
KNOT HOMOLOGIES AND MATRIX FACTORIZATIONS

Abstract. These are notes from a lecture series by Tina Kanstrup at the ICMS Summer school

”Geometric representation theory and low-dimensional topology” in June 2019. The notes are
typed by Corina Keller and Wai-kit Yeung.

1. Lecture 1 - Link homologies and statement of the GNR conjecture

The goal of this lecture is to define Khovanov-Rozansky triply graded link homology and state the
Gorsky-Negut-Rasmussen conjecture which provides a way of computing it in terms of sheaves on
Hilbert schemes.

Definition 1.1. A link is a collection of knots which may be interlinked.

A main question in knot theory is to tell whether two links are isotopic. A partial answer to this
question is to use link invariants to distinguish different isotopy classes. One of the most famous
ones are the HOMFLY-PT polynomial.

Definition 1.2. The HOMFLY-PT polynomial PL(a, q) is defined by

PL(unknot) = 1

aPL( )− a−1 PL( ) = (q − q−1)PL( )

Example 1.1.

P ( ) = a−1((q − q−1)P ( )− a−1P ( ))

= a−1(q − q−1)− a−2

1.1. Khovanov-Rozansky triply graded homology. Khovanov-Rozansky triply graded homol-
ogy assigns to a link a triply vector space HHH(L) (with Q-grading, T -grading and A-grading that
will be introduced in definition 1.4). It is a categorification of the HOMFLY-PT polynomial, i.e.
it’s Euler characteristic χ with respect to the T -grading is the HOMFLY-PT polynomial.

χ(HHH(L)) = PL(a, q)

The group of braids on n strands, with multiplication given by stacking braids on top of each other
can be written in terms of generators and relations as follows

Brn = 〈σ1, . . . , σn−1 |σiσi+1σi = σi+1σiσi+1, σiσj = σjσi for |i− j| > 1〉.

Here the generators represent the following elementary braids.

σi = σ−1
i =

Theorem 1.1 (Markov). There is a bijection between links up to isotopy and braids up to Markov
moves. The bijection is given by closing up the braid (i.e. connecting the kth strand on the top to
the kth strand on the bottom).

– Markov 1: αβ = βα for all α, β ∈ Brn
– Markov 2: For β ∈ Brn consider β as an element in Brn+1 by adding an extra strand. Then
β = βσ±1

n .
1
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Soergel bimodules. For n ∈ Z≥1, let R = Q[x1, . . . , xn] with deg(xi) = 2. The group Sn acts on R
by permuting the generators xi. For each simple reflection s = (i, i + 1) ∈ Sn, let Rs ⊂ R be the
subring consisting of elements fixed by the action of s, i.e.

Rs = {f ∈ R | s(f) = f}.

Let Bs be the R-bimodule Bs = R⊗RsR(1), where (1) denotes the grading shift defined by M(1)i =
Mi+1, so that each f ∈ M of degree i becomes of degree i − 1 in M(1). The tensor product that
defines Bs can be described more explicitly as

R⊗Rs R =
Q[x1, . . . , xn, x

′
1, . . . , x

′
n]

(xi + xi+1 = x′i + x′i+1, xixi+1 = x′ix
′
i+1, xj = x′j for j 6= i, i+ 1)

.

Definition 1.3. The category of Soergel bimodules, SBim, is the smallest full subcategory of the
category of R-bimodules containing R and Bs for each simple reflection s ∈ S, which is closed under
direct sums, tensor product ⊗R, degree shifts (±1), and direct summands.

Theorem 1.2 (Soergel). SBim categorifies the Hecke algebra.

To each simple reflection s ∈ S, one can associate the so called Rouquier complexes defined as
follows.

Fs = [Bs → R(1)]

1⊗ 1 7→ 1

F−1
s = [R(−1)→ Bs]

1 7→ xi ⊗ 1− 1⊗ xi+1.

Theorem 1.3 (Rouquier). The complexes Fs and F−1
s satisfy the braid relations and Fs⊗RF−1

s ' R.

Given a braid β, choose an expression β = sε1i1 . . . s
εr
ir

. Set

F (β) := F ε1si1 ⊗R · · · ⊗R F
εr
sir
,

This is well-defined up to canonical isomorphism in the homotopy category Kb(SBim) of SBim.

Exercise 1.1. Show that there is an isomorphism of R-bimodules Bs ⊗R Bs ∼= Bs(−1)⊕Bs(1).

Example 1.2. Set β = σ2
s . The corresponding Rouquier complex is

Fs ⊗R Fs ∼=


Bs(1)

Bs(1)⊕Bs(−1) R(2)

Bs(1)

 ' [Bs(−1)→ Bs(1)→ R(2)
]
.

Hochschield homology is a functor

HH : graded R-bimodules→ bi-graded Q-vector spaces, B 7→
⊗
i,j

ExtjR,R(R,B(i))

Definition 1.4. (1) Given X• = · · · → X` → X`+1 → . . . a complex of graded R-bimodules.

HHHi,j,k(X•) := Hk(· · · → HHi,j(X`)→ HHi,j(X`+1)→ . . . ).

(2) Triply graded link homology is defined by HHH(β) := HHH(F (β)). It has 3 gradings:
(a) Q-grading: grading on all Bs;
(b) T -grading: homological grading on F (β)
(c) A-grading: grading on HHH.

Theorem 1.4 (Khovanov). HHH(β) is an invariant (up to grading shift) under Markov moves,
and is therefore a topological invariant of links.

A problem with this invariant is that it is very difficult to compute. For example, if a braid has m
crossings, then the complex F (β) has 2m terms.
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1.2. Relation to Hilbert schemes. The Gorsky-Negut-Rasmussen conjecture relates HHH to
sheaves on Hilbert schemes. Recall the Hilbert scheme of points in the plane,

Hilbn(C2) := {ideals I ⊂ C[x, y] | dim C[x, y]/I = n}.

The flag Hilbert scheme has the advantage over the usual Hilbert scheme that there exists a natural
map FHilbn(C2,C)→ FHilbn−1(C2,C).

FHilbn(C2) := {ideals In ⊂ . . . I1 ⊂ C[x, y] | dim C[x, y]/Ik = k}.

For our purpose we will use the the flag Hilbert scheme with support on (y = 0)

FHilbn(C2,C) := {ideals In ⊂ . . . I1 ⊂ C[x, y] | dim C[x, y]/Ik = k and supp(C[x, y]/Ik) ⊂ (y = 0)}.

The flag Hilbert scheme (both with and without support condition) has the disadvantage that it

is very singular. Thus, we will replace it with its derived version FHilbdgn (C2,C), to be defined in
lecture 3.

Conjecture 1.1 (Goresky-Negut-Rasmussen [GNR]). There exists a pair of adjoint functors

Kb(SBim) DbCohC××C×(FHilbdgn (C2,C))
i∗

i∗

such that

(1) i∗ is monoidal and fully faithful;
(2) there exists a canonical isomorphism HHH(β) ∼= H∗(i∗(F (β))) preserving all three gradings;
(3) The full twist FTk ∈ Bk corresponds to (det Tk)⊗OFHilbdgn (C2,C), where Tk is the tautological

rank k vector bundle with Tk|In⊂···⊂I1 = C[x, y]/Ik.

Oblomkov and Rozansky constructed a link invariant with similar properties. Let Dper denote the
derived category of 2-periodic complexes of coherent sheaves.

Theorem 1.5 (Oblomkov-Rozansky, [OR]). There is a constructive procedure that assigns to a braid

β ∈ Brn an element Sβ ∈ DC××C×
per (Hilbn(C2)), such that

(1) the triply graded space HHH(β) is an invariant of the link L(β);
(2) for C×a ⊂ C× × C× the anti-diagonal torus, we have∑

i

aiχq(C
×
a , H

∗(Sβ ⊗ ∧iB)) = HOMFLY − PT (L(β));

(3) Sβ·FTn
= Sβ ⊗ det(B),

where B is the bundle dual to the universal quotient bundle B∨ whose fiber above I ∈ Hilbn(C2) is
defined to be the n-dimensional vector space C[x, y]/I.

The goal is to relate the [OR] theorem to the [GNR] conjecture.

2. Lecture 2 - Oblomkov-Rozansky link invariant in terms of matrix factorizations

This lecture is an exposition of the paper ”Knot homology and sheaves on the Hilbert scheme of
points” by Alexei Oblomkov and Lev Rozansky. Alexei also gave a lecture series at CIME in June
2018 on this topic. Notes are available as arXiv:1901.04052.

2.1. Matrix factorizations.

Definition 2.1. Let Z be an affine scheme and F a function on it. A matrix factorization on Z
with potential F is a quadruple (M0,M1, D0, D1), where

– M0,M1 are vector bundles on Z;

– D0, D1 are maps M0 D0

−−→M1 D1

−−→M0 satisfying D0 ◦D1 = F · id = D1 ◦D0.

Remark 2.1. As a shorthand notation we often write M = (M0,M1) and D = (D0, D1).
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Given two matrix factorization F1 = (M1, D1), F2 = (M2, D2), define

Hom(F1,F2) := {f ∈ Hom(M1,M2) | D2 ◦ f = (−1)deg(f)f ◦D1},

which is Z/2-graded by Homi(M1,M2) = Hom(M0
1 ,M

i
2)⊕Hom(M1

1 ,M
i+1
2 ) for i = 0, 1. We want

a homotopy category version of this. Two elements ψ, φ ∈ Hom0(F0,F1) are homotopic, written
ψ ∼ φ, if there exists an element H ∈ Hom1(F0,F1) such that

ψ − φ = H ◦D1 +D2 ◦H.
We define the morphisms in the (homotopy category of) matrix factorizations to be

HomMF (F1,F2) := Hom(F1,F2)/ ∼ .
Denote the resulting category by MF (Z,F ).

Theorem 2.1 (Orlov). MF (Z,F ) is a triangulated category.

Equivariant matrix factorizations. So far we introduced matrix factorizations for affine schemes.
Suppose now that the affine scheme Z has an action of the algebraic group G and F ∈ C[Z]G. The
idea is to explore matrix factorizations on schemes that are group quotients of affine ones.

Remark 2.2. Given a matrix factorization F = (M,D) ∈ MF (Z,F ), one can naturally require
that M is endowed with a G-representation structure and that the differential D is G-equivariant.
Such an F is called strongy G-equivariant and the corresponding homotopy category is denoted
MF strongG (Z,F ).

For some calculations on strongly equivariant matrix factorizations it can happen that the differen-
tials in the result are not equivariant. Therefore, we introduce a weaker notion of G-equivariance in
which we allow ”correcting differentials”. This notion relies on the Chevalley-Eilenberg complex of
the Lie algebra g of G. Recall that the Chevalley-Eilenberg complex CE(g) is the complex

CE(g) = (V•(g), dCE), Vp(g) = U(g)⊗ Λpg, dCE = d0 + d1,

where

d1(u⊗ v1 ∧ · · · ∧ vn) =

p∑
i=1

(−1)iuvi ⊗ v1 ∧ · · · ∧ v̂i ∧ · · · ∧ vp

and

d2(u⊗ v1 ∧ · · · ∧ vn) =
∑
i<j

u⊗ [vi, vj ] ∧ v1 ∧ · · · ∧ v̂i ∧ · · · ∧ v̂j ∧ · · · ∧ vp.

Here ˆ indicates that the factor is left out. Consider the map ∆ : g → g ⊗ g defined by v 7→
v ⊗ 1 + 1⊗ v. If V,W are modules over the Lie algebra g, we denote by V ⊗̄W the g-representation
that is isomorphic to V ⊗W as a vector space with the g-action coming from ∆. Recall that the
Chevalley-Eilenberg complex CE(g) is a resolution of the trivial g-module. A slight modification of
this standard result implies that CE(g)⊗̄M is a resolution of the g-module M .
We are now ready to define a new category MFg(Z,F ), whose objects are weakly equivariant matrix
factorizations.

Definition 2.2. Let MFg(Z,F ) be the category whose objects are triples

F = (M,D, ∂), (M,D) ∈MF (Z,F ),

where M = (M0,M1), with M i = C[Z]⊗ V i for V i a g-representation, and

∂ ∈
⊕
i>j

HomC[Z](Λ
ig⊗M,Λjg⊗M).

satisfying that the total differential, Dtot := D+ dCE + ∂, is an endomorphism of CE(g)⊗̄M which
commutes with the U(g)-action and D2

tot = F .
Given F = (M,D, ∂) and F ′ = (M ′, D′, ∂′) define

Hom(F ,F ′) :=

{ψ ∈ HomC[Z](CE(g)⊗̄M,CE(g)⊗̄M ′) | ψ ◦Dtot = D′tot ◦ ψ and ψ commutes with the U(g)-action}.



KNOT HOMOLOGIES AND MATRIX FACTORIZATIONS 5

Morphisms ψ and ψ′ are homotopic if there exist h ∈ HomC[Z](CE(g)⊗̄M,CE(g)⊗̄M ′) such that
ψ − ψ′ = D′tot ◦ h − h ◦ Dtot and h commutes with the U(g)-action. We define the morphisms in
MFg(Z,F ) to be

HomMFg
(F ,F ′) := Hom(F ,F ′)/ ∼ .

Remark 2.3. There is a natural inclusion

MF strongG (Z,F ) ↪→MFg(Z,F )

(M,D) 7→ (M,D, 0).

Functors. Given two g-equivariant matrix factorizations F1 = (M1, D1, ∂1) and F2 = (M2, D2, ∂2).
We define their tensor product as

F1 ⊗F2 = (M1 ⊗M2, D1 ⊗ 1 + 1⊗D2, ∂1 ⊗ 1 + 1⊗ ∂2).

Suppose we have an equivariant morphism f : Z1 → Z2 of affine schemes and f∗F2 = F1. Since the
pullback of a free module is free, we get a pullback functor

f∗ : MFg(Z2, F2)→MFg(Z1, f
∗Z2).

Moreover, for π : X × Y → Y a g-equivariant projection map, we can define a pushforward functor
along the projection

π∗ : MFg(X × Y, π∗F )→MFg(Y, F ).

Remark 2.4. A pushforward functor can also be defined for embeddings Z1 ↪→ Z2, where Z1 is the
common zero of an ideal I = (t0, . . . , tn), which is such that the ti’s form a regular sequence. The
definition is a bit cumbersome so we refer to the Oblomkov-Rozansky paper ”Knot homology and
sheaves on the Hilbert scheme of points”.

Finally, we want to define the quotient map. To that end, let F ∈ (M,D, ∂) ∈ MFg(Z,F ). The
’derived’ version of taking the g-invariant part of F is

CEg(F) = (CEg(M), D + dCE + ∂) ∈MF (Z/G,F ),

where by Z/G we mean Spec(C[X]g) and CEg(M) = Homg(CE(g), CE(g)⊗̃M).

2.2. Braid group action. We want to construct an action of the affine braid group on matrix
factorizations. We begin by explaining a construction of the convolution algebra on matrix factor-
izations.
Convolution product. Let G be a reductive algebraic group over C, B ⊂ G a Borel subgroup and
T ⊂ B a maximal torus. Denote g, b and t the corresponding Lie algebras. Moreover, let us denote
by n ⊂ b the nilpotent radical.

Remark 2.5. In the case of interest, we can take G = GLn, then we can think of B as the upper
triangular matrices and of T as the diagonal matrices. The nilpotent radical n is the Lie algebra of
strictly upper triangular matrices.

We introduce a convolution operation in the category of matrix factorizations on the space X2 =
g×(G×n)2. Let p1, p2 : X2 → g×G×n be the two projections. Notice that the space X1 = g×G×n
has an action of G and B given by

(h, b) · (X, g, Y ) = (Adh(X), hgb, Ad−1
b (Y )), (h, b) ∈ G×B.

Furthermore, C× × C× acts on X1 by

(λ, ν) · (X, g, Y ) = (λ2X, g, λ−2ν2Y ).

And lastly, there is a moment map µ : X1 → C defined by

µ(X, g, Y ) = Tr(XAdgY ).

We define our convolution category to be

MFG×B2(X2,W ), W = p∗1(µ)− p∗2(µ),
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Since B = TU is not reductive we require strong G×T 2-equivariance, but only weak U2-equivalence.
There are three G × B3-equivariant maps πij : X3 = g × (G × n)3 → X2 for 1 ≤ i < j ≤ 3, which
we use to define the associative convolution product

∗ : MFG×B2(X2,W )×MFG×B2(X2,W )→MFG×B2(X2,W )

(F ,G) 7→ F ∗ G = π13∗(CEn(2)(π∗12F ⊗ π∗23G)T
(2)

).

Knorrer reduction. There is a procedure called Knorrer reduction which for certain kinds of matrix
factorization categories gives an equivalence with a matrix factorization category on a smaller space.
In our case of interest it gives an equivalence of categories

MFG×B2(X2,W ) 'MFB2(X ,W ),

where X = b×G× n and W (X, g, Y ) = Tr(XAdgY ). Here the B2-equivariance on the right hand
side is also strong T 2-equivariance and weak U2-equivariance. The equivalence in particular gives
a convolution product on MFB2(X ,W ). The advantage is that convolution products are easier to

compute in MFB2(X ,W ), since it involves fewer matrices. We’ll establish an equivalence between
these two categories by other means in lecture 3.
Braid group action on matrix factorizations. For a subgroup H ⊂ G, set X (H) = b ×H × n. The

embedding i : X (B) ↪→X gives a pushforward i∗ : MFB2(X (B), 0)→MFB2(X ,W ).

Let C[X (B)] be the matrix factorization sitting only in homological degree 2. Then 1 := i∗(C[X (B)])
is the unit of convolution.

Example 2.1. (n = 2) Consider the matrices

g =

[
g11 g12

g21 g22

]
, X =

[
x11 x12

0 x22

]
, Y =

[
0 y12

0 0

]
and take

W (X, g, Y ) :=
1

det(g)
(y12(2g11x11 + g21x12)g21)

The matrix factorization for the positive crossing is

C+ := (C[X ]⊗ ∧〈θ〉, D, 0, 0) ∈MFB2(X ,W )

D =
g12y12

det(g)
θ + (g11(x11 − x22) + g21x12)

∂

∂θ

Take the characters

χ1

([
a b
0 c

])
= a , χ2

([
a b
0 c

])
= c

then C− := C+〈−χ1, χ2〉

Induction functors. One can use the induction functors to get all simple reflections.
Let Pk ⊂ G be the k-th standard parabolic subgroup (i.e., its Lie algebra is generated by b and
Ei,i+1 for i 6= k). Consider the diagram

Pk G

Gk ×Gn−k

This induces maps

īk : X (Pk)→X and p̄k : X (Pk)→X k ×X n−k

which then induces

indk := īk ◦ p̄k : MFB2
k
(X k,W )×MFB2

n−k
(X n−k,W )→MFB2

n
(X n,W )

For the positive crossing at the k-th strand, we associate

C(k)

+ := indk+1(indk−1(1k−1 × C+)× 1n−k−1)
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Proposition 2.1. These satisfy braid relations.

As a result, for any braid β = σε1i1 . . . σ
εr
ir

, the object Cβ := C(i1)

ε1 . . . C(ir)

εr is well-defined. This
constitutes a braid group action.

2.3. Knot invariants. We specialize to G = GLn. The Hilbert schemes that we considered in the
first lecture can be alternatively written in the following form.

Hilbn(C2) := {(x, y, v) ∈ g× g× Cn | [x, y] = 0,C〈x, y〉v = Cn}/G
FHilbn(C2) := {(x, y, v) ∈ b× b× Cn | [x, y] = 0,C〈x, y〉v = Cn}/B
FHilbn(C2,C) := {(x, y, v) ∈ b× n× Cn | [x, y] = 0,C〈x, y〉v = Cn}/B

Oblomkov and Rozansky work with a Hilbert scheme F̃Hilb
free

defined as

F̃Hilb
free

:= {(x, y, v) ∈ b× n× Cn | C〈x, y〉v = Cn}.

Notice that this Hilbert scheme admits a C× × C×-action by rescaling of matrices. Finally, define

FHilbfree := F̃Hilb
free

/B.

Note that there is an embedding

je : F̃Hilb
free

→X

(X,Y, v) 7→ (X, e, Y ),

and hence one gets a ’closure of the braid’ map. Note that matrix factorizations with potential zero
is just the usual the usual derived category of 2-periodic complexes Dper.

L : MFB2×C∗×C∗(X ,W )
j∗e−→MFB×C∗×C∗(F̃Hilb

free

, 0)→ Dper
C∗×C∗(FHilbfree),

We can now state the main theorem due to Oblomkov and Rozansky.

Theorem 2.2 (Oblomkov, Rozansky [OR]). For any β ∈ Brn the doubly graded vector space

Hk(β) = H(L(C̄β)⊗ Λ(k+d(β)−n−1)/2B)

is an isotopy invariant of the braid closure L(β), where

(1) H denotes hypercohomology;

(2) L(C̄β) ∈ Dper
C××C×(FHilbfree);

(3) d(β) is the difference between positive and negative crossings;

(4) B is the dual bundle to the universal quotient bundle on FHilbfree.

3. Lecture 3 - Relating OR theorem and GNR conjecture

The goal of this lecture if to relate the Oblomkov-Rozansky (OR) theorem and the Gorsky-Negut-
Rasmussen (GNR) conjecture, where the latter is recalled below.

Conjecture 3.1 (Goresky-Negut-Rasmussen). There exists a pair of adjoint functors

Kb(SBim) DbCohC××C×(FHilbdgn (C2,C))
i∗

i∗
,

such that

(1) i∗ is monoidal and fully faithful;
(2) there exists a canonical isomorphism HHH(β) ∼= H∗(i∗(F (β))) preserving all three gradings.
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3.1. Coherent sheaves on dg-schemes. Throughout let X be a smooth scheme and A =
⊕

iAi
a Z-graded sheaf of OX -dg-algebras.

Definition 3.1. An A-dg-module F =
⊕

i F i is a sheaf of Z-graded left A-modules. We call F
(1) quasi-coherent is each F i is a quasi-coherent OX -module;
(2) coherent if it is quasi-coherent and its cohomology H(F) is coherent over H(A).

In the following, let G be an algebraic group.

Definition 3.2. LetX andA be as above and let F be anA-dg-module. Moreover, letX be endowed
with a G-action and assume that each Ai is G-equivariant and the differential and multiplication is
also G-equivariant. Then F is called G-equivariant if each F i is G-equivariant and the differential
and the action are G-equivariant.

The derived category of G-equivariant coherent left dg-modules over the OX -dg-algebra A is denoted
by DCohG(A).

Example 3.1. (G-equivariant coherent left dg-modules)

(1) DCohG(OX) ' DbCoh(X)
(2) Let G act on two smooth complex algebraic varieties X,Y and on a vector space V . More-

over, let sX : X → V ← Y : sY be two G-equivariant maps. If X×V Y is smooth then there
is an exact sequence

0→ OX×Y ⊗ Λdim(V )V ∗ → · · · → OX×Y ⊗ Λ2V ∗ → OX×Y ⊗ V ∗ → OX×Y → O(X×Y )×V {0}.

where the differential is given by d(f) = f(s), with s = sX − sY , and then extended by
Leibniz rule. In the case we’re interested in this is not the case, so instead we take the exact
part and define the DG-algebra OX×R

V Y
:= OX ⊗OY ⊗ Λ•V ∗. We then define

DCohG(X ×RV Y ) := DCohG(X ×V Y,OX×R
V Y

).

The derived version of the flag Hilbert scheme with support (y = 0) defined in lecture 1 that appears
in the GNR conjecture is defined as

FHilbdgn (C2,C) = FHilbfree ×Rn {0},

where the map FHilbfree → n is given by (x, y, v) 7→ [x, y].

3.2. Relation between dg-schemes and matrix factorizations. In the following, let X be a
smooth complex algebraic variety and G a complex reductive algebraic group acting on X. Moreover,
let π : E → X be a G-equivariant vector bundle, s : X → E a G-equivariant section and π∨ : E∨ →
X the dual bundle. Set

W : E∨
(id,(π∨)∗s)−−−−−−−→ E∨ ×X E

〈−,−〉−−−−→ C,

and we assume that W is not a zero divisor. One can define a derived category DMFG(E∨,W ) of
matrix factorizations on E∨ with potential W as

DMFG(E∨,W ) = H0(MFG,strong(E∨,W ))/〈locally contractible〉,

where locally contracible means that there exists an open cover {Ui} in the smooth topology such
that M |Ui

= 0.

Remark 3.1. If X is affine, the quotient is not necessary.

Theorem 3.1 (Arkhipov, Kanstrup). There is an equivalence of categories

DbCohG(s−1(0)) ' DMFG×C×(E∨,W ),

where s−1(0) is the derived fiber product.

Remark 3.2. This is a G-equivariant version of a result by Isik [Is]
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The key ingredient for the proof of the above theorem is the linear Koszul duality of Mirkovic and
Riche [MR]. For simplicity, take E to be the trivial vector bundle V × X → X. Following the
construction of Mirkovic and Riche we get an equivalence

DCohG×C×(ΛV ⊗OX [t]) ' DCohG×C×(εSymV ⊗OX
s−→ SymV ⊗OX︸ ︷︷ ︸
D

),

where t has internal degree -2 and homological degree 0, ε has internal degree 2 and homological
degree -1 and ε2 = 0. Then, one has the following.

DCohG(s−1(0)) ' DCohG×C×(s−1(0)⊗X OX [t, t−1])

' DCohG×C×(D)/Perf,

where Perf denotes the full subcategory of perfect complexes, i.e. complexes quasi-isomorphic to
bounded complexes of vector bundles. The quotient category of coherent sheaves by perfect com-
plexes is called the singularity category and is denoted Dsing. At this point notice that one can
complete D to an exact sequence

0→ εSymV ⊗OX
s−→ SymV ⊗OX → π∨∗OW−1(0) → 0.

Hence, we get

DCohG×C×(D)/Perf ' DG×C×

sing (π∨∗OW−1(0))

' DG×C×

sing (W−1(0))

' DMFG×C×(E∨,W ),

where the last line follows from a result of Orlov, Polishchuk and Vaintrob [PV].

Example 3.2. (Applications of theorem 3.2).

(1) Let X = FHilbfree, E = FHilbfree × n and s(x, y, v) = [x, y]. Then the theorem tells us
that

DbCohC∗(FHilbdg(C2,C)) ' DMFC∗×C∗(FHilbfree × n∗,W ).

(2) Let X = G × n, E = b∗ × G × n and s(g, Y ) = Tr(−AdgY ). Notice that Tr(−AdgY ) = 0
precisely if AdgY ∈ n. Hence, we find

DMFB
2×C∗×C∗(b×G× n,W ) ' DbCohB

2×C∗((G× n)×Rg n)

' DbCohG×C∗((G× n)/B ×Rg (G× n)/B).

The variety St := (G× n)/B×Rg (G× n)/B is called the Steinberg variety and it is a central
object of study in geometric representation theory.

(3) Let X = G×n×G×n, E = g∗×G×n×G×n and s(g1, y1, g2, y2) = Tr(−(Adg1y1)−Adg2y2).
In this example we find again the Steinberg variety

DMFG×B
2×C∗(g×G× n×G× n,W ) ' DbCohG×B

2×C∗((G× n)×Rg (G× n))

' DbCohG×C∗(St).

The category DbCohG×C∗(St) categorifies the affine Hecke algebra (see [CG]) and it is often called
the affine Hecke category. Another known categorification is the category of affine Soergel bimodules.

Theorem 3.2 (Bezrukavnikov-Yun [Be], [BY]). There is an equivalence of categories

DbCohG×C∗×C∗(St) ' Hb(Aff SBim).

Remark 3.3. The category of affine Soergel bimodules contains Soergel bimodules but it is not a
full subcategory. This is a major issue since HHH is calculated in terms of Hom in Soergel bimodules.
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Action of the extended affine braid group. We have seen in the previous section that G-equivariant
coherent sheaves on the Steinberg variety are related to affine Hecke algebras. It turns out to have
an action of the affine braid group Braff. The latter has a (Bernstein) presentation with generators
(Ts, θx) indexed by simple reflections s and weights x ∈ X(T ) = Hom(T,C×), where T ⊂ B is the
maximal torus. Consider the map

ϕ : St
proj−−−→ G/B ×G/B

For s ∈W a simple reflection consider the G-orbit Ys = G(B/B, sB/B) ⊂ G/B×G/B. Then define

Zs = ϕ−1(Ys).

Moreover, let g̃ = (G × n)/B and consider the projection ψ from the diagonal ∆(g̃ in St to G/B.
For x ∈ X(T ) there is a canonical line bundle OG/B(x) on G/B. We define

O∆(x) := ψ∗OG/B(x).

Recall that we have a convolution product, which in the case at hand is given by

∗ : DbCohG(g̃ ×Rg g̃)×DbCohG(g̃ ×Rg g̃)→ DbCohG(g̃ ×Rg g̃)

(F ,G) 7→ p13∗(p
∗
12F ⊗ p∗23G),

where pij : g̃ ×Rg g̃ ×Rg g̃ → g̃ ×Rg g̃ is the projection to the i, j-factor.

Theorem 3.3 (Bezrukavnikov-Riche [BR]). There is an action of the affine braid group on DbCoh(St)
where Ts acts by convolution with OZs

and θx acts by convolution with O∆(x).

Proposition 3.1 (Kanstrup). The equivalence DMFB
2×C×(b × G × n,W ) ' DbCohG(St) from

example 2 is monoidal. Under the equivalence the generator Cs in [OR] goes to the generator OZs

in [BR].

The rest of the functor in [OR] (which corresponds to closing the braid) can also be translated into
the setting of coherent sheaves.

Proposition 3.2 (Kanstrup). The functor j∗e : MFB
2×C2×C2

(b×G×n,W )→MFC2×C2

(FHilbfree, 0)
becomes

j̃∗e : DbCohB
2×C×((G× n)×g n)→ DbCohC×(FHilbfree)

with j̃e(x, y, v) = (e, y, y).

3.3. Understanding results in terms of derived algebraic geometry. Let X be a derived
stack. Recall that the loop space L(X) of X is the derived stack

L(X) = Map(S1, X) ' X ×RX×X X,

where we use that S1 ' ptqptqpt pt.

Example 3.3. (Loop spaces)

(1) If X is a derived scheme, then L(X) ' LX [−1] (shifted cotangent complex).
(2) Let BG denote the classifying space of G then L(BG) = G/G.

For our purpose we’ll need the notion of unipotent loop space. Note that the affinization of S1 is
BGa.

Definition 3.3. The unipotent loop space Lu(X) := Map(BGa, X) is the space of loops that factor
through BGa.

Example 3.4. Lu(BG) ' Gu/G, where Gu is completion along unipotent elements.
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Steinberg varieties as loop spaces. Let Gu ⊂ G be the completion along unipotent elements, G̃u =
{(g, F ) ∈ Gu ×G/B | g ∈ F}. Then Ben-Zvi and Nadler observed that

StG/G = G̃u/G×G̃/G G̃
u/G

' Lu(B\G/B).

Theorem 3.4 (Ben-Zvi - Francis - Nadler [BFN]). Consider the correspondence

StG/G← L(Gu/G)×Gu/G G̃
u/G→ L(Gu/G) = (Gu ×G)×RG {0} =: Comu/G,

where the map Gu ×G→ G is the commutator so Comu/G is the commuting variety. Pulling back
and pushing forward gives an equivalence

Z(DbCoh(StG/G), pt) ' DbCoh(Comu
G/G),

where Z denotes the Drinfeld center.

Notice that passing to the Drinfeld center Z assures that Markov 1 is satisfied. However, Markov 2
does not hold in the affine setting. In order for Markov 2 to hold, we would need to pass to the finite
Hecke algebra setting. Soergel bimodules are equivalent to D-modules on B\G/B. The result below
by Ben-Zvi and Nadler gives an equivalence with a category defined in terms of coherent sheaves on
a unipotent loop space. Coherent sheaves on loop spaces comes with an S1-action and hence it is a
O(BS1) = k[u]-linear category, where u is a variable sitting in degree 2. Inverting u by tensoring
the category by ⊗k[u]k[u, u−1] gives a 2-periodic category which we denote by subscript loc.

Theorem 3.5 (Ben-Zvi, Nadler [BN]). There is an equivalence of ∞-categories

Coh[B\G/B](Lu(B\G/B))BGa×C∗

loc ' D-mod(B\G/B),

where subscript [B\G/B] indicates the subcategory of coherent sheaves, which remain coherent when
restricted to B\G/B.
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