. Even though this R-matrix only exists
in the completion, it is enough to give us a well defined braiding on Uq(sl2)-mod. As an
example, if we consider the 2 dimensional irreducible representation of Uq(sl2), V = C2

with standard basis {e1, e2}, then we get

cV,V = q2


q 0 0 0
0 0 1 0
0 1 q − q−1 0
0 0 0 q


with respect to the basis {e1⊗e1, e1⊗e2, e2⊗e1, e2⊗e2}. Note that cV,V (e1⊗e1) = q3e1⊗e1
and so it is clear that c2

V,V 6= idV⊗V and hence Uq(sl2)-mod is not a symmetric tensor
category.

While not being symmetric might make the category more complicated, it is exactly
what we need to get useful link invariants. We represent the braiding isomorphisms in our
category by the tangles shown in Figure 3.5 and, in particular, notice that if our category
is symmetric, we see that we don’t care whether or not a strand crosses above or below
another. For example, this means we would be unable to tell the difference between two
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cV,W =

V W

c−1
V,W =

V W

Figure 3.5: Representing the braiding isomorphisms as tangles.

linked circles and two unlinked circles. In particular, a knot invariant from a symmetric
category would assign the same object to every knot and so be useless as a knot invariant.
Thus, it is the non-cocommutativity of Uq(sl2) and so the lack of symmetry in Uq(sl2)-
mod which will give interesting knot invariants.

Recall that every vector space has a dual and this gives extra structure to the category
Vect(k).

Definition 3.4.6. A braided tensor category is rigid if every object V has a dual object,
denoted V ∗, and morphisms

eV : V ∗ ⊗ V → I

iV : I → V ⊗ V ∗

such that

(idV ⊗eV )(iV ⊗ idV ) = idV and (eV ⊗ idV ∗)(idV ∗ ⊗iV ) = idV ∗ .

Example 3.4.7. i) In Vect(k), we have V ∗ = Homk(V, k) and if V has basis {v1, . . . , vn},
and the dual basis is {v1, . . . , vn} then we have

eV (vi ⊗ vj) = vi(vj)
iV (1) =

∑
i

vi ⊗ vi

which are called evaluation and coevaluation respectively.

ii) As with the tensor category structure, the duals in Uq(sl2)-mod and the corre-
sponding maps are inherited from Vect(C), provided that we can define an action
of Uq(sl2) on V ∗ such that eV and iV are both module homomorphisms. For this to
hold, we need the antipode S : Uq(sl2) → Uq(sl2) which exists as Uq(sl2) is a Hopf
Algebra. The action of Uq(sl2) on V ∗ is then given by

(a · f)(v) = f(S(a) · v) ∀f ∈ V ∗.

Now that we have these duals and these extra morphisms, we wish to know how
to represent them as tangles. As we don’t want to clutter up our tangles with lots of
notation, if an arrow should be labelled by V ∗, we instead label it by V but give the
arrow the opposite orientation. This is shown in Figure 3.6. Also shown in the diagram
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f

V VV

W V

f : V ∗ → W idV ∗ eV : V ∗ ⊗ V → k iV : k → V ⊗ V ∗

Figure 3.6: Pictorial representations of the morphisms containing duals.

is how we draw eV and iV . We consider the unit as “the empty object" of the category
and so if an arrow should be labelled by I, we just don’t draw it. This is the key point,
as drawing them like this is going to let us view links as morphisms from C(q) to C(q).

Before we go any further, we give an example of using the graphical representation of
morphisms. For example, we can use them to express the conditions given in Definition
3.4.6 as shown in Figure 3.7. It is clear by the Reidemeister moves that the two tangles
in each diagram are the same and so should represent the same morphism.

=

V V

(a) (idV ⊗eV )(iV ⊗ idV ) = idV

=

V V

(b) (eV ⊗ idV ∗)(idV ∗ ⊗iV ) = idV ∗

Figure 3.7: Pictorial representations of the conditions in Definition 3.4.6.

To get a link invariant we are going to construct a functor from a category where
tangles are the morphisms to the category Uq(sl2)-mod. For this to be well defined we
need two things:

i) A way of associating to any tangle a morphism in Uq(sl2)-mod.

ii) If two tangles are isotopic we need that the two morphisms they represent are the
same.

Unfortunately neither of these are satisfied at the moment. First, note that strands of
tangles will have to be labelled by an object of Uq(sl2)-mod for us to have any hope of
knowing which morphism to send the tangle to. This problem will be solved by requiring
that the category whose morphisms are tangles is in fact a category of “coloured" tangles.
This precisely means that each strand of each tangle is coloured with an object of Uq(sl2)-
mod. However, even with this addition, we can’t satisfy either of the above conditions as
the following example shows.
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Example 3.4.8. At this point, we have no way of associating a morphism to the top cap of
the tangle in Figure 3.8. This would need to be a morphism V ⊗ V ∗ → I which we don’t
even know exists at the moment. However, again we are saved by the extra structure
that Uq(sl2)-mod has.

V
iV ⊗ idV

idV ⊗c−1
V ∗,V

idV ⊗ ??

Figure 3.8: While we can associate morphisms to most of this tangle, we don’t currently
know what to assign to the top cap. Moreover, by Reidemister moves, this tangle is
isotopic to the straight line corresponding to idV and so the morphism it represents
should be idV .

Definition 3.4.9. i) The transpose of f : U → V is f ∗ : V ∗ → U∗ where

f ∗ = (ev ⊗ idU∗)(idV ∗ ⊗f ⊗ idU∗)(idV ∗ ⊗iU).

ii) A braided tensor category (C,⊗) is balanced if there exists a natural isomorphism

θ : idC → idC

such that

θV⊗W = (θV ⊗ θW )cW,V cV,W and θV ∗ = (θV )∗.

iii) A ribbon category is a rigid, balanced, braided tensor category.

Example 3.4.10. i) Any symmetric braided tensor category is balanced with θV = idV .
In particular Vect(k) is a ribbon category.

ii) For Uq(sl2)-mod, we again have to appeal to the extra struture that Uq(sl2) has.
In particular, Uq(sl2) is a Ribbon Hopf Algebra which means there exists a special
element, called the ribbon element which allows us to define the twist isomorphisms.

Why do we call a braided tensor category with a twist “balanced”? Consider Definition
3.4.6, which required each object of the category to have a dual object. In fact what we
asked for there was for each object to have a right dual. We could instead have asked for
left duals.

28



Definition 3.4.11. For an object V in a tensor categorey C, the left dual of V is an
object ∗V with morphisms

i′V : I →∗ V ⊗ V
e′V : V ⊗∗ V → I.

such that

(idV ⊗eV )(iV ⊗ idV ) = idV and (eV ⊗ idV ∗)(idV ∗ ⊗iV ) = idV ∗ .

In a balanced category, we can take ∗V = V ∗ (hence the name balanced) and define

i′V = (idV ∗ ⊗θV )cV,V ∗ ◦ iV
e′V = eV ◦ cV,V ∗(θV ⊗ idV ∗).

This solves one problem as we can now assign a morphism to the cap in Figure 3.8.
However, this creates another problem as there is no reason for the morphism represented
by Figure 3.8 to be the same as the identity morphism. In fact, they are not the same
and we can see this if we draw the morphism i′V out in full as shown in Figure 3.9. This
tangle has a box labelled θV where as there is no such box on the identity map. However,
we don’t want to have to use the box to distinguish between the two tangles as boxes
never appear on links and we need i′V and e′v to just be a cap and cup respectively.
Therefore, we need a way to encode into our category of tangles that these two tangles

θV

V

Figure 3.9: Using Reidemeister moves, this is isotopic to the straight line labelled with
θV , which is not the same as the unlabelled line representing the identity.

are different. This invloves changing the category slightly by thickening the strands of
all tangles slightly into ribbons. Figure 3.10 shows that the morphism from Figure 3.8
is now represented by a ribbon with a twist and the identity is a ribbon with no twist.
This category is called the category of coloured ribbon tangles and we define it a bit more
concretely now.

Definition 3.4.12. Given a category C, we define a category RibC to have
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= 6=

Figure 3.10: Thickening the strands into ribbons allows us to view a strand with a twist
as different a strand with no twist.

• Objects are words made up of objects of C, where each object in the word is assigned
either an up or down arrow;

• Morphisms are ribbons connecting two words, such that both ends of a ribbon must
be attached to the same object of C with the orientation consistent along the ribbon.

Composition is done by placing tangles on top of each other.

Now, taking C = Uq(sl2) − mod, we can define a functor F : RibC → C. This maps
objects and morphisms as in Figure 3.11.
Example 3.4.13. The following framed directed, coloured link maps as follows:

F

e′V ⊗ e
′
V

idV ⊗CV,V ∗ ⊗ idV ∗

idV ⊗CV ∗,V ⊗ idV ∗

iV ⊗ iV
V V

This morphism (e′V ⊗ e′V ) ◦ (idV ⊗CV,V ∗ ⊗ idV ∗) ◦ (idV ⊗CV ∗,V ⊗ idV ∗) ◦ (iV ⊗ iV ) is a
morphism from C(q) → C(q) and so can be thought of as an element of C(q). It is this
element which we assign as the invariant to the link on the left hand side. However, we see
there are several problems with our construction so far. The first is that this assignment
required a choice: we chose to label both parts of the link by the representation V . If we
had labelled them with a different choice, we would have got a different invariant. The
second problem is that our invariant is only an invariant of framed, directed links rather
than just links.

Unfortunately, we are never going to get rid of the choice involved. However, if we
pick a represention V and let RibVC be the full subcategory of RibC consisting of objects
where every term is labelled by V , then we can view any framed, directed link, L as
a morphism in this category, just by labelling every strand by V . Then, if F V is the
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V V ∗V V

U V W V W U ⊗ V ∗ ⊗W ⊗ V ⊗W ∗

V

V

7→ θV

7→ e′V

7→ eV

7→ iV

7→ i′V

7→ idV 7→ idV ∗ 7→ cV,W

V V

V V

V V

V V

V

V

V

V

V

W

W

V

Figure 3.11: Shows where the functor F : RibC → C sends specific objects and morphisms.

restriction of F to this subcategory, F V (L) is the link invariant assigned to L. Moreover,
if we choose C = Uq(sl2)-mod and V = C2, the irreducible representation of dimension
two, then we get the added structure that V ∗ ∼= V and so the direction does not matter.
Hence, by making this choice, we get an invariant of framed links.

Finally, we address how we can get a link invariant from this. One way to go about
this is to assign a rule that, for each link, tells us how to frame it and then we can use our
invariant of framed links. One such rule is called blackboard framing. Informally, this
just involves taking the link diagram and thickening the lines as they are without adding
any twists. Examples are given in Figure 3.12. However, a problem occurs because the
two knots in Figure 3.12 are isotopic and so should be given the same link invariant but
the blackboard framing takes them to two different framed links: if we unfold the second
it would be a circle with a twist rather than just a circle. To solve this, we use the writhe
of the link diagram which keeps track of the crossings in a link diagram.

Definition 3.4.14. In a link diagram L, we define positive and negative crossings as
follows:
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Figure 3.12: Examples of Blackboard Framing

+ := − :=

Then the writhe of a link diagram L, denoted ω(L) is the total number of crossings minus
the total number of negative crossings.

For example, the writhes of the two links in Figure 3.12 are 0 and 1 respectively. As
you might expect, since the braiding θV keeps track of the twists in the correspondence
we developed, we are going to use this to solve our problem with blackboard framing.
Since V was chosen to be the irreducible representation of dimension 2, θV acts as a scalar
and so we can think of it as an element of C(q). Then, if for a link L, we denote by Lb
the blackboard framed link associated to L, the link invariant of L is

θ
ω(L)
V F V (Lb).

Thus, we have constructed a knot invariant from the category Uq(sl2)-mod using the large
amount of structure it has. As a last remark, we note that the Jones Polynomial can be
recovered from this construction. Recall that the Skein relation for the Jones polynomial
was

t−1PL+(t)− tPL−(t) = (t 1
2 − t−

1
2 )PL0(t)

where L+, L− and L0 were identical link diagrams except at a single crossing point where

L+ ∼ L− ∼ L0 ∼

If we label each of the strands with our chosen representation V , then the three crossing
points correspond to the maps cV,V , c−1

V,V and idV⊗V . However, we had a matrix for cV,V
and the matrix for the identity is just the identity matrix. A quick calculation shows that

q−22cV,V − q2c−1
V,V = (q − q−1) idV⊗V

and so taking t = q2 we have precisely got the Skein relation back.
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Chapter 4

Invariants of 3d manifolds, 3d TFTs
and Quantum Groups

Speaker: Noah White
Notes: Jenny August

Dates: 5-2-16 & 12-2-16

4.1 Introduction
In the previous lectures, we classified 1- and 2-dimensional TFT’s and saw how to obtain
link invariants from a quantum group. These lectures seemed quite disjoint from one
another and so in this lecture, we will see how the two topics are related. The key idea
needed to link the two concepts is that 3-manifolds can be viewed as links and so we
begin with this.

4.2 3-Manifolds From Links
Suppose K is a framed knot and let T1 ⊇ K be a small tubular neighbourhood with
β ∈ H1(∂T1,Z) the cycle canonically given by the framing of the knot. For example,

where β is the cycle shown in red. Now, given another solid torus T and the cycle
α ∈ H1(∂T,Z) given by
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there is a canonical (up to isotopy) homeomorphism f : ∂T1 → ∂T such that the induced
map f∗ : H1(∂T1,Z)→ H1(∂T,Z) maps β to α.

We can extend this idea to links componentwise. For a link L in S3, we denote by Ti
some small tubular neighbourhood of the i-th component of L. For each of these Ti we
get a corresponding map

fi : ∂Ti → ∂T

as above. Then we define the surgery of S3 along L to be the 3-manifold

ML :=
(
S3\ ∪i T int

i

)
tf1 T tf2 T tf3 · · · tfN T

where T int
i denotes the interior of Ti. The key result is the following theorem, known as

Kirby Calculus.

Theorem 4.2.1. Every closed oriented compact 3-manifold can be obtained as ML for
some link L and ML

∼= ML′ if and only if you can get from L to L′ using the following
move:

The above move is know as the Kirby-Fenn-Rourke move and can contain any number
of strands. This gives us a strategy for finding invariants of 3-manifolds; namely find a
link invariant which is also invariant under the Kirby-Fenn-Rourke moves.

4.3 3D TFT’s
Before, we go any further, we introduce how TFT’s are connected. Recall from the first
talk that a TFT is a symmetric monoidal functor

Z : Cobm(n)t → C⊗

where the objects of Cobm(n)t are (n−m)-manifolds, the 1-morphisms are (n−m+ 1)-
manifolds which are cobordisms between the objects, and so on until the m-morphisms
are n-manifolds which are cobordisms between the (m− 1)-morphisms.

In this case we are interested in TFT’s from Cob2(3) into the category AbCatC, con-
sisting of finite abelian categories over C, functors and natural transformations. We
choose AbCatC because it is a 2-category like Cob2(3) and it has a monoidal structure
given by the Deligne tensor product, denoted by �, for which the category Vect(C) is the
identity.
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So now we ask where a TFT would send closed manifolds. By definition, it must
send a closed 1-manifold to a category. A closed 2-manifold can be thought of as an
endomorphism of the unit (the empty manifold) of Cob2(3), similarly to how we viewed
links as endomorphisms of the unit in Uq(sl2)-mod when finding link invariants. Thus,
any closed 2-manifold must be sent to an endofunctor of the identity category i.e. an
endofunctor of Vect(C). Any such endofunctor can be shown to have the form

−⊗ V : Vect(C)→ Vect(C)

for some vector space V and so can be identified with a vector space. Similarly, closed
3-manifolds must be sent to a natural isomorphism of the identity functor on Vect(C).
The vector space representing this functor is C and so such a natural isomorphism can be
identified with a map C→ C which in turn can be represented by a single element of C.
This assignment of a number to a closed 3-manifold will be an invariant of 3-manifolds
and so we can see that TFT’s give us invariants of 3-manifolds.

So now we ask whether we can classify these 3d-TFT’s. Recall from the first talk that
we completely classified 2 dimensional TFT’s. We showed that a TFT

Z : Cob1(2)t → Vect(k)⊗

is completely determined by a corresponding finite dimensional commutative Frobenius
algebra. To do this, we noted that the objects of Cob1(2) were disjoint unions of

and

and so Z was completely determined on objects by where it sent one of these. Examining
morphisms in Cob1(2)t then told us what structure this image had to have. We can play
exactly the same game for 3 dimensional TFT’s. We want to study TFT’s

Z : Cob2(3)→ AbCatC

where the objects of Cob2(3) are 1-manifolds, the 1-morphisms are 2-manifolds and the
2-morphisms are 3-manifolds. As before, this TFT is completely determined by the
category C where it sends

and so now we need to look at morphisms involving this object in Cob2(3). As before,
the cobordism
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Figure 4.1: The image of this morphism of Cob2(3) is the functorm◦(F�idC) : Vect(C)�
C → C. Since it is diffeomorphic to a cylinder m ◦ (F � idC) must be isomorphic to idC.

means that we must have a map C � C → C and by the same arguments as for the 2-
dimensional case, this map must be associative, commutative and have a unit. However,
in this case, each of these only has to hold up to natural isomorphism as AbCatC has a
further level of morphisms than Vect(C). This precisely means that C must be a braided
tensor category.
Now, we consider the 2-manifolds

and

where the second one is a twist of the first. These are diffeomorphic to each other and so
must be sent to two isomorphic functors F,G : C → C which are the identity on objects.
Thus, for each V ∈ C, there are isomorphisms

θV : V → V

which are natural in V . This gives a balancing structure on C which, along with the fact
that C must be rigid, means that C must be a ribbon category. The proof that C must
be rigid is a bit involved and so we do not present it here but it can be found in [9].
Additionally, applying Zorro’s lemma as we did in the first lecture, we see that C must
have only finitely many simple objects. In fact we can go even further and show that C
must be a semisimple category. To see this we need to examine the image of

and

under the TFT. The first, which we call the cap, must map to a functor F : Vect(C)→ C
and the second, which we call the cup, to a functor G : C → Vect(C) as the unit of AbCatC

was Vect(C). However, Figure 4.1 shows that the functor m◦ (F � idC) : Vect(C)�C → C
(wherem is the product on C) must be isomorphic to idC as both are the image of cylinders
in Cob2(3). Therefore, we get isomorphisms F (C) ⊗ X ∼= X, for every X ∈ C which
are natural in X. Similarly, by flipping Figure 4.1 upside down, we get isomorphisms
X ⊗ F (C) ∼= X and thus F (C) must be the unit of C.
Now, for dualisability reasons, which haven’t been discussed yet in the seminar but will
be discussed later on, the image of the cup must be right adjoint to the image of the cap.
Therefore, we get isomorphisms

GX ∼= HomVect(C)(C, GX) ∼= HomC(F (C), X) ∼= HomC(1C, X)
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which are natural in X. Therefore, by Yoneda’s Lemma, we have G = HomC(1C,−).
So now, we want to use this information to see that the category C must be semisimple.
Note that an abelian category is semisimple if and only if all of its objects are projec-
tive which precisely means that Hom(X,−) is exact for all objects. However, since our
category is a ribbon category, for any X ∈ C, we have

HomC(X,−) ∼= HomC(1C, X∗ ⊗−)

and, since tensoring in a tensor category is exact, we see that HomC(X,−) will be exact
as soon as HomC(1C,−) is exact. However, again for dualisaibilty reasons, the image of
the cup must have left and right adjoints and thus HomC(1C,−) must have left and right
adjoints and must therefore be exact. Therefore, HomC(X,−) is exact for any X and so
C is semisimple.

With a bit more work we get that any 3d TFT into AbCatC must be a modular tensor
category which we define now.

4.4 Modular Tensor Categories
Recall that a ribbon category is a balanced, rigid, braided tensor category.

Definition 4.4.1. A modular tensor category is a ribbon category C such that:

• C is semisimple;

• C has finitely many simple objects {Vi}i∈I ;

• the matrix s̃ = (s̃ij) is invertible where

Vi Vj

s̃ij =

are viewed as elements of C.

The first question we might ask about such a category is why is it called a modular
category. The reason for this is that is gives representations of the the modular group
PSL(2,Z) i.e. the group SL(2,Z) quotiented out by its centre. To see this we introduce
some notation.

Definition 4.4.2. Suppose C is a modular tensor category. Let

• θi := θVi ∈ End(Vi) = C where θ is the balancing natural isomorphism in C;

• di := dim(Vi) where
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Vi

dim(Vi) =

is viewed as an element of C;

• p± := ∑
i∈I θ

±1
i d2

i ;

• D :=
√
p+p−;

• s := 1√
p+p−

s̃;

• t = (tij) where tij = δijθi.

Then, with a few calculations, you find

(st)3 =
√
p+

p−
s2 and s4 = 1.

If we now recall that SL(2,Z) has a common presentation with generators and relations

S :=
(

0 −1
1 0

)
, T :=

(
1 1
1 0

)
, (ST )3 = S2, S4 = 1

which are remarkably similar to the relations above. They are only out by a scalar factor
and thus, the equations from the modular tensor category actually give a presentation
of PSL(2,Z), also known as the modular group. Thus we call these categories modular
tensor categories.

However, returning to our key discussion we want to give an invariant of 3-manifolds.
It turns out that, with a TFT and hence a modular tensor category we can define the
following invariant.

Definition 4.4.3. The Reshetkhin-Turaev invariant of a 3-manifold ML is

τ(ML) = D−N−1
(
p+

p−

)σ(L)
2
RTV (L)

where

• N is the number of components in the link;

• σ(L) is the wreath number of L (this is just a topological invariant of the link L);

• V is the sum of all simple modules in the modular tensor category C, each with
weight di;

• RT (L) is the framed link invariant defined in the last lecture.

So now we know that given a 3d TFT, we get a modular tensor category which in
turn gives an invariant of 3-manifolds. We now wish to give an example of a modular
tensor category and for this, we return to quantum groups.
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4.5 Quantum Groups
In the previous lecture, we defined Uq(sl2) where q was chosen not be be a root of unity.
This had the advantage that Uq(sl2)-mod had similar structure to sl2-mod in the sense
that both had a unique irreducible representation of each dimension. However, we are
now going to consider the case where q is a root of unity. We define Uq(sl2) in the same
way i.e. it is the C(q) algebra generated by E,F,K± with relations

KEK−1 = q2E, KFK−1 = q−2F and EF − FE = K −K−1

q − q−1 .

However, if we first think of q as a formal symbol rather than a root of unity, we want to
think of assigning q to a root of unity as a specialisation of the algebra. The first will be
a C(q)-algebra but the specialisation will only be a C-algebra. If we are specialising q to
be the root of unity ε, then

1
q − ε

∈ Uq(sl2)

when considered as a C(q)-algebra but which would have to be sent to 1/0 in when
considered as a C-alegbra which clearly isn’t possible. Thus, we need a different way to
think about specialising which involves integral forms.

Definition 4.5.1. Let U be a C(q)-algebra. An integral form for U is a C[q, q−1]-
subalgebra UZ ⊂ U such that

UZ ⊗C[q,q−1] C(q) ∼= U.

An integral form Uq(sl2)Z is useful because, as it is only a C[q, q−1]-algebra, it no
longer contains 1

q−ε for ε ∈ C but it still contains much of the infomation of Uq(sl2). We
can now specialise Uq(sl2) by actually specialising the integral form of Uq(sl2).

Definition 4.5.2. The specialisation of an integral form UZ of a C(q)-algebra U is the
fibre Uε over ε i.e.

Uε = UZ ⊗C[q,q−1] Cε

where Cε = C with q acting as ε.

However, the problem with integral forms is that they involve a choice and different
integral forms will give different specialisations as the following example shows.
Example 4.5.3. Consider the C(q)-algebra

U = C(q)〈x, ∂q〉
[∂q, x] = q

The most obvious integral form, which we call U1, is generated by x and ∂q. Then

U1 ⊗ Cq=0 ∼= C[u, v].

However, another integral form, which we call U2 is generated by x and q−1∂q and then

U2 ⊗ Cq=0 ∼= C〈u, v〉/[q−1∂q, x] = 1.
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Since

[q−1∂q, x]⊗ 1 = q−1[∂q, x]⊗ 1
= 1⊗ 1
6= 0

we see that U1 ⊗ Cq=0 � U2 ⊗ Cq=0 and so the choice of integral form does really matter.
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Chapter 5

Higher Categories, Complete Segal
Spaces and the Cobordism
Hypothesis

Speaker: Matt Booth
Notes: Matt Booth

Dates: 16-2-2016 & 26-2-2016

These lectures will follow Lurie’s treatment in [10].

A note on notation I try to denote usual categories with italic letters, and higher
categories (2-categories, (∞, n)-categories, etc.) with calligraphic letters.

5.1 Extending Cob(n)

5.1.1 Extending down
We’ve seen that the cobordism categories Cob(n) should really have more structure than
just categories. In particular we should have, for every integer k ≤ n, a k-category1

Cobk(n) with

objects←→ closed oriented (n− k)-manifolds
1-morphisms←→ oriented cobordisms
2-morphisms←→ cobordisms between cobordisms

...
k-morphisms←→ (diffeomorphism classes of) n-manifolds with corners

We’d like to have a nice definition of k-category that includes Cobk(n). Here’s an
obvious definition to make:

Definition 5.1.1. A strict 1-category is a category. A strict k-category is defined
inductively as a category enriched over strict (k − 1)-categories.

1In this section we’ll treat higher categories at an informal level. Note that the concept of a “k-
category” has not been defined!
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This definition is not the correct one. In particular Cobk(n) is not a strict k-category
since composition is not strictly associative, only associative up to isomorphism. We
could adjust the definition of Cobk(n) so that composition does become strictly associa-
tive, but this quickly gets messy.

Moral 5.1.2. We’re going to need a better notion of k-category, where composition need
only be associative up to isomorphism.

5.1.2 Extending up
Let’s suppose we have a good definition of what a k-category is. Then we can de-
fine a (k, n)-category to be a k-category where all of the i-morphisms are invertible for
n < i ≤ k.

Example 5.1.3. A (1, 0)-category should just be a groupoid.

It’s also often useful to allow k = ∞; in fact we’re going to define (∞, n)-categories
later. This gives us a definition of (k, n)-categories simply by ignoring the morphisms
above level k.

Example 5.1.4. An (∞, 0)-category is an ∞-groupoid. Given a topological space X, we
should be able to form an ∞-groupoid π≤∞(X) called the fundamental ∞-groupoid
of X, with

objects←→ points of X
1-morphisms←→ paths between points
2-morphisms←→ homotopies between paths
3-morphisms←→ homotopies between homotopies

...

The fundamental groupoid of X remembers all of X up to weak homotopy equivalence.
More formally, the fundamental groupoid construction is an equivalence between topo-
logical spaces (up to weak homotopy equivalence) and ∞-groupoids (up to equivalence).
This assertion is known as the homotopy hypothesis2. This allows us to think of
(∞, 0)-categories as really being topological spaces. So as well as generalising category
theory, higher category theory should also generalise topology.

Recall that in defining Cob(n), we defined a morphismM → N to be a diffeomorphism
class of (oriented) cobordisms M → N . Instead of considering two diffeomorphic cobor-
disms to be the same map, we could say that they differ by an invertible 2-morphism.

2This is not a theorem yet, since we don’t have a definition of∞-groupoid. We could either define an
∞-groupoid to be a topological space, or we could regard the homotopy hypothesis as being a condition
that our models for higher categories need to satisfy.
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Hence we should have an (∞, 1)-category Cobt(n) with
objects←→ closed oriented (n− 1)-manifolds

1-morphisms←→ oriented cobordisms
2-morphisms←→ diffeomorphisms between cobordisms
3-morphisms←→ isotopies between diffeomorphisms

...
Note that this definition allows us to keep track of the diffeomorphism groups of our

cobordisms.

We can combine our two higher-categorical versions of Cob(n) into a single (∞, n)-
category Bordn with

objects←→ 0-manifolds
1-morphisms←→ cobordisms between 0-manifolds
2-morphisms←→ cobordisms between cobordisms

...
n-morphisms←→ n-manifolds with corners

(n+ 1)-morphisms←→ diffeomorphisms
(n+ 2)-morphisms←→ isotopies between diffeomorphisms

...
Moral 5.1.5. We’re going to need a good definition of (∞, n)-categories. Note that the
disjoint union operation on 0-manifolds should turn Bordn into a symmetric monoidal
(∞, n)-category.

5.1.3 Intuitive statement of the cobordism hypothesis
The cobordism hypothesis is stated in terms of framed cobordisms. This is a technical
point and won’t really concern us. Denote the (∞, n)-category of framed cobordisms by
Bordfr

n .

If C is a symmetric monoidal (∞, n)-category then consider the category of C-valued
fully extended framed TFTs: we can identify this category with the category Fun⊗(Bordfr

n , C)
of symmetric monoidal functors from Bordfr

n to C.

The cobordism hypothesis more or less says that the evaluation functor
Z 7→ Z(∗) determines a bijection between isomorphism classes of C-valued fully extended
framed TFTs and isomorphism classes of objects in C satisfying suitable finiteness con-
ditions.3

Remark 5.1.6. This specialises to a statement about Cob(n) by taking homotopy n-
categories.

3By suitable finiteness conditions’ we mean full dualisability, which we’ll see a definition of in § 5.5.
In Vectk the fully dualisable objects are exactly the finite-dimensional vector spaces.
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5.2 (∞, 1)-categories as complete Segal spaces
We’ll first define (∞, 1)-categories and then soup up our definition in § 5.3 to get to
(∞, n)-categories.

Intuitively, an (∞, 1)-category should be a topological category; one where the hom-
sets have the structure of topological spaces and all maps in sight are continuous.4 Higher
morphisms are homotopies, homotopies between homotopies, and so on. However, while
intuitive, this definition is very difficult to work with.

There are several other models5 but we’re going to use complete Segal spaces as our
models for (∞, 1)-categories since they generalise easily to (∞, n)-categories.

5.2.1 Preliminary: simplicial sets
Definition 5.2.1. The simplex category ∆ has objects [n] = {0, 1, . . . , n} for every
natural number n and morphisms the weakly order-preserving maps.

It looks like

0 1 2

...

where we’ve omitted the maps from [2] to [1]. The maps going to the right are the
face maps and the maps going to the left are the degeneracy maps.
Definition 5.2.2. A simplicial object in a category C is a functor ∆op → C. More
concretely a simplicial object is a collection of objects Xn indexed by the nonnegative
integers together with various face and degeneracy maps.
Definition 5.2.3. A morphism between two simplicial objects F : ∆op → C and
G : ∆op → C is a natural transformation F → G. Concretely, a morphism of simplicial
objects is a collection of maps Xn → Yn commuting with the face and degeneracy maps.
Proposition 5.2.4. The collection of simplicial objects in a category C and their mor-
phisms itself forms a category, which we denote sC.

A simplicial object X• looks like

X0 X1 X2 · · ·
4One way to think about this is that an (∞, 1)-category should be enriched in (∞, 0)-categories, which

are the same thing as topological spaces.
5A good account of these is given in [3].
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We’ll be interested in simplicial sets; simplicial objects in Set.6 Later we’ll be inter-
ested in simplicial topological spaces.
Example 5.2.5. Given a topological space X, we can define (functorially) a simplicial set
Sing(X) that at level n is the set Hom(∆n, X) of maps from the n-simplex ∆n ⊆ Rn+1 to
X. We also have a geometric realisation functor | · | : sSet→ Top and in fact |Sing(X)|
is weakly homotopy equivalent to X. Simplicial sets are good combinatorial models of
topological spaces.7

Example 5.2.6. Given a category C, the nerve is a simplicial set N(C) which at level n
consists of the strings C0

f1−→ C2
f2−→ · · · fn−→ Cn of n composable morphisms. It’s easy to

recover C up to isomorphism (not just equivalence) from its nerve N(C).

We might wonder which simplicial sets are the nerves of categories.

Proposition 5.2.7 (the Nerve Theorem). A simplicial set X is isomorphic to the nerve
of a category if and only if for all m,n ≥ 0 the diagram

Xm+n Xm

Xn X0

induced by the maps

0 < 1 < · · · < m 0 < 1 < · · · < m

m < m+ 1 < · · · < m+ n [m+ n] [m] m

0 < 1 < · · · < n [n] [0] 0

0 0

is Cartesian (i.e. a pullback diagram).

Whenever this diagram appears, we will fix the convention that the maps featuring
are the maps described above.

5.2.2 Homotopy theory
Our philosophy is that (∞, 1)-category theory should be category theory, but done in

a homotopy-theoretic manner. This is because an (∞, 1)-category is just a topological
category where the higher morphisms are given by homotopies.

6A simplicial set is the same thing as a set-valued presheaf on ∆.
7Technically sSet and Top are Quillen equivalent (via these two functors), so they have the same

homotopy theory.
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Since Proposition 5.2.7 tells us that we can recover a category from its nerve, we’ll try
to code up the concept of a nerve in homotopy theory. We’ll see that a Segal space is
precisely this concept of ‘homotopy nerve’. However we’ll see that a Segal space alone
won’t quite be enough to recover an (∞, 1)-category: we’ll need some more conditions.

Definition 5.2.8. Let X f−→ Z
g←− Y be a diagram of topological spaces8 and continuous

maps. The homotopy fibre product X ×hZ Y of X and Y along f and g is the space
X ×Z Z [0,1] ×Z Y whose points are triples (x, y, p) with x ∈ X, y ∈ Y and p : [0, 1]→ Z
a path in Z from f(x) to g(y).

Remark 5.2.9. There is a canonical map fromX×ZY toX×hZY given by (x, y) 7→ (x, y, p)
where p is the constant path from f(x) = g(y) to itself.
Example 5.2.10. Let X be a space and p : ∗ → X be the inclusion of a basepoint. Then
the homotopy fibre product of ∗ p−→ X

p←− ∗ is the space ΩX of loops in X based at p.
The usual fibre product is the one point space ∗.

Example 5.2.11. More generally, the homotopy fibre product of ∗ p−→ Y
f←− X is the

homotopy fibre of f over the basepoint p in Y .
The usual fibre product of topological spaces does not respect homotopy equivalences.

The homotopy fibre product is invariant under homotopy equivalence: if we replace f
and g by homotopic maps then the weak homotopy type of X ×hZ Y does not change.
Remark 5.2.12. Another nice property of the homotopy fibre product is that we have a
long exact sequence of homotopy groups

· · · → πn(X ×hZ Y )→ πn(X)× πn(Y )→ πn(Z)→ · · · → π0(X)× π0(Y )

Proposition 5.2.13. The homotopy fibre product X ×hZ Y comes with two canonical
projection maps to X and Y making the diagram

X ×hZ Y Y

X Z

commute up to canonical homotopy. Moreover if the square

W Y

X Z

is homotopy commutative then there is a unique up to homotopy map W → X ×hZ Y
making the two triangles obtained strictly commutative. For this reason we often call
X ×hZ Y the homotopy pullback of X and Y along f and g.

8For technical reasons we need to work with a ‘convenient category’ of spaces. For example we can use
CGH (compactly generated Hausdorff) spaces as in [18] or CGWH (compactly generated weak Hausdorff)
spaces as in [19]. For concreteness we may suppose that all topological spaces are CGWH.
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Definition 5.2.14. A homotopy commutative square

W Y

X Z

is homotopy Cartesian (or just h-Cartesian) if there is a weak homotopy equivalence
W → X ×hZ Y such that the triangles obtained are strictly commutative.

Neither

h-Cartesian =⇒ Cartesian

nor

Cartesian =⇒ h-Cartesian

is true in general! If our maps are sufficiently nice (e.g. if X → Z is a fibration) then a
Cartesian square is homotopy Cartesian. In this situation we can compute the homotopy
fibre product by computing the usual fibre product.

5.2.3 Segal spaces
Definition 5.2.15 (Rezk). A simplicial topological space X• is a Segal space if for all
m,n ≥ 0 the diagram

Xm+n Xm

Xn X0

is h-Cartesian. We can equivalently specify that for all n the Segal maps

Xn → X1 ×hX0 X1 ×hX0 · · · ×
h
X0 X1︸ ︷︷ ︸

n

are weak homotopy equivalences.

Remark 5.2.16. This is not a universally accepted definition. Some authors, for example
[4], specify in addition that X• should be Reedy fibrant, a ‘niceness’ condition on sim-
plicial spaces that ensures that the homotopy pullback Xm ×hX0 Xn is the usual pullback
Xm ×X0 Xn. In this case it’s enough to demand that Xm+n → Xm ×X0 Xn is a weak ho-
motopy equivalence. Reedy fibrancy is a technical condition that can always be satisfied.
For more on model category theory and the definition of Reedy fibrancy, the reader can
consult e.g. Appendix A.2 of [11].

What do Segal spaces have to do with (∞, 1)-categories? Let’s suppose for the moment
that we already have a good theory of (∞, 1)-categories. Just like a 1-category has an
underlying groupoid, obtained by throwing away all of the noninvertible morphisms, an
(∞, 1)-category should have an underlying ∞-groupoid obtained in the same way:
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Idea 5.2.17. Let C be any (∞, 1)-category. We can loosely define the underlying ∞-
groupoid of C, which I will denote by π≤∞(C), to be the ∞-groupoid with

objects←→ objects of C
1-morphisms←→ invertible 1-morphisms in C
2-morphisms←→ 2-morphisms between invertible 1-morphisms of C

...

Since we can identify∞-groupoids with topological spaces, we may think of π≤∞(C) as a
topological space B0C which we refer to as the classifying space for objects of C. Note
that by definition the fundamental ∞-groupoid of B0C is the underlying ∞-groupoid of
C.

Clearly B0C should not in general encode all of the information about C. For example it
doesn’t know about noninvertible morphisms or how composition works. We can extend
the above definition to get classifying spaces for n-morphisms of C (since we can think
of an object as a 0-morphism), and hopefully this collection of classifying spaces should
allow us to recover C.
Idea 5.2.18. Let [n] be the 1-category associated to the ordered set {0, 1, 2 . . . , n}. Let
C be an (∞, 1)-category. We can think of an n-morphism in C as a functor [n] → C.
The collection Fun([n], C) of functors [n] → C itself naturally has the structure of an
(∞, 1)-category, so it has an underlying ∞-groupoid π≤∞(Fun([n], C)). Let BnC be the
topological space associated to this∞-groupoid. We call BnC the classifying space for
n-morphisms in C. Again, by definition the fundamental ∞-groupoid of BnC is the
underlying ∞-groupoid of Fun([n], C).

What kind of object should the collection B•C be? Moreover, to what extent does it
determine C? The answer to the first question is that B•C should be a simplicial space,
and moreover a Segal space. The Segal conditions formalise the idea that giving a chain

A0 → A1 → · · · → An+m

of composable morphisms should be equivalent to giving two chains

A0 → · · · → An An → · · · → An+m

and moreover that it should not matter where we break the chains. To answer the second
question, we can try to define an ‘inverse’ to the operation C → B•C and see if we need
to add any extra data to a general Segal space in order to extract an ∞-category.
Idea 5.2.19. Given a Segal space X• we should be able to construct an (∞, 1)-category
C(X•) which has

objects←→ points of X0

Mapping spaces Map(x, y)←→ {x} ×hX0 X1 ×hx0 {y}
composition law←→ given by X2

higher associativity information←→ given by X3,X4. . .
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Observe that the connected components of the space Map(x, y) should be precisely
the homotopy classes of 1-morphisms in C(X•). With this in mind, we can construct a
1-category from a Segal space:

Definition 5.2.20. The homotopy category hX• of a Segal space X• is the category
whose objects are the points of X0, and whose homsets are

HomhX•(x, y) : = π0(Map(x, y))
= π0({x} ×hX0 X1 ×hx0 {y})

Remark 5.2.21. The homotopy category of X• records some of the basic information
about C(X•) - it knows what the objects should be, for example - but it forgets all of the
homotopical information by identifying all homotopic maps. It can be thought of as a
1-categorical ‘flattening’ of the (∞, 1)-category C(X•).

5.2.4 Completeness
If we start with a general Segal space X•, how does it compare to the Segal space Y• :=

B•(C(X•))? The fundamental groupoid of Y0 is the classifying space for 0-morphisms of
C(X•). This receives a map from the fundamental groupoid of X0 but this map is not
necessarily an equivalence, since there may be invertible 1-morphisms in C(X•) which do
not come from paths in X0. We’d like to impose an extra condition on our Segal spaces
which ensures that every invertible 1-morphism in C(X•) comes from an essentially unique
path in X0.

Definition 5.2.22. Let pi be the map from [0] to [1] given by 0 7→ i. For any Segal
space X• write p∗i : X1 → X0 for the map induced by pi. If f ∈ X1 then write x := p∗0(f)
and y := p∗1(f) so that we can think of f as a path from x to y. The map {f} →
{x}×X0 X1×x0 {y} → {x}×hX0 X1×hx0 {y} determines an element [f ] of HomhX•(x, y) =
π0({x} ×hX0 X1 ×hx0 {y}). Say that f is invertible if [f ] is an isomorphism.

Example 5.2.23. If X• is a Segal space let δ : X0 → X1 be the map induced by the unique
map [1] → [0]. Then for every x ∈ X0, the map [δ(x)] is the identity map idx in the
homotopy category. So δ(x) is invertible for every x.

Definition 5.2.24. If Z ⊆ X1 is the subspace of invertible elements of a Segal space X•,
then say that X• is complete if δ : X0 → Z is a weak homotopy equivalence.

So a complete Segal space is one where every isomorphism in C(X•)arises from an es-
sentially unique path in X0. In fact, if X• is complete then we should have an equivalence
X• ∼= B•(C(X•)).
Remark 5.2.25. If one is more careful and starts with a rigorous axiomatisation of (∞, 1)-
categories then the above assertions and intuitive ideas can be turned into theorems. This
was done by Toën in [21].

We’ve seen that the well-defined theory of complete Segal spaces should correspond
to the as-yet-undefined theory of (∞, 1)-categories. With this in mind, we make the
following rather bold definition:

Definition 5.2.26. An (∞, 1)-category is a complete Segal space.
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Proposition 5.2.27 (Rezk). Any Segal space X• has a completion; i.e. admits a homo-
topy universal morphism9 X• → Y• where Y• is complete. In general Y• is unique up to
homotopy and we refer to it as the completion of X•, denoted X̂•. The map X• → X̂•
is functorial.

Remark 5.2.28. Complete Segal spaces are the fibrant objects of a suitable model structure
on the category of simplicial spaces, just as quasicategories are the fibrant objects of the
Joyal model structure on the category of simplicial sets.

5.3 (∞, n)-categories as n-fold complete Segal spaces
Now we have a definition of (∞, 1)-category as a certain functor ∆op → Top, we’re

going to generalise this and define an (∞, n)-category as a certain functor (∆op)×n →
Top.

Definition 5.3.1. An n-fold simplicial object in a category C is a functor

∆op ×∆op × · · · ×∆op︸ ︷︷ ︸
n

→ C

Example 5.3.2. A 0-fold simplicial object is an object. A 1-fold simplicial object is just a
simplicial object in the usual sense.

In general an n-fold simplicial object in a category C is a collection Xi1···in of objects
of C indexed by n-tuples of nonnegative integers i = (i1, . . . , in) along with a collection
of face and degeneracy maps. We’ll always use an underbar to denote multiindices in
this manner. We think of n-fold simplicial objects as having n ‘directions’ in which to
compose.

Definition 5.3.3. An n-fold simplicial space is an n-fold simplicial object in the
category Top.

Definition 5.3.4. A map X → Y of n-fold simplicial spaces is a weak homotopy
equivalence if all of the maps Xi → Yi are weak homotopy equivalences.

Definition 5.3.5. A diagram
W Y

X Z

of n-fold simplicial spaces is homotopy Cartesian if for all multiindices i the square

Wi Yi

Xi Zi

is homotopy Cartesian.

Definition 5.3.6. An n-fold simplicial space X is essentially constant if it’s weakly
homotopy equivalent to a constant n-fold simplicial space.

9A morphism of Segal spaces is a morphism of the underlying simplicial spaces.
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Via currying, whenever n > 0 we can always think of an n-fold simplicial object in C
as a simplicial object in the category of (n − 1)-fold simplicial objects in C. This idea
will form the basis of our inductive definition of an n-fold complete Segal space.

Definition 5.3.7. For n > 0 an n-fold simplicial space X, thought of as a simplicial
object in the category of (n − 1)-fold simplicial spaces, is said to be an n-fold Segal
space if the following conditions are met:

i) Every Xk is an (n− 1)-fold Segal space.

ii) For all m and l the diagram

Xm+l Xm

Xl X0

is a homotopy Cartesian square of (n− 1)-fold simplicial spaces.

iii) X0 is an essentially constant (n− 1)-fold simplicial space.

Moreover, we say that an n-fold Segal space is complete if

iv) Each Xk is a complete (n− 1)-fold Segal space.

v) The Segal space Y• = X•,0,0,...,0 is complete.

Definition 5.3.8. An (∞, n)-category is a complete n-fold Segal space.

Proposition 5.3.9. Any n-fold Segal space has a completion.

Loosely, an n-fold complete Segal space is a ‘fattened’ or ‘spread out’ version of an
(∞, n)-category. Some illuminating diagrams are given in §2.2.1 of [4].

5.4 The (∞, n)-category Bordn
In this section we’ll code up our ideas about Bordn to define an n-fold simplicial space
PBordn. We’ll indicate how this is an n-fold Segal space that in general is not complete.
Then we can define the (∞, n)-categoryBordn to be the completion ̂PBordn of PBordn.
Our exposition will be fairly informal; for a more rigorous explanation see §2 of [4].

5.4.1 The level sets
(
PBordV

n

)
k

We want to think of (PBordn)(k1,...,kn) as a collection of k1k2 · · · kn composed cobordisms,
with ki cobordisms in the ith direction.
Idea 5.4.1. Cobordisms are easier to deal with when we consider them as submanifolds
of some large Rm. So we’ll define sets of cobordisms living in Rm for varying m, and then
take a limit over m. Whitney’s embedding theorem will ensure that we get all of the
cobordisms, since every l-dimensional manifold can be embedded in R2l.
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Definition 5.4.2. Let V be a finite-dimensional real vector space and fix a multiindex
k = (k1, . . . , kn). Define

(
PBordVn

)
k
to be the set of tuples

(M, (ti0, . . . , tiki)i=1...n)

satisfying the following:

i) For each 1 ≤ i ≤ n, ti0 ≤ · · · ≤ tiki is an ordered tuple of ki + 1 real numbers.

ii) M is a closed n-dimensional submanifold of V × Rn and the composition π : M ↪→
V × Rn � Rn is proper10.

iii) For a subset S of {1, . . . , n} let pS : M → RS denote the composition M π−→ Rn �
RS. Then we require that for every 1 ≤ i ≤ n and every 0 ≤ j ≤ ki, that for all
x ∈ p−1

{i}

(
tij
)
, the map p{i,...,n} is submersive11 at x.

Remark 5.4.3. What’s the motivation behind this definition? If we want to think of M
as being a collection of composed cobordisms, the numbers tij record the ‘cutting points’
where we glue two cobordisms together. So the region of M between the hyperplanes
corresponding to tij and tij+1 should be the (j + 1)st cobordism glued in the ith direction.

Condition iii) says that in particular the set p−1
{n}

(
tnj
)
is an (n − 1)-dimensional sub-

manifold that we can think of as one of the (n− 1)-cobordisms that we glue together to
get M .

Furthermore the set p−1
{n−1,n}

{
tn−1
jn−1 , t

n
jn

}
is an (n − 2)-dimensional manifold that is

one of the (n − 2)-cobordisms joined by an (n − 1)-cobordism. Similarly, the preimage
p−1
{m,...,n}

{
tmjm , . . . , t

n
jn

}
is an (m− 1)-dimensional manifold that we can loosely think of as

one of our (m− 1)-morphisms.
Example 5.4.4. Here is an element of PBordR

1 :

The cutting points indicated by the dotted lines allow us to view this as a composition
of the three 1-cobordisms

10A map is proper if preimages of compact sets are compact.
11A map f : M → N is submersive at m ∈ M if the differential dfx : TxM → TxN is surjective. A

map is submersive if it’s submersive at every point of its domain.
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, and

5.4.2 The topological spaces
(
PBordV

n

)
k

Fact 5.4.5 ([7], Chapter II). The set Emb(X, Y ) of smooth embeddings of a smooth
manifold X into a smooth manifold Y has a topology, the Whitney C∞ topology.

Theorem 5.4.6 ([6]). The space Sub(V × Rn) of closed n-dimensional submanifolds of
V × Rn can be identified with the space⊔

[L]
Emb(L, V × Rn)/Diff(L)

where the disjoint union is taken over diffeomorphism classes of n-dimensional manifolds
L. Moreover the topology on Sub(V × Rn) has neighbourhood basis at M ⊆ V × Rn the
sets

{N ⊆ V × Rn : N ∩K = f(M) ∩K for all f ∈ W}

where K is a compact subset of V × Rn and W ⊆ Emb(M,V × Rn) is a neighbourhood
(in the Whitney C∞ topology) of the inclusion M ↪→ V × Rn.

Remark 5.4.7. The space Sub(V × Rn) is sometimes denoted by Ψ(V × Rn).

Since we can view
(
PBordVn

)
k
as a subset of Sub(V × Rn) × Rk, for some k ∈ N

depending only on k, we can give
(
PBordVn

)
k
the subspace topology.

5.4.3 The n-fold simplicial space PBordn

Proposition 5.4.8. There are face and degeneracy maps making the collection of spaces{(
PBordVn

)
k

: k ∈ Nn
}

into an n-fold simplicial space.

Call this n-fold simplicial space PBordVn . Loosely, the face maps forget a number tij
whereas the degeneracy maps repeat a number tij.

Now we can remove the dependence on the vector space V . Let R∞ be the unique
real vector space of countably infinite dimension. We define the n-fold simplicial space
PBordn to be the limit

PBordn := lim−→
V⊆R∞

PBordVn
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5.4.4 The n-fold Segal spaces PBordn and Bordn

We need to verify that the n-fold simplicial space PBordn is in fact an n-fold Segal space.
The important point is to prove that the Segal map

(PBordn)k1,...,ki+k′i,...,kn

(PBordn)k1,...,ki,...,kn ×h
(PBordn)k1,...,0,...,kn

(PBordn)k1,...,k′i,...,kn

is a weak homotopy equivalence.
Fact 5.4.9. PBordn is nice enough for the homotopy fibre product above to be weakly
homotopy equivalent to the usual fibre product. More technically, PBordn is Reedy
fibrant - see 5.2.16 for further discussion.

Corollary 5.4.10. To verify that the above Segal map is a weak homotopy equivalence,
we may replace the homotopy fibre product with the genuine fibre product of topological
spaces.

Replacing the homotopy pullback with the usual pullback, we see that an element of

(PBordn)k1,...,ki,...,kn ×
(PBordn)k1,...,0,...,kn

(PBordn)k1,...,k′i,...,kn

is a pair of submanifolds M and N of V × Rn for some V , together with data allow-
ing us to glue them on their intersection. Gluing them together gets us an element of
(PBordn)k1,...,ki+k′i,...,kn . The Segal map is in fact a homeomorphism, not just a homotopy
equivalence. We can now deduce the following:

Theorem 5.4.11. PBordn is an n-fold Segal space.

The n-fold Segal space PBordn is not in general complete. We define Bordn :=
̂PBordn to be its completion. Then Bordn is an (∞, n)-category.

Remark 5.4.12. The spaces PBord1 and PBord2 are complete. However, for n ≥ 6,
PBordn is not complete; this is because not all invertible cobordisms M → N arise
from diffeomorphisms M → N . The s-cobordism theorem says that for n ≥ 6, this
statement is equivalent to the vanishing of an invariant of the cobordism known as the
Whitehead torsion. It’s known that for n ≥ 6 that there are n-bordisms which have
nontrivial Whitehead torsion, and hence that PBordn is not complete.

5.4.5 Extra structure on Bordn

Most importantly, Bordn is a symmetric monoidal (∞, n)-category, which means
that it has a symmetric monoidal structure (given by the disjoint union) compatible with
the (∞, n) structure.

We can also restrict to cobordisms with certain properties: for example there is an
(∞, n)-category Bordfr

n of framed cobordisms, and an (∞, n)-category Bordor
n of oriented

cobordisms. Both of these categories also carry a symmetric monoidal structure.
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The (∞, n)-category Bordfr
n of framed cobordisms will be our focus from now on, since

the Cobordism Hypothesis is stated in terms of framed cobordisms.

Note on the constructions The construction of Bordn outlined above is similar to
Lurie’s definition in [10]. Lurie’s original definition contained an error, and this was
corrected by Calaque and Scheimbauer in [4] (which consists mainly of material from
[16]) who construct their spaces differently.

They first construct a Segal space of intervals in Rn and then lift this Segal space
structure to PBordn. The definitions in [4] correspond roughly to the definitions here
by taking our tij to be points in their intervals.

5.5 Adjoints and dualisablity
Given a topological field theory Z : Bordfr

n → C, we’d like to classify the kind of objects
of C that could be the image of the 0-manifold ∗ under Z. Such objects should satisfy
some finiteness condition: for example when n = 1 and C = Vectk we saw that Z(∗) had
to be finite-dimensional, and conversely that any finite-dimensional vector space can be
obtained as the image of ∗ under some TFT.

The correct analogue of finite-dimensionality in the ∞-categorical setting is full du-
alisability, and to define this is the goal of the current section.

It turns out that requiring dualisability for objects is not enough: we’ll also need a
notion of dualisability for k-morphisms as well. In the 2-category Cat we already have a
reasonable notion of dualisability for 1-morphisms: a left dual (if it exists) for a functor
F : C → D should be its left adjoint G : D → C. We extend this definition to general
2-categories and then to general (∞, n)-categories. Adjoints and duals are very closely
related in higher categories.

5.5.1 Duals for objects
Recall the following 1-categorical definition:

Definition 5.5.1. Let C be a monoidal category. Let V be an object of C. A right
dual for V is the data of an object V ∨ and maps

ev : V ⊗ V ∨ → 1 the evaluation map
coev : 1→ V ∨ ⊗ V the coevaluation map

such that the triangles12

V V ∨

V ⊗ V ∨ ⊗ V V V ∨ ⊗ V ⊗ V ∨ V ∨ (1)

idVidV ⊗coev
idV ∨coev⊗idV ∨

ev⊗idV idV ∨ ⊗ev

12These triangles are technically pentagons; here we have ignored the associators and the isomorphisms
X ⊗ 1 ∼−→ X

∼←− 1⊗X.
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commute. We also say in this situation that V is a left dual of V ∨.

Remark 5.5.2. If C is symmetric monoidal, then the notions of right dual and left dual
coincide and we refer simply to the dual.
Example 5.5.3. If C is the symmetric monoidal category Vectk (with monoidal structure
given by the usual tensor product over k) then a vector space V has a dual if and only if
it is finite-dimensional. More specifically, we can always define a space V ∗ = Hom(V, k)
and an evaluation map V ⊗k V ∗ → k, but we can only define a compatible coevaluation
map if V is finite-dimensional.

Proposition 5.5.4. Left and right duals (if they exist) are unique up to unique isomor-
phism.

We can easily extend the definition of a dualisable object to higher categories, by taking
the homotopy category.

Definition 5.5.5. Let C be a symmetric monoidal (∞, n)-category. Say that an object
X of C is dualisable if it admits a dual when considered as an object of the homotopy
category hC.

If Z is an oriented or framed topological field theory with target C, then any object X
of C with X = Z(∗) must be dualisable since we can obtain X∨ by evaluating Z on a point
with the opposite orientation to that of ∗. In general the condition that X be dualisable
is not strong enough for such a TFT to exist. However, for n = 1 it turns out that
dualisability is sufficient, so this problem will only manifest itself in higher dimensions.

In general we should require that the morphisms in C should also have duals, which
leads us to the notion of adjoints.

5.5.2 Adjoints in 2-categories
Recall the unit-counit definition of an adjunction:

Definition 5.5.6. Let C,D be two categories and F : C → D and G : D → C two
functors. An adjunction between F and G consists of two natural transformations

u : idC ⇒ GF the unit
v : FG⇒ idD the counit

such that the following two triangles13 commute:

F ◦ idC idC ◦G

F ◦G ◦ F idD ◦F G ◦ F ◦G G ◦ idD (2)

idFidF �u
idG

u�idG

v�idF idG �v

In this situation we say that F is a left adjoint of G and that G is a right adjoint
of F .

13Once again, these triangles are really pentagons. If we think of Cat as a strict 2-category, then they
are squares since we don’t need any associators.
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Note that the expression η � θ means the horizontal composition of the natural trans-
formations η and θ rather than the vertical composition.

Remark 5.5.7. Observe the formal similarity of the triangles of equation (2) to the ones
of equation (1). This is a good indication that adjoints are ‘higher duals’.

Proposition 5.5.8. Adjoints, if they exist, are unique up to unique isomorphism.

The category Cat is the prototypical example of a 2-category: the objects of Cat are
all (small) categories, the 1-morphisms are functors, and the 2-morphisms are natural
transformations. Definition 5.5.6 didn’t really rely on any of the properties of Cat, and
so we can immediately generalise it to any 2-category:

Definition 5.5.9. Let C be any 2-category. Let X, Y be objects of C and let F : X → Y
and G : Y → X be two 1-morphisms. Say that a 2-morphism u : idX → G◦F is the unit
of an adjunction between F and G if there exists another 2-morphism v : F ◦G→ idY
such that the following two triangles commute:

F ◦ idX idX ◦G

F ◦G ◦ F idY ◦F G ◦ F ◦G G ◦ idY

idFidF �u
idG

u�idG

v�idF idG �v

In this case we say that v is the counit, and that F (resp. G) is left (resp. right) adjoint
to G (resp. F ).

Remark 5.5.10. If u is the unit of an adjunction, then a compatible counit v is uniquely
determined, and vice versa. So it’s enough to specify the existence of either u or v.
Example 5.5.11. A category with a single object is the same thing as a monoid. Similarly
if C is a 2-category with a single object ∗ then the category HomC(∗, ∗) is a monoidal
category.

Conversely if M is a monoidal category then we can build a 2-category BM with a
single object *, hom-category HomBM(∗, ∗) ∼= M and composition law for 1-morphisms
given by the tensor product on M .

Then an object X of M is right dual to an object Y of M if and only if it is right
adjoint to Y when both are considered as 1-morphisms of BM . We often call BM the
delooping of M .

Adjoints are closely related to invertibility:

Proposition 5.5.12. Let C be a 2-category in which every 2-morphism is invertible. Let
f be a 1-morphism of C. Then the following are equivalent:

i) f is invertible.

ii) f admits a left adjoint.

iii) f admits a right adjoint.

Definition 5.5.13. Say that a 2-category C has adjoints for 1-morphisms if every
1-morphism has both a left and a right adjoint.
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5.5.3 Adjoints in higher categories
We’d like to generalise Definition 5.5.9 from 2-categories to higher categories.

Definition 5.5.14. Let n ≥ 2 and let C be an (∞, n)-category. Let h2C be the homotopy
2-category of C, with

objects←→ objects of C
1-morphisms←→ 1-morphisms of C
2-morphisms←→ isomorphism classes of 2-morphisms of C

Remark 5.5.15. Homotopy n-categories are defined similarly.

Definition 5.5.16. Let C be an (∞, n)-category. Say that C has adjoints for 1-
morphisms if h2C has adjoints for 1-morphisms. More generally, for 1 < k < n say
that C has adjoints for k-morphisms if for any two objects X, Y of C the (∞, n− 1)-
category Map(X, Y ) has adjoints for (k − 1)-morphisms. Say that C has adjoints if it
has adjoints for k-morphisms for all 0 < k < n.

Remark 5.5.17. If every k-morphism in C is invertible then C has adjoints for k-morphisms.
The converse is true provided that all (k + 1)-morphisms are invertible - this is a conse-
quence of Proposition 5.5.12.
Remark 5.5.18. The condition that C have adjoints depends on the choice of n. If we
regard C as an (∞, n+ 1)-category with all (n+ 1)-morphisms invertible then in general
C does not have adjoints for n-morphisms unless it is an ∞-groupoid.

If C is monoidal then we can ask for a bit more:

Definition 5.5.19. Let C be a monoidal (∞, n)-category. Say that C has duals if the
following two conditions are satisfied:

i) Every object X has both a left and a right dual when considered as an object of
the homotopy category hC.14

ii) C has adjoints.

Remark 5.5.20. We can generalise our earlier construction of Example 5.5.11. If C is
a monoidal (∞, n)-category then it is possible to build an (∞, n + 1)-category BC (the
delooping of C) with a single object *, recovering C as the mapping object HomBC(∗, ∗).
Then C has duals if and only if BC has adjoints.

5.5.4 Full dualisability
Given a symmetric monoidal (∞, n)-category we’d like to pick out the largest subcategory
with duals.

Theorem 5.5.21. Let C be a symmetric monoidal (∞, n)-category. Then there exists
another symmetric monoidal (∞, n)-category Cfd with duals, and a symmetric monoidal
functor i : Cfd → C, universal among symmetric monoidal functors j : D → C where D
has duals.

14Note that hC inherits its monoidal structure from C. If C is symmetric monoidal then this condition
is the condition that every object be dualisable.
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Remark 5.5.22. Cfd is determined up to equivalence by the above properties. In general
we can obtain Cfd from C by repeatedly discarding morphisms that don’t admit adjoints
(and objects that don’t admit duals).
Example 5.5.23. If C is a symmetric monoidal (∞, 1)-category then Cfd is equivalent to
the full subcategory of C spanned by the dualisable objects.

Definition 5.5.24. Say that an object X of C is fully dualisable if it belongs to the
essential image15 of the functor i.

Example 5.5.25. For each n > 0, the (∞, n)-category Bordfr
n has duals. Every k-

morphism can be identified with an oriented manifold M ; the morphism M̄ (M with
the opposite orientation) is both a left and a right adjoint to M .
Example 5.5.26. If C is the (∞, 1)-category Vectk, then an object of C is fully dualisable
if and only if it is finite-dimensional.

This generalises to the following:

Proposition 5.5.27. An object of a symmetric monoidal (∞, 1)-category is fully dualis-
able if and only if it is dualisable.

In general full dualisability is a much stronger condition than dualisability! In di-
mension 2, there are some simple criteria for testing whether or not an object is fully
dualisable:

Proposition 5.5.28. Let C be a symmetric monoidal (∞, 2)-category. Let X be an object
of C. Then X is fully dualisable if and only if it admits a dual X∨ and the evaluation
map ev : X ⊗X∨ → 1 has both a left and a right adjoint.

5.6 The Cobordism Hypothesis
In this short section we rigourously state the Cobordism Hypothesis. We begin with some
bookkeeping.

5.6.1 Terminology
Definition 5.6.1. An (∞, n)-functor between two (∞, n)-categories C and D is a map
of the underlying simplicial spaces (which is itself a natural transformation between the
defining functors).

Theorem 5.6.2. The collection Fun(C,D) of (∞, n)-functors between two (∞, n)-categories
itself forms an (∞, n)-category.

Remark 5.6.3. The collection of all (small) (∞, n)-categories naturally forms an (∞, n+1)-
category with mapping objects Map(C,D) = Fun(C,D).

Proposition 5.6.4. We can also define symmetric monoidal (∞, n)-functors be-
tween symmetric monoidal (∞, n)-categories. The collection of symmetric monoidal
(∞, n)-functors between two symmetric monoidal (∞, n)-categories C and D itself forms
an (∞, n)-category, which we refer to as Fun⊗(C,D).

15Recall that the essential image of a functor F : D → E is the smallest isomorphism-closed subcat-
egory of E containing the image of F .
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Definition 5.6.5. A fully extended framed n-dimensional topological field the-
ory is a symmetric monoidal (∞, n)-functor with source Bordfr

n . The collection of all
fully extended framed n-TFTs with target C is the (∞, n)-category Fun⊗(Bordfr

n , C).

Definition 5.6.6. Given an (∞, n)-category C, I will denote the underlying (∞, 0)-
category16 of C by π≤∞(C). This notation is not standard.

5.6.2 A Precise Statement
Claim 5.6.7 (the Cobordism Hypothesis). If C is a symmetric monoidal (∞, n)-category
then the evaluation functor Z 7→ Z(∗) induces an equivalence

Fun⊗(Bordfr
n , C)

∼−→ π≤∞(Cfd)

In particular, the Cobordism Hypothesis states that Fun⊗(Bordfr
n , C) is an∞-groupoid,

and hence a topological space. We can think of it as a classifying space for fully dualisable
objects in C.

It is not too difficult to prove that Fun⊗(Bordfr
n , C) is an∞-groupoid. The hard part of

proving the Cobordism Hypothesis is proving that the induced functor is an equivalence.
A sketch proof of this is given by Lurie in [10].

16a.k.a. ∞-groupoid
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Chapter 6

Introduction to Factorization
Homology

Speaker: Tim Weelinck
Notes: Tim Weelinck

Dates: 4-3-2016 & 8-3-2016

6.1 En-algebras or Coefficients
Today our notion of (∞, 1)-categories are topological categories i.e. categories enriched
over topological spaces (compactly generated, weakly Hausdorff - to be precise). We
will come across categories that are classical 1-categories (the category of vector spaces),
2-categories (the category of categories) or categories that come equipped with a model
structure (the dg category of vector spaces). We will point out along the way how to
obtain the associated topological category.

Definition 6.1.1. Let Diskfr
1 denote the topological category with objects disjoint copies

of the framed real line ∅, R, Rt2, Rt3, etcetera and morphism spaces1

Map(Rti,Rtj) = {smooth open embeddings Rti ↪→ Rtj respecting framing}.

The topology on the morphism sets is inherited from the compact-open topology on
the space of continuous maps. We will make use of the following structure of the hom
spaces.

i) For all i, j paths in Map(Rti,Rtj) are given by isotopies of embeddings.

ii) Any framing preserving embedding R ↪→ R is isotopic to the identity.

Disjoint union provides Diskfr
1 with the structure of a symmetric strict monoidal category,

with unit ∅.

Definition 6.1.2. An E1-algebra (or Diskfr
1 -algebra) valued in vector spaces is a sym-

metric monoidal functor
A : Diskfr

1 → Vect(k).
1We will be somewhat imprecise about what respecting framing means. One can think of f respecting

the framing, {vi} and {wi}, to mean for all x, i the identity (Df)xvi(x) = awi(f(x)) holds for some a > 0.
We allow ourselves to be imprecise because in ∞-categories one only cares about the homotopy type of
the mapping spaces.
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Remark 6.1.3. Actually, there is a distinction between Diskfr
1 -algebras and E1-algebras,

the latter are algebras for a certain operad (the little cubes operad see for example [12, ch.
5]). However, as the notion of algebras are equivalent, we allow ourselves to be imprecise
about the distinction.

Note that this is a functor of (∞, 1)-categories, meaning that the components of
the functor on the hom-spaces are continuous maps. In what sense do the hom sets of
Vect(k) have a topology? None really: we equip the hom sets with the discrete topology.
In particular this means that πn(Map(V,W )) = 0 for all V,W ∈ Vect(k) and all n ≥ 1.

6.1.1 What is an E1-algebra?
Let us explore what an E1-algebra concretely looks like. We fix some E1-algebra A ∈
E1(Vect(k)), and denote V := A(R) the image of R. As A is a monoidal functor we
immediately obtain A(Rti) ∼= V ⊗i and also A(∅) = k. Thus on objects A is completely
specified by the vector space A(R).
As Vect(k) has discrete topology f isot.' g ⇒ A(f) = A(g). Up to isotopy there are two
framing preserving embeddings R t R ↪→ R related by the swap. These are mapped to
opposite multiplications maps on V , as drawn in Figure 6.1.

a b

swap

m

b a

mop

a b

A7→

V ⊗ V V

V ⊗ V

m

swap mop

Figure 6.1: Multiplication.

Diagrams that commute up to isotopy are translated to commuting diagrams in
Vect(k). The following two diagrams equip V with the structure of a unital associa-
tive k-algebra.

∅ t R R

R t R

A7→

k ⊗ V V

V ⊗ V

η

m

Figure 6.2: Unity.

We can summarize the discussion as follows.
Proposition 6.1.4. Let A ∈ E1(Vect(k)). The vector space A(R) comes naturally
equipped with the structure of an associative unital k-algebra.

As we haven’t used most of the embbedings Rti ↪→ Rtj, one could wonder whether there
is more structure on V = A(R). This turns out not to be the case.
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a b c

a b c a b c

a b c

V ⊗ V ⊗ V

A7→ V ⊗ V V ⊗ V

V

m⊗id
id⊗m

m
m

Figure 6.3: Associativity.

Theorem 6.1.5. The data of an E1-algebra valued in Vect(k) is equivalent to the data
of an unital associative algebras.

6.1.2 Generalizing E1-algebras
We saw that by playing a topological game on the real line, we recaptured the notion
of algebras as E1-algebras valued in vector spaces. We would like to generalize these
E1-algebras, for example by replacing R by a higher dimensional disk, or by replacing
Vect(k) by some more interesting category.
Let us for example fix C = Cat to be topological category associated to the two category of
categories Cat. Recall that Cat is a strict 2-category2 with categories as objects, functors
as morphisms and natural transformations as 2-morphisms. In contrast with Vect(k) one
does not obtain Cat by declaring the hom-sets to have discrete topology; the existence of
higher morphisms means that there should be interesting topology.
Cat is enriched in categories, but we want to get the associated topological i.e. (∞, 1)-
category. We begin by removing all non-invertible 2-morphisms i.e. keep only natural
isomorphisms, we obtain a category enriched in groupoids. Then we take the nerve
of the hom-sets to obtain a category enriched over simplicial sets. We now take the
geometric realization of the hom-sets to obtain Cat, enriched over topological spaces.
The 2-categorical structure of Cat exhibits itself as follows in Cat.

Proposition 6.1.6. Let Cat be the topological category of categories. Then

i) Objects of Cat are categories.

ii) MapCat(C,D) is a topological space glued from simplices whose vertices correspond
to functors and whose edges corresponding to natural isomorphisms.

iii) For all C,D ∈ Cat we have that πnMap(C,D) = 0 for n ≥ 2.

iv) The product × of categories endows Cat with a symmetric monoidal structure.

We could now study an E1-algebra valued in Cat i.e. symmetric monoidal functor A from
Diskfr

1 to Cat. Then f isot.' g⇒ A(f) ∼= A(g), where the functors are naturally isomorphic.
Diagrams that commute up to isotopy in Diskfr

1 are translated to diagrams that commute
up to natural isomorphism in Cat. It should then come as no big surprise that we have:

2A category enriched in categories.
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Proposition 6.1.7. Let A ∈ E1(Cat) be an E1-algebra valued in categories. The category
A(R) comes naturally equipped with a monoidal structure.

In fact, again the data is equivalent. Besides replacing Vect(k) with Cat, another way
to generalize E1-algebras is by considering higher dimensional disks. We can copy the
definition of Diskfr

1 verbatim, replacing R by R2 everywhere, to obtain the topological
category Diskfr

2 of 2 dimensional framed disks.

Definition 6.1.8. An E2-algebra valued in categories, write A ∈ E2(Cat), is a symmetric
monoidal functor

A : Diskfr
2 → Cat.

We will spend the remainder of this subsection answering the question: ‘what is an
E2-algebra valued in categories’. As in the one dimensional case, specifying a category
C =: A(R2) as the image of R2 fixes the functor A on objects. Diagrams that commute
up to homotopy are transformed to diagrams that commute up to natural isomorphism.
Let us draw some of these diagrams, and obtain some structure on the target category C.

The embedding

→
endows C with a tensor product ⊗ : C × C → C. The trivial embedding ∅ ↪→ R2 endows
C with a unit 1 : ∗ → C. The natural isomorphisms witnessing associativity and (left)
unity of the tensor product are obtained from the following isotopies

→
,

∅ →
,

where the isotopies should be thought of as ‘shrinking and enlarging disks’. We deduce
that the category C comes naturally equipped with the structure of a monoidal category
i.e. an E1-algebra structure on C. However, there is more structure coming from the
extra room we have in two dimensions. The isotopy rotating a pair of disks 180◦ around
eachother

→

yields a natural isomorphism between ⊗ and the opposite tensor product ⊗op i.e. natural
isomorphisms cX,Y : X⊗Y ∼= Y ⊗X for all X, Y ∈ C. We claim this defines the structure
of a braiding on the category C.
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Definition 6.1.9. [8] Let C be a monoidal category. Denote ⊗ the tensor product and
αA,B,C : (A⊗B)⊗C ∼= A⊗ (B⊗C) the associativity isomorphism. A braiding on C is a
family of natural isomorphisms cX,Y : X ⊗ Y ∼= Y ⊗X satisfying the following coherence
equations:

i) αB,C,A ◦ cA,B⊗C ◦ αA,B,C = idB ⊗cA,C ◦ αB,A,C ◦ cA,B ⊗ idC ,

ii) α−1
C,A,B ◦ cA⊗B,C ◦ α−1

A,B,C = cA,C ⊗ idB ◦α−1
A,C,B ◦ idA⊗cB,C .

We call a monoidal category C with a braiding a braided monoidal category.

To see that we have indeed defined a braiding on C = A(R2) one only needs to consider
two isotopy of isotopies. For example, the (orange coloured) isotopy of isotopies

yields the second coherence equation.
Remark 6.1.10. Note that an isotopy of isotopies corresponds to a diagram of 2-morphisms
commuting up to a 3-morphism in Diskfr

2 . Since there are no non-trivial 3-morphisms in
Cat the diagram is mapped to a commuting diagram in Cat.

Again, one might wonder whether there is any extra data on the category C.

Theorem 6.1.11. [12, ex. 5.1.2.4] Endowing a category with the structure of an E2-
algebra is equivalent to endowing it with the structure of a braided monoidal category.

6.2 Left Kan Extensions or Globalization
In mathematics one often comes across situations where one has a functor defined on
some subcategory D ⊂ M and you wish to extend your functor is a natural way to the
full category M. More generally, one can have a functor F : D → C that you wish to
extend along a functor I : D →M as indicated in the figure below.

D C

M

F

I
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Expecting a functor to make the square strictly commute would be too restrictive.
This is already impossible when F (a) 6= F (b), but I(a) = I(b). Rather we should ask for
‘best approximations’ to such solutions. Kan extensions, when they exist, provide two
canonical answers to this question.

Definition 6.2.1. Let I : D →M, F : D → C be functors.

i) A left extension of I along F is a pair (L, η : F ⇒ LanF I ◦ I).

ii) A morphism of extensions µ : (L, η)→ (L′, η′) is a natural transformation µ : L⇒
L′ such that η′ = µI ◦ η.

iii) A left Kan extension (LanIF, η) is an initial object in the category of extensions.

The universal property of (LanIF, η) assigns to every natural transformation σ :
F ⇒ TI a natural transformation σ̄ : LanIFF ⇒ T such that σ̄I ◦ η. The assignment
σ 7→ σ̄ defines a natural bijection Nat(F, TI) ∼= Nat(LanIF, T ) i.e. the left Kan extension
represents the functor T 7→ Nat(F, TI). Of course Left Kan extensions need not exist,
but it is clear that they are unique (up to unique natural isomorphism) if they exist.
Remark 6.2.2. Those familiar with the yoga of coends should find a pleasent exercise
in verifying that if the coend

∫DM(I(D),m) · F (D) exists, it computes the left Kan
extension. Such Left Kan extensions are called pointed. All known interesting Kan
extensions are pointed.
Example 6.2.3. i) Let H ⊂ G be a subgroup of a finite group G, I : BH → BG the

induced inclusion functor and ρ : BH → Vect(k) a representation of H. Then
LanIρ = IndH(ρ) is the induced representation of ρ to G.

ii) Let F be left adjoint to G, then (G, ε) = (LanF id, η).

iii) Let ! : C → ∗ denote the unique functor to the terminal category. A functor
D : J → C has a colimit iff Lan!D exists, moreover limD = Lan!D(∗).

The above list of examples should hopefully convince you that left Kan extensions are
very natural and fundamental objects. In fact in [13] MacLane has a section called ’All
Concepts Are Kan Extensions’ where he writes ‘The notion of Kan extensions subsumes
all the other fundamental concepts of category theory’.

Of course there exists a dual notion of right Kan extensions, so now we have two
choices of how to extend an En-algebra to the category of manifolds, the two choices
come down to whether one wants to consider manifolds as colimits or limits of disks (i.e.
affine space). Traditionally, both ways of looking at manifolds have been used.
Example 6.2.4. i) Let f : R2 → R, (x, y) 7→ x2 + y2 − 1. The circle can be represented

as the limit S1 = eq(R2
f

⇒
0

R).

ii) Let I1, I2 be two intervals which we image as covering the circle, let I3, I4 be two
intervals, which we imagine being the connected components of I1 ∩ I2. Then the
circle can be represented as the colimit S1 = coeq(I3 ∪ I4

i13∪i23
⇒

i14∪i24
I1 ∪ I2).

Nowadays, the colimit view on manifolds (i.e. using an atlas that represents a mani-
fold as glued from disks) has the upper hand. In a sense that we will make precise, this
is a more natural view: any manifold is canonically a colimit of disks.
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Definition 6.2.5. i) Let I : Diskfr
1 → Mfldfr

n denote the inclusion functor of disks into
manifolds.

ii) Fix a manifold M ∈ Mfldfr
n . The category I ↓ M has objects (D, f : I(D) → M)

where D ∈ Diskfr
n . A morphism from (D, I(D) → M) → (D′, I(D′) → M) is a

morphism f ∈ Diskfr
n(D,D′) such that

I(D) M

I(D′)

I(f)

commutes.

iii) Let P : I ↓ M → Diskfr
n denote the projection functor (D, I(D) → M) 7→ D,

f → f .

Proposition 6.2.6. (Density of disks in manifolds)3 Let M ∈ Mfld, then

M = lim(I ↓M P−→ Disk I−→ Mfld).

Proof. Let us denote the colimit above by C, the colimit expresses C has the following
universal property. Let gi : I(Di) → M ′ be a collection of maps for all (Di, I(Di) →
M) ∈ I ↓M such that

I(Di) M ′

I(Dj)

gi

I(f) gj

for all f ∈ HomI↓M((Di, I(Di) → M), (Dj, I(Dj) → M)) then there is a unique map
g : C → M ′, such that gi = I(Di) → C

g−→ M ′. We claim M itself has this universal
property, with maps I(Di)→M from I ↓M as edges of the cone. The universal property
we need to check is: given a collection of maps gi|Di⊂M : Di → M ′ such that all maps
agree on overlap, these maps glue uniquely to a mapM →M ′. This is obviously true.

This colimit expresses any framed manifold is canonically glued from all the framed
disks mapping into it. We say that the category Diskfr

n is dense in the category of
manifolds.4 We can use try to use this colimit to try and extend a functor F : Diskfr

n → C.

Definition 6.2.7. Let I : D → M be a functor. Suppose that for every M ∈ M the
colimit

lim(I ↓M P−→ Diskfr
n

F−→ C)

exists. Then this assignment on objects uniquely extends to a functor LanIF :M→ C,
called the (pointed) left Kan extension of I along F .

3We are not stating this result in terms of framed manifolds, as we have been sloppy in defining the
morphism spaces in the framed case.

4In general we say a functor I : D →M is dense if M = lim(I ↓M
P−→ D I−→M for all M ∈M.
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One should verify that this is indeed a left Kan extension, for example by comparing
the above colimt to our earlier coend formula. Thus we see that left Kan extensions try
to extend functors by approximating objects as colimits of objects in D. Note that in
case a functor I : D → M is dense, this is a very natural approximation. In fact, by
comparing the two colimit formulas we see that a functor I is dense iff the pointed left
Kan extension exists and LanI idM = idM.

Definition 6.2.8. Let A : Diskfr
n → C be an En-algebra. The left Kan extension of

A along I : Diskfr
n → Mfldfr

n is called the factorization homology of A. We denote the
factorization homology as

Diskfr
n C

Mfldfr
n

A

I ∫
· A

i.e.
∫
M A := LIA(M).

6.3 Examples and Applications of Factorization Ho-
mology

We have seen that factorization homology is defined as a certain colimit. Thus if C
is cocomplete, the factorization homology

∫
·A of any En(C)-algebra A exists. What it

actually computes can be difficult to determine however, as colimits are defined through
maps out of it.
Example 6.3.1. i)

∫
Rn A = A for any En-algebra A. This holds because if I is a fully

faithful functor. Then for any functor F we get LanIF ◦ I = F .

ii) The assignment U 7→
∫
U A defines a locally constant factorization algebra on Rn.

For more refined examples we need a computational tool: a ‘Mayer-Vietoris to our
singular homology’, if you will.

Let M = MR ∪M0×R ML a gluing of a manifold along a collar. We have embeddings
MRtM0×R ↪→MR. Factorization homology then yields a map

∫
MR
⊗
∫
M0×R A→

∫
MR

A
i.e. makes

∫
MR

A a right
∫
M0×R module. Similarly,

∫
ML

A is a left
∫
M0×R A module. If you

like, the above maps are induced from the universal properties of the colimits.(*)

Theorem 6.3.2. (Lurie, Francis) Excision. Let M = MR ∪M0×R ML, C a ⊗-presentable
symmetric monoidal ∞-category, A ∈ Diskfr

n(C). There exists a canonical isomorphism∫
M
A ∼=

∫
ML

A⊗∫
M0×R

A

∫
MR

A.

Remark 6.3.3. Being ⊗-presentable is technical requirement on the category C, one can
ignore this during the introduction as just a niceness property. Being ⊗-presentable
roughly means C is cocomplete and generated by colimits from a collection of ‘small’
objects. Furthermore, tensor products should distribute over colimits.

68



The excision property is a powerful computational tool, moreover, as we will see later
it is the definining property of factorization homology.
Example 6.3.4. Let C be the infinity category of chain complexes. Note that the tensor
product is the derived tensor product

L
⊗. Fix A ∈ A∞-alg = E1(dg-Vect

L
⊗). Then by

excision we have ∫
S1
A ∼=

∫
RR
A⊗∫

S0×R
A

∫
RL

∼= A
L
⊗A⊗Aop A

=: CH∗(A).

Thus factorization homology of A over S1 are the Hochschild chains.
Remark 6.3.5. This also provides with a natural explanation why hochschild homology
carries a circle action. Indeed, the S1 action of the circle on itself induces an action on
the factorization homology

∫ 1
S A
∼= CH∗(A).

We conclude with a classification result of manifold homology theories due to David
Ayala and John Francis, very similar in spirit to the Eilenberg-Steenrod classification of
homology theories of topological spaces.

Definition 6.3.6. Let C be some symmetric monoidal ∞-category. An n-dimensional
manifold homology theory valued in C is a symmetric monoidal functor H : Mfldfr

n → C
satisfying the excision property.

Theorem 6.3.7. ([1, theorem 3.24]) Let C be a ⊗-presentable symmetric monoidal in-
finity category. There is an equivalence∫

: En − alg(C⊗) � H(Mfldfr
n , C⊗) : evRn ,

between En-algebras valued in C and manifold homology theories valued in C. The equiv-
alence is given by factorization homology and evaluation on the n-disk.
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Chapter 7

Dualizable Tensor Categories

Speaker: Severin Bunk
Notes: Tim Weelinck

Date: 2-4-2016

7.1 Introduction
We have seen that the Cobordism hypothesis gives a one-to-one correspondence between
fully extended n-dimensional topological field theories (TFTs) valued in some symmetric
monoidal (∞, n)-category C and fully dualizable objects in C. Hence in order to study
fully extended three dimensional TFTs one first needs a target (∞, 3)-category. The
simplest non-trivial candidate is the "3-category of tensor categories". Roughly speaking
objects, morphisms, 1-morphisms and 2-morphisms should correspond to respectively lin-
ear monoidal categories, bimodule categories, bimodule functors and bimodule (natural)
transformations. To each fully dualizable tensor category there is a corresponding fully
extended 3-TFT. In these notes we will identify when a tensor category is fully dualizable
and give examples.

Outline
In section 2 we recall the notions of m-dualizability in an (∞, n)-category, and state the
cobordism hypothesis. In section 3 we recall the definition of a tensor category and sketch
the structure of a 3-category of tensor categories. We conclude by stating a necessary
and sufficient condition for a tensor category to be fully dualizable, and give examples.

7.2 Dualizability and the Cobordism Hypothesis
Recall that an ordinary n-TFT, in the sense of Atiyah-Segal, assigns to a closed n − 1-
dimensional manifold some vector space V . When n = 1 Zorro’s lemma implied that the
vector space assigned to a point needs to be finite dimensional. Similarly when n = 2
by using the cap and cup we could define a trace that ensured us that the vector space
assigned to the circle should be finite dimensional. The targets of higher dimensional
TFTs, and fully extended TFTs, are all subject to certain finiteness requirements. These
finiteness requirements are expressed as the full dualizability of the target object.
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DISCLAIMER. In the following we will disregard discussing what particular model of
higher categories we are using. Most of the discussion will be concerned with 2-categories,
where one can just think of weak or strict 2-categories.

Definition 7.2.1. A 1-morphism G : A → B in a 2-category admits a left adjoint
F : B → A if there exists a unit 2-morphisms η : idB → G ◦ F and a counit 2-morphism
ε : F ◦G→ idA satisfying the triangle identities:

(1G � ε) ◦ (η � 1G) = 1G,
(ε � 1F ) ◦ (1F � η) = 1F .

Here f ◦ g denotes vertical composition, first apply f then apply g, whereas � denotes
horizontal composition.
Remark 7.2.2. Note that if in the above we take the strict 2-category of categories we
obtain the familiar notion of adjoint functors.

For an (∞, n)-category C, let −1 ≤ k ≤ n − 2 we can define the 2-category of k-
morphisms, denoted h(k)

2 C with

• Objects: k-morphisms in C;

• 1-morphisms: (k + 1)-morphisms in C;

• 2-morphisms: equivalence classes of (k + 2)-morphisms in C.

For k = −1 we define h(−1)
2 C to have one object, 1-morphisms being the objects of C, with

composition given by the ⊗-product in C and 2-morphisms being equivalence classes of
1-morphisms in C.

Definition 7.2.3. Let C be a symmetric monoidal (∞, n)-category.

i) We say C has adjoints for k-morphisms if every 1-morphisms in h(k)
2 C has a left and

right adjoint.

ii) We say C is m-dualizable if it has adjoints for k-morphisms for 0 ≤ k ≤ m.

iii) We call C fully dualizable if C is n-dualizable.

Remark 7.2.4. Note that full dualizability includes 0-dualizability i.e. having adjoints for
objects

coev : 1→ X̄ ⊗X, ev : X ⊗ X̄ → 1,

where 1 denotes the tensor unit.
We denote dC the maximal fully dualizable (∞, n)-subcategory of C. The objects of

dC are called the fully dualizable objects of C. Let d̃C denote the space of objects of dC.
By viewing the space d̃C is an∞-groupoid, or rather as an (∞, n)-category that happens
to be an (∞, 0)-category, we can state the framed version of the cobordism hypothesis as
follows.

Theorem 7.2.5. (The Cobordism Hypothesis) There is an equivalence of (∞, n)-categories

Fun((Bordfrn )t, C⊗) ∼= d̃C

established by evaluation of the TFT on the n-framed point.
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7.3 Fully Dualizable Tensor Categories
We will now sketch the description of the 3-category of tensor categories as introduced
in [5]. We will begin by reminding the reader of the definition of tensor categories.

Definition 7.3.1. i) Let Vectk denote the category of (possibly infinite dimensional)
vector spaces.

ii) Let Vect(k) denote the category of finite dimensional vector spaces.

iii) A tensor category is an abelian rigid monoidal category enriched in Vectk in a
compatible way.1

Example 7.3.2. Vectk itself is a tensor category.
As discussed in the introduction we wish to introduce a symmetric monoidal 3-

category of tensor categories, denoted TC. The objects of TC should be tensor categories
and morphisms are module categories, etc. For this purpose we need a tensor product
of tensor categories -the monoidal structure on TC and a tensor product of module cat-
egories -the composition of morphisms. We need some finiteness restrictions to ensure
that these structures indeed exist.

Definition 7.3.3. A tensor category C is finite if

i) C is enriched in Vect(k) i.e. enriched over finite dimensional vector spaces.

ii) Each object has finite length i.e. every decreasing chain of subobjects X = X0 )
X1 ) X2 ) . . . has finite length.

iii) C has enough projectives i.e. for each object X there is a projective object P that
surjects onto X.

iv) Has finitely many isomorphism classes of simple objects.

Example 7.3.4. A linear category (abelian enriched over Vectk) is finite iff it is equivalent
to the category of finite dimensional modules of a finite dimensional algebra. In particular
Vect(k) is an example of a finite tensor category.

We will not completely spill out the definition of C-module categories and module
functors between them for a tensor category C, they are the obvious categorifications
of modules of some algebra, and the natural morphisms between them, see [5]. We
are, however, still left the task of defining tensor products, and composition of module
categories.

Definition 7.3.5. Let C be a tensor category, M a right C-module category, N a left
C-module category and L a linear category.

i) A C-balanced functor F : M×N → L is a bilinear functor and a natural isomorphism

F (m⊗ c, n) ∼= F (m, c⊗ n).
1For example, the additive structure on hom-spaces needs to agree with the enrichment in vector

spaces.
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ii) The relative Deligne tensor product of M and N is a linear category M �C N
together with a C-balanced functor �C : M × N → M �C N such that for every
linear category L there is an equivalence of functor categories

{F : M�CN → L : F is a linear functor} ∼= {F : M×N → L : F is a C-balanced functor}.

Theorem 7.3.6. [5, thm 3.2.17] For C a finite tensor category, M a finite right C-module
category and N a left C-module category the relative Deligne tensor productM�CN exists.

Any finite tensor category carries an essentially unique structure of a Vect(k) bimodule
category (unique up to unique isomorphism). Hence as a corollary we obtain a tensor
product of finite tensor categories C and D given by C �Vect(k) D.

Quasi-Definition 7.3.7. Let TC denote the symmetric monoidal 3-category of tensor
categories with

• Objects: finite tensor categories;

• 1-morphisms: finite bimodule categories;

• 2-morphisms: bimodule functors;

• 3-morphisms: bimodule natural transformations.

Remark 7.3.8. The proof of theorem 7.3.6, given as theorem 3.2.18 in [5], requires the
base field k of Vect(k) to be perfect. Examples of perfect fields are algebraically closed
fields, fields of characteristic zero and finite fields.

Having ‘defined’ TC this is a possible target category for fully extended 3-dimensional
TFTs. Recall that the cobordism hypothesis tells us that such TFT s are in one-to-one
correspondence with fully dualizable objects of TC i.e. fully dualizable tensor categories.
In [5] the authors provide a complete classification of fully dualizable tensor categories
over perfect fields: these are so-called separable tensor categories.
Remark 7.3.9. Discussing separability of tensor categories would require too much space,
but one can think of the following analogue. In the 2-category of algberas, an algebra A
is fully dualizable if it is finite dimensional and A is projective as an A − A bimodule;
such algebras are called separable.
A tensor category is called separable if the C − C-bimodule category C is equivalent to
the module category of a separable algebra object in the tensor category C � Cmp.2

Theorem 7.3.10. Let k be a field of characteristic 0. A tensor category is fully dualizable
in TC iff it is a finite semisimple tensor category.

Finite semisimple tensor categories have been extensively studied by mathematicians -
most notably by E.N.O. meaning P. Etingof, D. Nikshych and V. Ostrik. These categories
are called fusion categories and are close to being categories of finite groups.
Example 7.3.11. i) G-mod for finite group G.

2Here the superscript mp indicates that it is the tensor opposite category i.e. the monoidal category
with tensor product ⊗op.
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ii) Let G be a finite group. V ecG denotes the category of G-graded vector spaces with
graded morphisms. The tensor product is given by (V ⊗W )g = ⊕xy=gVx ⊗ Vy. A
complete set of simple objects is given by {δg}g∈G with (δg)h = k if h = g and
(δg)h = 0 otherwise. Note that 1 = δe. Together with the normal associators, unity
morphisms and duals of vector spaces this defines a fusion category.

iii) More generally, one can choose a 3-cocycle ω ∈ Z3(G, k×) with which we twist V ecG.
The category V ecωG is identical to V ecG except that we redefine the associators, by
extending the twisted associators α̃δg ,δh,δm = ω(g, h,m)αδg ,δh,δm to arbitrary direct
sums of the δg.

iv) Let g be a semi-simple Lie algebra over C and q a nth root of unity for n > 1. The
modular tensor categoryMq associated to the quantum group Uq(g) is in particular
a fusion category.

Remark 7.3.12. i) Note that the fully extended TFT associated to the assignment
of Mq to a point is the so-called “Turaev-Viro" TQFT, and not the Witten-
Reshetikhin-Turaev TFT connected to the quantum group. Rather, the WRT TFT
is a 3-2-1-TFT which assigns the categoryMq to the circle.

ii) In fact, it is known that if a fusion category is assigned to a point its so-called
‘Drinfeld center’ will be assigned to the circle. Drinfeld centers have very specific
properties, in particular one can show thatMq cannot be the Drinfeld center of a
fusion category. Hence the WRT TFT is not fully extended as a TFT valued in the
3-category of tensor categories.

iii) Fusion categories are also of interest to physicists. These categories should describe
the behaviour of anyons, quasi-particles in two-dimensional systems of electrons
studied in solid-state physics.
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