Skein Categories

Alex Pokorny

June 2019

These notes were taken from a talk given by Juliet Cooke at the 2019 Geometric Representation Theory and Low-Dimensional Topology Summer School hosted at the ICMS in Edinburgh. First, the notion of a Skein Category will be defined. After this, a connection to factorization homology will be sketched.

1 Ribbon Categories and Skein Categories

We begin by stating a few necessary definitions.

Definition. We define a *ribbon category* $(\mathcal{V}, \otimes, \mathbb{1}, B_{x,y})$ to be a braided monoidal category which is rigid (i.e. \mathcal{V} has dual objects x^* and morphisms $\mathbb{1} \to x \otimes x^*$ and $x \otimes x^* \to \mathbb{1}$ satisfying certain compatibility conditions) which is equipped with a morphism $\mathcal{O}_x : x \to x$ for all $x \in Ob\mathcal{V}$ called a *twist map* such that

- 1. $\mathcal{O}_{x\otimes y} = B_{y,x}B_{x,y}(\mathcal{O}_x \otimes \mathcal{O}_y)$
- 2. $\mathcal{O}_{\mathbb{1}} = \mathrm{id}_{\mathbb{1}}$
- 3. $\mathscr{O}_{x^*} = \mathscr{O}_x^* : x^* \to x^*$

Now, fix k to be a commutative ring, which we will usually think of as \mathbb{C} . From now on, let \mathscr{V} be a k-linear ribbon category which has a strict monoidal structure. The example to keep in mind here is the category $\operatorname{Rep}_q^{\mathrm{fd}}(G)$ of finite dimensional representations of $\mathcal{U}_q(\mathfrak{g})$ where \mathfrak{g} is a semisimple Lie algebra and $q \in \mathbb{C}$ not a root of unity.

Definition. A *ribbon graph* is a topological space R built from a finite number of the following:

- 1. Framed strands called *ribbons* with distinguished top and bottom bases and a specified direction which does not depend on the bases. If the direction points towards the top, then the strand is said to have *positive direction*. Otherwise, the strand has *negative direction*.
- 2. Coupons $C \cong [0,1]^2$ with distinguished top and bottom bases.

where a top (resp. bottom) base of a ribbon may be attached either to its bottom (resp. top) base, or to the bottom (resp. top) base of a coupon.

Definition. A \mathscr{V} -colored ribbon graph is a ribbon graph such that

1. Strands are each labeled by a choice of object $v \in Ob\mathscr{V}$

2. Coupons are labeled by morphisms f in the following manner. The domain of f is a tensor product of the labels of the each of the strands attached to the bottom base of the coupon, with the caveat that if the direction of a strand labeled by x is negative, then the tensorand of the domain corresponding to that strand is x^* . Similarly, a codomain of f is specified in the same way.

Definition. Let R be a \mathscr{V} -colored ribbon graph and let X be the set consisting of the unattached bases of the strands of R. A \mathscr{V} -ribbon diagram of a surface Σ is an embedding $d : R \hookrightarrow \Sigma \times [0, 1]$ with restrictions $d|_X : X \hookrightarrow \Sigma \times \{0, 1\}$ and $d|_{R-X} : R - X \hookrightarrow \Sigma \times [0, 1]$.

Definition. Ribbon $_{\mathscr{V}}(\Sigma)$ is the k-linear category with

- Objects: finite sets of colored framed points with orientation.
- Morphisms: k-linear combinations of \mathscr{V} -colored ribbon graphs R up to ambient isotopy of of R in $\Sigma \times [0, 1]$ which fix the boundary $\Sigma \times \{0, 1\}$ pointwise.
- Composition: given by scaling and stacking ribbon graphs in the [0, 1] coordinate, thought of as a vertical direction.

If we set $\Sigma = [0, 1]^2$, then Ribbon_{\mathscr{V}}($[0, 1]^2$) is a ribbon category, where \otimes is given by scaling and stacking ribbon graphs in either coordinate of Σ , thought of as a horizontal stacking.

Figure 1: The braiding, twist, and duality morphisms

Theorem. (Turaev)

There is a surjective and full k-linear ribbon functor

eval: Ribbon_{$$\mathscr{V}$$}([0, 1]²) $\rightarrow \mathscr{V}$
 $\underline{v} \mapsto v$
 \boxed{f}
 $\downarrow \downarrow \downarrow \downarrow \downarrow \downarrow$

Definition. The \mathscr{V} -skein category on Σ , $\mathbf{Sk}_{\mathscr{V}}(\Sigma)$, is the category Ribbon $_{\mathscr{V}}(\Sigma)$ with the following relation imposed on morphisms: $F \sim G$ if F and G are equal outside of a cube and $\operatorname{eval}(F|_{cube}) = \operatorname{eval}(G|_{cube})$. Furthermore, the boundary of this cube intersects F and G with only a finite number of transverse strands on the top and bottom faces.

Example. Let $\mathscr{V} = \operatorname{Rep}_q^{fd}(\operatorname{SL}_2)$ be the category of finite dimensional representations of the quantum group $\mathcal{U}_q(\mathfrak{sl}_2)$. The relation imposed removes coupons, directions and colorings. Furthermore, the following relations are implied:

Thus, the category $\mathbf{Sk}_{\mathscr{V}}(\Sigma)$ is a category of tangles up to isotopy fixed in $\Sigma \times \{0, 1\}$ subject to the Kauffman bracket skein relations. Furthermore, the endomorphism algebra $\operatorname{Hom}(\phi, \phi)$ is the Kauffman bracket skein algebra of Σ .

2 Factorization Homology

We have a monoidal functor

$$\mathbf{Sk}_{\mathscr{V}}(-):\mathrm{Mfld}_{2,\mathrm{fr}}^{\mathrm{II}}\to\mathrm{Cat}_{\Bbbk}^{\times}$$

Mfld^{II}_{2,fr} is the category with objects framed, oriented surfaces and morphisms embeddings. $\operatorname{Cat}_{\Bbbk}^{\times}$ is the 2-category with objects small \Bbbk -linear categories with morphisms functors and 2-morphisms natural isomorphisms. We would like to talk about the excision property of factorization homology. Let C be a 1-manifold and let $A = C \times [0, 1]$. $\operatorname{Sk}_{\mathscr{V}}(A)$ is a monoidal category with monoidal product induced by the topological gluing in the interval coordinate, with some small overlap:

If we have two objects M and N of Mfld^{II}_{2,fr} with embeddings of A as below, then $\mathbf{Sk}_{\mathscr{V}}(M)$ is a right $\mathbf{Sk}_{\mathscr{V}}(A)$ -module and $\mathbf{Sk}_{\mathscr{V}}(N)$ is a left $\mathbf{Sk}_{\mathscr{V}}(A)$ -module.

So we can define the relative tensor product $\mathbf{Sk}_{\mathscr{V}}(M) \bigotimes_{\mathbf{Sk}_{\mathscr{V}}(A)} \mathbf{Sk}_{\mathscr{V}}(N)$ as the colimit in $\operatorname{Cat}_{\Bbbk}^{\times}$ of the 2-sided bar construction of the diagram

$$\mathcal{M}\times\mathcal{N}\coloneqq\mathcal{M}\times\mathcal{A}\times\mathcal{N}\leftrightarrows\mathcal{M}\times\mathcal{A}\times\mathcal{A}\times\mathcal{N}\cdots$$

where $\mathcal{M} = \mathbf{Sk}_{\mathscr{V}}(M), \mathcal{N} = \mathbf{Sk}_{\mathscr{V}}(N), \mathcal{A} = \mathbf{Sk}_{\mathscr{V}}(A).$

Theorem. (Cooke)

$$\mathbf{Sk}_{\mathscr{V}}(M \underset{A}{\cup} N) \simeq \mathbf{Sk}_{\mathscr{V}}(M) \bigotimes_{\mathbf{Sk}_{\mathscr{V}}(A)} \mathbf{Sk}_{\mathscr{V}}(N)$$

By [Turaev], we have $\mathbf{Sk}_{\mathscr{V}}([0,1]^2) \simeq \mathscr{V}$ and $\mathbf{Sk}_{\mathscr{V}}([0,1]^2)$ has a canonical monoidal structure given by inclusion on manifolds. This yields an E_1 -structure. These facts, together with the above theorem, characterize a factorization homology so the functor

$$\mathbf{Sk}_{\mathscr{V}}(-): \mathrm{Mfld}_{2,\mathrm{fr}}^{\mathrm{II}} \to \mathrm{Cat}_{\Bbbk}^{\times}$$

is the k-linear functor

$$\int_{-} \mathscr{V} : \mathrm{Mfld}_{2,\mathrm{fr}}^{\mathrm{II}} \to \mathrm{Cat}_{\Bbbk}^{\times}$$

of surfaces with coefficients in $\mathscr V.$

Note that the free cocompletion of $\mathbf{Sk}_{\operatorname{Rep}_q^{\operatorname{fd}}(G)}$ gives $\int_{-}^{\Pr} \operatorname{Rep}_q^{\operatorname{fd}}(G)$.