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1. THE N-BODY PROBLEM OF STELLAR DYNAMICS

Stellar dynamics uses several different models of stellar systems, but in this paper we
consider the most fundamental, which is governed by the N-body equations:

r̈i = −G
N∑

j=1,j 6=i
mj

ri − rj
|ri − rj |3

. (1)

Stellar dynamics shares these equations with celestial mechanics (a term which is used here to
denote the study of the orbital dynamics of bodies in the solar system), but there are important
differences of emphasis. In stellar dynamics all masses are comparable, whereas in celestial
mechanics one mass tends to dominate (either the sun or a primary). This has an effect on the
methods used and the types of motion which result. Approximate analytical methods are of
immense value in celestial mechanics, but not in stellar dynamics, where numerical methods
predominate. In celestial mechanics motions tend to be very nearly regular for long intervals of
time, whereas in stellar systems motions are highly irregular.

This last point is one that is illustrated by graphical results from numerical integrations
(Carnevali & Santangelo 1980), but in the present paper we analyse the irregular nature of motions
in stellar systems from a more quantitative point of view; i.e. how sensitively the orbits of the stars
depend on the initial conditions. We summarise both numerical data and theoretical investigations
on this problem. In addition we consider the implications of these results for the validity and
interpretation of numerical simulations.

2. SOME IDEAS OF STELLAR DYNAMICS

2.1 Some Terminology

For future reference we list here some useful standard notions of stellar dynamics (cf. Binney
& Tremaine 1987), though the applications we have in mind are to star clusters. The kinetic and
potential energies of N point masses are, as usual, T = 1

2

∑N
1 miv

2
i and

W = −G
∑
i<j(mimj/|ri − rj |), respectively. We define the virial ratio q = 2T/|W |. This is found

to be of order unity in stellar systems in dynamic equilibrium, by the virial theorem (which is the
extension of Lagrange’s identity in the three-body problem to N bodies.) It is convenient to
consider a time scale set by the crossing time tcr = 2R/v, where R is the size of the system (in a
sense which may be made precise), and v is the mean stellar speed. Using estimates based on the
magnitude of q it is then easy to deduce that tcr ∼

√
(R3/(GM)), where M is the total mass of the
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system.

2.2 A Summary of the Evolution of a Star Cluster

Later we shall present some numerical data whose interpretation depends partly on what is
known about the way in which stellar systems evolve, and so here we summarise some ideas about
this (cf. Spitzer 1987). If the system is not initially in dynamic equilibrium (e.g. it is collapsing)
then it first settles down into dynamic equilibrium, on a time scale of order tcr. The equilibrium is
not exact, however, and the system continues to evolve, though much more slowly. Two-body
interactions cause stars to be ejected out of the densest part of the cluster, which is called the core.
The core shrinks (in size and mass); a process referred to as core collapse. It takes place on a
relaxation time scale, which is of order Ntcr/ lnN . When the density in the core has become high
enough, three-body interactions become sufficiently common to eject substantial numbers of stars
from the cluster. This loss of mass eventually reverses the collapse of the core, and causes overall
expansion of the entire system.

The eventual outcome of this evolution is somewhat conjectural, but is thought to be an
asymptotic state in which escaping single stars, and some escaping binaries, are spreading out to
infinity.

3. CHECKING NUMERICAL ERRORS

As already mentioned, many results on the dynamical evolution of star clusters result from
numerical computations, using eqs.(1). As always, it is desirable to control the errors in such
computations, but this is clearly a difficult task here, as there exist no suitable non-trivial exact
solutions against which to test the results. The following partial checks are available.

(i) Conservation of integrals In practice the total energy E = T +W is the
most useful. Usually it is considered sufficient if the relative numerical error is limited
by |∆E/E| < 10−4 per tcr, or better, (Aarseth 1974). Incidentally, this might seem
crude by the standards of celestial mechanics, but several important shortcuts are
needed in order to obtain useful results for systems of any size, and accuracy is one of
the sacrifices that must be made.

(ii) Time-reversal This test is rarely carried out on large systems. An
example is the celebrated Burrau problem in the general three-body problem, where
Szebehely & Peters (1967) reversed the velocities at the point where the triple system
embarked on its final asymptotic motion (a single mass escaping hyperbolically from
a binary), and were able to recover the initial coordinates to about three significant
figures. This example also shows how unreliable it is to use conservation of energy as
a test: even though there were such large errors in the coordinates the total energy
was conserved to a relative accuracy better than 10−11!

(iii) Independent calculations Numerical stellar dynamics is sometimes
referred to as an experimental method, and, like all experimental techniques, should
produce reproducible results. But it was shown by Lecar (1968) that different
computations with the same initial conditions (using different computers, or even
simply different algorithms on the same computer) produced widely divergent results,
after the first crossing time or so.

This trial shows that the detailed positions of the stars in an N-body computation cannot, in
general, be regarded as being even approximately correct. On the other hand the interpretation of
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the results is a little complicated, because we see not only the effects of truncation and rounding
errors, but also the propagation of errors made at earlier stages of each calculation. One method of
isolating the last mechanism (propagation of errors) is to study the evolution of N-body systems
with (slightly) different initial conditions. We now discuss how this can be done in practice, and
what the results are.

4. THE GROWTH OF NUMERICAL ERRORS

Consider two N-body systems I, II satisfying the same N-body equations but slightly
different initial conditions, i.e.

rIi (0) = rIi0, ṙIi (0) = ṙIi0,

and
rIIi (0) = rIIi0 , ṙIIi (0) = ṙIIi0 .

Suppose we now integrate both systems as accurately as possible. How, we ask, does the difference
between the solutions evolve?

The “difference” may be measured in several different ways. One possibility is to define

∆(t) = (
∑

(rIi − rIIi )2 +
∑

(ṙIi − ṙIIi )2)1/2.

This choice was made in a classic investigation by Miller (1964), who found, for 4 ≤ N ≤ 32, that
∆ grows roughly as exp(µt), where µ is constant. There was much scatter, but typical values were
given by µtcr ∼ 2, 4, 20 for N = 8, 12, 32, respectively. Very comparable results were obtained later
by Standish (1968) and by Dejonghe & Hut (1986) for N = 25 and N = 3, respectively.

These studies immediately explain Lecar’s results for N = 25; the growth of errors is very
rapid on the time scales of interest. And Dejonghe & Hut found that initial errors in Burrau’s
Problem grow by a factor of order 109 up to the time at which Szebehely & Peters carried out time
reversal; since errors also grow during the reverse integration by a comparable factor (which is a
property of Hamiltonian systems), it is clear that Szebehely & Peters did well to recover the initial
conditions even to three significant figures.

It also follows that it is impossible to predict the positions and velocities of the stars in a
simulated star cluster for more than a few crossing times. But Miller’s results are also puzzling.
They suggest that the logarithmic rate at which the errors grow depends on N , and indeed
increases roughly linearly with N . If his results could be extrapolated to a rich globular cluster,
where N ∼ 106 and tcr ∼ 106yr, they suggest that the time scale for growth of errors is of order
1yr. In this time a star in a globular cluster moves a distance of order 1AU, whereas the mean
distance between the stars is of order 104AU. What could cause such rapid growth of errors?

For these reasons the author, in collaboration with Goodman & Hut, has carried out further
studies, in order to determine better the N -dependence of the growth of errors. In these new
studies a standard alternative formulation, using the variational equations, has been employed. Let
us abbreviate eqs.(1) as

r̈i = ai(r1, r2, ..., rN ),

and let ∆ri = rIIi − rIi be the difference between two neighbouring solutions. While this difference
remains small, it satisfies approximately the linearised equations

∆r̈i =
N∑
j=1

∆rj .∇rjai, (2)

and these equations are sufficient to determine the growing separation of the two solutions within
the linear regime.
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What follows is a summary of the numerical results reported in Goodman, Heggie & Hut
(1990). The systems ranged in size from N = 4 to N = 512, in steps of a factor of 2. The
components of the initial positions and velocities of the stars were chosen from a random
distribution on (0,1), then rescaled to make the virial ratio q = 1. The components of ∆ri and ∆ṙi
were assigned initial values equal to ±1 at random. At each value of N ten cases were integrated
(differing only in the initial conditions, selected as stated), except that only five cases were studied
for N = 512. The integrations were continued up to t = (5/

√
2)tcr. To measure the growth of the

variations ∆ri a different choice from Miller’s was made. It turns out that the variations in the
velocities ∆ṙi tend to have large ‘spikes’ during close approaches, whereas ∆ri is better behaved.
To smooth the data further, a geometric mean over all the stars was taken, i.e. we define
ln ∆ = (

∑
ln |∆ri|)/N .

Since the purpose of this investigation was to investigate the growth of errors in N-body
integrations, it was desirable to use an integration algorithm allowing automatic step-size control
based on the local truncation error. The fourth-order Runge-Kutta routines given in Press et al.
(1986) proved suitable in this respect.

Fig.1 Growth of solutions of the variational equations, for 5 cases with N = 512. The ordinate is a
logarithmic measure of the size of the solution, as defined in the text, and the abscissa is time.
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Fig.2 The time scale for the exponential divergence of neighbouring solutions of the N -body
problem, as a function of N . The error bars give the standard deviation estimated from the 10
computations carried out for each value of N (except N = 512, for which there are only 5). The
ordinate is expressed in units of the crossing time.

The results of these calculations confirmed that the growth of ∆ is nearly exponential,
especially for large N (Fig.1). Indeed the scatter in the results (across runs made with different
random initial conditions) decreases as N increases. The N -dependence of the growth rate was one
of the most interesting conclusions (Fig.2). Defining the growth rate as µ = d(ln ∆)/dt, it was
found that µ decreases as N increases in the range 4 <∼ N <∼ 32, but then levels off up to the largest
value we studied. Thus Miller’s results, which stopped at N = 32, gave a similar N -dependence to
what we have found, but clearly cannot be extrapolated to larger N . For large values of N our
results are consistent with µ ' 6/tcr, with no dependence on N . Since our results are based on a
geometric mean over all the stars in each system, it might be thought that the variations ∆ri might
be large only for a small number of stars, but Fig.3 shows that this is not so.
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Fig.3 Histogram of values of δxi and δvi, i.e. components of the variations in position and velocity,
for 512 stars at t = 10. Thus 3072 data values are included. The initial values are of order 1.

These new results allow us to sharpen our conclusions about how quickly errors grow in large
N -body computations. For example, if such a computation is carried out in double precision then
all accuracy is lost at a time such that exp(6t/tcr) ∼ 1018, ⇒ t ' 7tcr. By comparison, the time to
the end of core collapse is of order 30tcr for N = 100, and is approximately proportional to N .

5. LIAPOUNOV EXPONENTS

Before we pass on from these numerical studies to a theoretical analysis of error growth, it is
worth attempting to clarify the link between this investigation and the standard language in which
such studies are often expressed. Consider a finite dynamical system with state vector q, and let
∆q(t) be a solution of the corresponding variational equations. Define

µ = lim
t→∞

ln ‖∆q‖
t

. (3)

It can be shown that this limit exists if the system is tolerably smooth, and (for a given initial
value q(0)) takes one of a discrete set of values (depending on ∆q(0)), called Liapounov
characteristic exponents (see, for example, Lichtenberg & Lieberman 1983). For almost all ∆q(0)
the value of µ is the largest exponent.
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This is clearly related to the quantity µ discussed previously, but the present definition is of
no value for our purposes, because of the requirement that t→∞. If the discussion of §2.2 (above)
is correct, as t→∞ the stellar N-body problem is asymptotically integrable, and so µ = 0. (In an
integrable system neighbouring orbits deviate linearly with t, not exponentially.) Therefore the
largest Liapounov Characteristic Exponent says nothing about loss of predictability, sensitive
dependence on initial conditions, etc.

What is needed is a similar concept which measures the divergence of neighbouring orbits
over finite intervals of time which are of interest. If we modify eq.(3) and define µ by

µ−1 =
t

ln(‖∆(t)‖/‖∆(0)‖)
,

then we have a definition of a time-dependent quantity, µ, which is sometimes conveniently referred
to as a “Liapounov Characteristic Indicator”. On the other hand we can emphasise its physical
significance if we refer to µ−1 as the “time scale of instability”, or “e-folding time”.

6. THEORY OF THE EXPONENTIAL INSTABILITY

6.1 Solutions of the N-Body Problem as Geodesics

We now leave behind the numerical investigation of our problem, and turn to the theoretical
approach. There are two lines of attack, one geometrical in nature, the other physical. Both date
back to work of Krylov which was published in 1950 (Krylov 1979). In this section we consider the
first of these approaches.

We consider a Lagrangian system, like the N-body problem, in which the kinetic energy T is
a quadratic form in the generalized velocities q̇i, with coefficients depending on the qi. Then there
is a standard piece of theory (see, for example, Arnold 1978, p.247) which shows that all motions of
a fixed energy h give orbits in configuration space which are geodesics for a suitably defined metric.
In fact the distance between neighbouring points is given by ds2 = 2T (h− U)dt2, where U is the
potential function. (By our assumption about the form of T , it can be seen that this is a quadratic
form in the differentials dqi, with coefficients which are functions of the generalized coordinates qi.)

The advantage of casting a dynamical system in this form is that much is known about
geodesic flows; and, while the conditions under which such results may be proved may not always
apply to the N -body problem, they are strongly suggestive of behaviour to look for. Our interest is
in the rate at which orbits diverge, and the rate of divergence of geodesics is described by Jacobi’s
equation (cf. Arnold 1978, Appendix 1). This is simply the variational equation for geodesic flow,
but it is expressed in terms of covariant derivatives. The importance of these is that they have a
significance independent of the particular coordinates in use; if a covariant derivative vanishes in
one system then it vanishes in all.

Let us denote by v the unit tangent vector to a geodesic, and by ξ a vector which takes us
from a point on this geodesic to a corresponding point on a neighbouring geodesic. We are
interested in the rate of growth of |ξ|, and it is easily shown from Jacobi’s equation (Gurzadyan &
Savvidy 1986) that

d2|ξ|2

ds2
≥ −2K(ξ, v)|ξ|2, (4)

where K, the Riemannian curvature, can be easily computed in terms of the metric coefficients. If
K remained negative we would be able to show that |ξ| eventually grows exponentially with time.
Unfortunately, it turns out that K can have either sign in the classical gravitational N-body
problem.
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The next simplification that can be attempted is to average the right-hand side of eq.(4)
over all possible directions of the vectors v and ξ. When this is done it is found that the average
value of the Riemann curvature is

〈K〉 =
2−N

4N

∑N
i=1mif

2
i

T 3
, (5)

where N is the number of stars, fi is the acceleration of the ith star, and mi is its mass.
Interestingly, this vanishes when N = 2, and it is sometimes said that this corresponds to the
integrability of the 2-body problem. Our interest is in larger N , and since then we have 〈K〉 < 0, it
is possible to argue (Gurzadyan & Savvidy 1986) that this implies exponential divergence of
neighbouring orbits.

Furthermore, a theoretical estimate can be made of the rate of growth, which Gurzadyan &
Savvidy attempted to do by estimating the average value of the right-hand side of eq.(5). The
average is taken over a sensibly chosen, random distribution of the positions of the stars.
Unfortunately, however, the average value of f2i diverges because of the contribution of stars at
small distances (on the assumption that the positions of neighbouring stars are uncorrelated).
Because of the nature of this difficulty, these authors estimated the average value 〈f2i 〉 essentially
by substituting the value of f2i which would be contributed by a typical nearest neighbour. (In a
system of radius R, the nearest neighbour is at a distance typically of order RN−1/3.) In this way
Gurzadyan & Savvidy estimated that the time scale for the divergence of neighbouring orbits in a
stellar system is of order N1/3tcr.

As far as the author is aware, this was the first attempt to estimate the time scale for the
divergence of orbits in the classical gravitational N -body problem. On the other hand the
predicted N -dependence is inconsistent with the numerical results summarised in §4, even those
published before the time of this theoretical study. It is not hard to see that the problem might lie
with the divergence at small distances. While the typical interparticle distance is indeed of order
RN−1/3, it is not hard to show that, in each crossing time, each star has a close encounter at a
distance of order RN−1/2, where the rate of divergence of neighbouring orbits is larger than
average. Although such encounters are short-lived it is not immediately clear whether a strong,
brief effect will be dominated by a weaker, constant effect.

6.2 The Growth of Errors in “Collisions”

Perhaps it would be possible to adapt the geometric theory, just described, so as to estimate
the effect of occasional close encounters. But there is another type of theory, also apparently due to
Krylov, in which this may be attempted. He developed it in the context of the “hard-sphere gas”,
where the bodies have no effect on each other, except during collisions.
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Fig.4 Path of a particle which strikes, and is deflected by, a hard sphere. The notation is explained
in the text.

We shall outline the theory for a two-dimensional hard sphere gas first. Suppose a particle
sets off from the origin, in a direction making an angle φ0 with the x-axis (Fig.4). It strikes a
sphere at a point on the sphere corresponding to the polar angle θ, and then sets off in the
direction φ1. Since the angles of incidence and reflection are π − θ + φ0 and θ − φ1, respectively,
equality of these angles shows that

φ1 = φ0 + π − 2θ. (6)

Now suppose the particle had set off at a slightly different angle φ0 + dφ0. If the surface of
the sphere is at a distance ρ from the origin, then the particle now has a transverse spatial
displacement

dp1 = ρdφ0, (7)

(where we use p to denote the minimum distance at which the particle would pass the centre of the
sphere if it were not deflected.) Therefore the particle strikes the surface of the sphere at a point
which is displaced by an amount dp1/ cos(π − θ + φ0) clockwise round the surface of the sphere.
Equating this to −r0dθ, where r0 is the radius of the sphere, the differential of eq.(6) leads to the
result dφ1 = dφ0(1 + 2ρ/[r0 cos(π − θ + φ0)]). The important point about this result is that errors
in the direction of motion are magnified by a factor of order ρ/r0, and we may imagine this can be
large in a dilute gas.

Now we turn to the consideration of the gravitational N -body problem. Here simple
estimates (cf. Heggie 1988) show that φ1 ∼ φ0 −Gm/(pv2), where v is the speed of the particle.
Hence

dφ1 ∼ dφ0 +Gm(pv)−2dp1, ' dφ0(1 +Gmρ/[p2v2]). (8)

A complication, to which we shall return, is that there is no length-scale in the gravitational
problem which corresponds to the radius r0 of a hard sphere. Instead, there are encounters at a
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wide range of distances p, and the distance travelled (ρ) depends on how close the encounters are
which we are considering. What can be done (Heggie 1988) is to estimate the effect of those
encounters which have the greatest magnifying effect on the errors. It turns out that the most
effective encounters are those at a distance of order RN−1/2, where, as before, R is a measure of
the size of the system. Then the time scale for growth of errors is of order 1tcr. This is in
agreement with the numerical results of Goodman et al. which were discussed in §4 above (and
were obtained after the theoretical estimate!)

We now discuss some refinements of this theory which have been developed recently. An
important consideration was advanced by Goodman and is described in more detail in Goodman et
al. (1990). He pointed out that still closer encounters (at distances much less than RN−1/2) affect
only a few stars in each crossing time, but have a very large effect on the errors in the positions and
velocities of these stars. These strongly affected stars can then “infect” the other stars in the
system, because the errors in all the stars are coupled together, by the form of the terms on the
right-hand side of the variational equations, eq.(2). (The physical reason for this coupling can also
be illustrated by Fig.4. In the associated discussion we assumed that the position of the sphere was
not subject to error. If, however, the error in its position is large, this will be what mainly
determines the error in the direction of the particle after the collision.) It takes several crossing
times for this “infection” to spread throughout the entire system, but the net effect is to shorten
the time scale for exponential divergence by a factor of order lnN .

It is worth pointing out that there is no numerical evidence for this factor. This may be
because such logarithmic variations are rather small in practice, and may be too difficult to detect
in the face of the considerable statistical uncertainty in our numerical estimates. On the other hand
Goodman’s theory makes it clear that the time needed for the “spread of the infection” (its
incubation period?) increases with N , whereas our numerical experiments were concluded at a time
which was chosen independent of N .

6.3 The Growth of Errors as a Stochastic Process

The theoretical estimates we have discussed simply yield orders of magnitude, and teach us
how the rate of growth of errors depends on the number of stars, etc. It is much harder to use a
result like eq.(8) to derive a numerical estimate of the time scale. The reason for this is that the
magnification factor depends on quantities like ρ and p, which vary randomly from one encounter
to the next. One solution is to simulate the process numerically, choosing values of these
parameters from suitably chosen random distributions, and then multiplying together the effects of
successive encounters. This has been done by Goodman (Goodman et al. 1990). (Note that this is
a different kind of numerical simulation from those discussed in §4. Those were based on the full
N -body equations, eq.(1). Here we are using an equation like eq.(8), which is already a great
simplification from eq.(1).) In what follows we describe a framework for an analytical attack on the
same problem. It is mainly due to my colleague A.M. Davie.

First we have to correct eq.(7), which assumes that the particle emerges from the origin with
an error only in its initial direction. But if it emerges from its previous encounter, it already has a
transverse error in its position, which we may denote by dp0. Thus eq.(7) is to be replaced by

dp1 = dp0 + ρdφ0,

and eq.(8) by the more fundamental form

dφ1 = dφ0 +Gm(pv)−2dp1.

(A more careful discussion would also be needed to determine the numerical value of the coefficient
of the last term.)
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These two equations define a map which is symplectic (since its Jacobian is unity), and
stochastic (since the quantities ρ, p and v will differ from one encounter to another, and may be
assumed to be random variables drawn from appropriate distributions.) Introducing a vector
x = (dp, dφ)T , we may write the iterated map as xn = Anx0, where the matrices An are related by

An+1 =

 1 ρ
Gm

p2v2
1 + ρ

Gm

p2v2

An.
(Note that the quantities ρ, p and v should be subscripted to show that they correspond to the nth
encounter. These subscripts have been omitted for clarity of notation.) Expressing An explicitly by

An =

(
an bn
cn dn

)
,

we deduce easily that

an+1 = an + ρcn, (9)

= a0Π
n
i=1(1 + ρici/ai).

It is easy to see now that the average logarithmic divergence (per encounter) is given by the
average value of ln(1 + ρici/ai), but it remains to determine how to take the average. In other
words, what is the distribution of ci/ai? Let us define zi = ci/ai. Then, by the kind of argument
which led to eq.(9), we immediately obtain the relation zn+1 = Gm(pv)−2 + zn/(1 + ρzn). This
defines a sequence of random variables, since the values of ρ, p and v are to be chosen from
appropriate distributions. The probability density functions of this sequence can be obtained
recursively from

fn+1(zn+1) =

∫
fn(zn)fρ,p,v(ρ, p, v)δ(zn+1 −

Gm

p2v2
− zn

1 + ρzn
)dρdpdvdzn,

=

∫
fn(zn)K(zn, zn+1)dzn,

say. If we suppose that the sequence of density functions tends to a limit, i.e. fn → f , then f must
be a solution of the integral equation

f(z′) =

∫
f(z)K(z, z′)dz. (10)

Finally, the rate of exponential divergence of neighbouring orbits can now be computed as
µ = 〈ln(1 + ρz)〉/〈ρ/V 〉, where V is the speed of the star. In the computation of the first average,
the distribution of z to be used is obtained (in principle) from the solution of the integral equation
(10).

7. RELAXATION AND THE GROWTH OF ERRORS

In large stellar systems in dynamic equilibrium, the stars move around on relatively smooth
orbits, only occasionally coming close enough to another star to be significantly deflected. Most of
the time, they can be thought of as moving in a smooth, almost stationary gravitational field, in
which the individual energy of each star is nearly constant. Because of the occasional close
approach (and the cumulative effect of encounters which are not so close) its energy varies slightly,
but it takes a time of order Ntcr/ lnN (the Chandrasekhar relaxation time) to change by a
significant amount (cf. Binney & Tremaine 1987).
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Any process which changes the energy of individual stars is called a “relaxation” mechanism,
and the main reason why Gurzadyan & Savvidy were interested in estimating the rate of divergence
of orbits is that they assumed they were also calculating a relaxation rate. Furthermore they found,
as we have seen, a time scale for the divergence of orbits which, for large systems at least, must be
shorter than Chandrasekhar’s time scale. (We saw in §6.1 that they estimated a time scale of order
N1/3tcr for the rate of divergence. In §6.2 this has been revised to a time scale of order tcr or even
tcr/ lnN . This is smaller than Chandrasekhar’s relaxation time scale by a factor of N .) Therefore
they concluded that they had found a mechanism of relaxation which would cause stellar systems
to evolve much more quickly than had been thought hitherto.

In hard-sphere gases it is true that the rate of divergence of orbits is comparable with the
rate of relaxation: it takes only a few collisions to randomise the direction of motion of an atom, or
to bring its kinetic energy in statistical equilibrium with the energies of the atoms around it.
Stellar systems are different, as we now explain.

We have seen that the growth of errors in positions and velocities of stars in stellar systems
is exponential, with an e-folding time scale te of order tcr/ lnN . It is certainly true that errors in
energy grow similarly, and on the same time scale. But this exponential growth of errors is
obtained in a linear approximation (i.e. variational equations, or Jacobi’s equation), and ceases to
be valid when the linear approximation itself breaks down. It is easy to see that this will certainly
happen when the error in the position of a star becomes comparable with the distance to its
nearest neighbour.

In order to quantify this statement, let us denote by p and dp the distance of closest
approach of two stars, and the error in this distance, respectively. We have seen (in §6.2) that the
most effective encounters are those in which p ∼ RN−1/2, while exponential growth of errors on a
time scale of order tcr leads to dp(t) ∼ dp(0) exp(t/tcr). Thus the linear approximation breaks down
at a time when dp(t) ∼ RN−1/2, i.e. when t ∼ tcr ln(R/N1/2dp(0)). Thereafter the growth of errors
in energy slows down, and there is no contradiction with the slow changes in energy predicted by
Chandrasekhar’s theory.

Actually the predictions of the two theories are quite consistent, in the following sense. The
gravitational potential gradient (per unit mass) in a system of radius R, consisting of N stars of
mass m each, is of order GNm/R. If the error in position of a star is of order RN−1/2, it follows
that the resulting error in its potential energy is of order GmN1/2/R. Now Chandrasekhar’s theory
is based on a model in which the energy of a star varies in the fashion of a random walk, and so the
change in energy varies with the square root of the time. Knowing the relaxation time given by
Chandrasekhar’s theory, we can easily estimate the predicted change in energy at the time (of order
tcr) when the exponential growth of errors slows down. It turns out to be the same (except for
numerical factors) as our estimate of the error in energy at the same time.

There is one respect in which the estimate of the growth of errors in stellar systems teaches
us something about galactic dynamics. It is usual to study galactic orbits by assuming, as
mentioned above, that the stars move in a smooth potential, and that the graininess of the true
potential does not matter over the time scales of interest. This leads to much interesting theory on
whether the potentials are integrable, or whether motions are stochastic. In the latter case, it is
possible to measure Liapounov Characteristic Exponents, again assuming that the potential is
smooth. We now see, however, that the true rate at which neighbouring orbits diverge is of the
order of a crossing time, and that encounters with individual stars are fundamental. Thus the
approximation of a smooth potential is useful for studying orbits, but not for studying their
divergence.
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8. THE USE OF N-BODY SIMULATIONS

We now return to the issue which motivated this entire study: how reliable are the results of
N -body simulations? We now know that the positions and velocities of individual stars are quite
unreliable after a few crossing times, which is a period much shorter than that over which we would
like to study the dynamics of star clusters. What sense, then, can be made of the results of
simulations, which for many purposes seem to be the only way in which some problems of stellar
dynamics can be approached? The usual answer given to this question is to assert that statistical
results are still valid, even though the individual positions and velocities of stars are not known.
For example, it is assumed that the average rate at which stars escape can be determined (with
only statistical error), even though it is not usually possible to state which stars escape.

Despite the enormous numbers of N -body simulations which have been carried out, it is
remarkable that very little has been done to test this assertion. It can also be looked at from
another point of view: if all we can be interested in are statistical results, why should we bother to
compute accurate orbits? How crudely (and cheaply) can we simulate stellar systems and still
obtain statistically reliable results? There seems to be no theoretical understanding of these
questions, and very little empirical evidence either.

One case which has been studied (Valtonen 1974) is the scattering problem for N = 3, i.e.
the statistical study of the outcome of encounters between a single star and a binary. Valtonen
conducted several series of experiments at different accuracy, and measured the statistical
distribution of the final eccentricity of the binary. He found no dependence on the accuracy, judged
by conservation of energy E, though the range of accuracies was rather limited:
0.005 < 〈(∆E/E)2〉1/2 < 0.03.

Larger N -body systems (N = 16) have been studied by Smith (1977). The time step for
different runs varied over a factor of 7, but he found no discernible differences in his statistical
results except when the conservation of energy was grossly violated, i.e. unless |∆E/E| exceeded 10
– 100. His conclusion was that it is best to make large numbers of cheap runs, as long as the total
energy is roughly conserved in each run.

Against this background, we now present some results of a new study involving somewhat
larger systems (N = 100). Our aim will be able to test for any dependence of a number of
statistical results on integration accuracy. The statistical data we test are chosen to correspond to
a number of issues which are of special interest to stellar dynamicists (cf. §2.2).

The particular integration program used was the widely available program known as
NBODY1 (Aarseth 1985, Binney & Tremaine 1987). In this program the local time-step ∆t
depends on a parameter η as

√
η, and in this study the chosen values of η were 0.1, 0.03 and 0.01.

The value 0.03 is usually recommended, except when close encounters occur. Note that the
integration method is of relatively high order (by the standards of stellar dynamics), the local
truncation error in position varying as (∆t)7. For the initial conditions a so-called Plummer model
was selected (cf. Spitzer 1987). The results are scaled to units such that G = 1, Nm = 1 and
E = −1/4; such values are rather standard in the field. For each value of η, 10 runs were carried
out, differing in the random numbers used to generate the initial conditions.

It was found, as expected, that the error in the energy increased greatly around the time
when the first close binary formed. Such an occurrence is to be expected on the basis of what is
known of cluster evolution (cf. §2.2), and there are several refinements in more advanced N -body
programs which greatly alleviate this difficulty. They are not present in the basic FORTRAN
program NBODY1, and so the simulations were stopped at this point. To be precise, let us define
kT = 〈mv2〉/3, i.e. as two-thirds the mean kinetic energy of a single star, in analogy with the
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Table 1. Formation of binaries

η median min(t10) median(t10) max(t10)
|∆E/E|

0.01 0.0003 17 33 55
0.03 0.004 18 33 53
0.1 0.2 10 30 83
0.1* 0.14 10 30 34

* 7 cases with |∆E/E| < 1

Table 2. Half-mass radius at t10

η smallest median largest
0.01 0.72 0.83 1.18
0.03 0.66 0.92 1.19
0.1 0.80 0.91 1.15

appropriate definition of temperature in kinetic theory. Then we define an energetic binary as one
whose energy exceeds 10kT , and define t10 as the time at which the first such binary formed. Table
1 gives some statistical results on this quantity.

Recalling that 10 cases were studied for each value of η, we see that there is very little
evidence for a dependence on accuracy. Possibly the distribution of t10 is a too wide at low
accuracy, but the evidence is not compelling. Incidentally, the theory of core collapse (based on
model equations valid for large N , i.e. the Fokker-Planck equation, cf. Spitzer 1987) predicts that
this would be complete by about t ' 32 for N = 100. Formation of binaries is thought to be a
signature of core collapse (§2.2).

Table 2 presents comparable data on the half-mass radius at the same time t10. This is
defined as the radius of an imaginary sphere, centred at the densest part of the system, which
encloses half of its mass, and its evolution is often used as a simple measure of the evolution of the
bulk of the cluster. Fokker-Planck theory predicts that this should increase from 0.77 at t = 0 to
about 1.10 at the end of core collapse. The values found in these simulations are consistently
smaller than this, which perhaps exposes the limitations of the Fokker-Planck model. The
important point here is that the values are very consistent among themselves, and show no signs of
any dependence on accuracy.

Statistics on the number of stars which escape, and the total energy which they carry off,
are shown on Table 3. Here at last is a result which clearly depends very sensitively on integration
errors. Perhaps this is not surprising, because escapes tend to follow from relatively close

Table 3. Number of escapers (to time t10)

η Total Total
number energy

0.01 13 0.0088
0.03 8 0.010
0.1 23 12.4
0.1* 14 0.25

* 7 cases with |∆E/E| < 1; data scaled to 10 cases.
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encounters, and these are a major source of error. The last line of the table, in which the very
worst of the low-accuracy runs are excluded, shows that the total energy of the escaping stars is
even more sensitive to errors than their total number. Incidentally, the problem of escapers is an
area where simulations are crucial, as the escape rate is notoriously difficult to predict theoretically
(Wielen 1968).

The results also show that the savings achieved by sacrificing accuracy (i.e. setting η = 0.1
rather than 0.03) are less than a factor of 3 in the median number of integration steps required.
Therefore there would be little to gain in carefully tuning η within this range to minimise the
number of steps while preserving the statistical reliability of the results. Indeed the conclusion of
this study is rather clear: use the recommended value (i.e. η = 0.03)!

It must be admitted that this brief study leaves many interesting questions untouched. For
example, it would be interesting to extend it into the regime of dynamical evolution which follows
core collapse, using a more refined N -body program dealing efficiently with close binaries. It would
also be desirable to extend it to much larger values of N , values more in line with those which are
customary in present-day simulations (e.g. N >∼ 103). The results of the above survey, along with a
little theory, are indicative of what to expect, as the following argument shows.

Theory implies that the escape rate (number of escapers per crossing time) should be
approximately independent of N , and that the mean energy of one escaper should be ∝ E/N
approximately. Hence it follows that the rate at which escapers carry off energy is given
approximately by dE/dt ' 0.04E/(Ntcr), where a constant of proportionality has been estimated
from the above series of 100-body simulations. Since the energy of escaping stars appears to be a
sensitive indicator of integration accuracy, it seems desirable to ensure that the total energy is
conserved to an accuracy better than this, which leads to the bound |∆E/E| � 0.04t/(Ntcr) on
the cumulative relative error in time t. For N = 100 up to the time t10 of formation of the first
energetic binary, this leads to a limit of order 0.004 on the cumulative relative error (cf. Table 1).

All these considerations do nothing, however, to relieve one possible worry. It may be that
numerical simulations of adequate accuracy give consistent results only because they are all equally
inaccurate (by the standards which would be necessary to compute reliable positions and velocities
for the individual stars.)

9. DESIRABLE PROPERTIES OF N-BODY SIMULATION PROGRAMS

If we are to rely on N -body simulations to produce consistent statistical results, we should
consider how they ought to be designed in order to perform this task. A great deal is known about
how to control the local truncation error in an integration routine, so that accurate positions and
velocities can be ensured (at least for limited intervals of time). Very little seems to be known, by
contrast, about how to ensure that the results are statistically valid.

We have already indicated that satisfactory energy conservation is a necessary condition for
obtaining reliable statistical results on escaping stars, and we have been able to make this assertion
approximately quantitative. Similar conditions can be obtained by requiring that the relaxation of
stellar energies (cf. §7 above) should be simulated with sufficient accuracy.

The N -body equations have many other conservation properties, including conservation of
the Poincaré invariants (cf. Arnold 1978). The first of these is ω2 =

∑
dpi ∧ dqi, where each term is

a 2× 2 determinant, and qi, pi are cartesian coordinates and their conjugate momenta. The last
invariant gives conservation of volume in the phase space R6N = {(q1, · · · , q3N , p1, · · · , p3N )}, i.e.
Liouville’s theorem, which is fundamental to statistical mechanics. Since we are attempting to
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ensure the sound statistical behaviour of simulated N -body systems, preservation of the Poincaré
invariants would seem to be a desirable property to require. Indeed it is guaranteed if the
numerical scheme yields a symplectic map. An example is the familiar time-centred leapfrog, i.e.

vi+1/2 = vi−1/2 + a(ri)∆t
ri+1 = ri + vi+1/2∆t,

where vi and ri are the velocity and position of a star at the ith step, respectively, a is the
acceleration, and ∆t is the time step, which here must be the same for all stars. On the other hand
there appears to be no indication that symplectic schemes give better results when a system is
chaotic (Channel & Scovel 1988).

10. INSTABILITIES AT THE STATISTICAL LEVEL

Finally, let us speculate on what we shall find when we study the results of N -body
simulations, assuming that they are statistically reliable. Our best guide here are results based on
simplified models for the evolution of stellar systems. We have already mentioned one of these
models: the Fokker-Planck equation, which is a simplified form of the Boltzmann equation; and
there are others.

These models show most interesting behaviour in the regime which follows core collapse,
when binaries are sufficiently active to cause an overall expansion of the cluster. It turns out that
the expansion can be unstable, depending on the number of stars in the cluster. Sometimes the
expansion is modified by a regular oscillation, but there are values of N where the expansion looks
quite chaotic (Heggie & Ramamani 1989). Indeed it is tempting to summarise the results by
stating that, as N increases, the evolution exhibits the familiar period-doubling route to chaos (cf.
Guckenheimer & Holmes 1983).

These intriguing observations have been greatly sharpened in recent work by Breeden et al.
(1990), who have applied some of the standard techniques in chaos theory to study the irregular
evolution which occurs for large values of N . For example they have measured positive “Liapounov
exponents”, and have shown that the solutions occupy an approximately two-dimensional
submanifold, rather like the Rössler attractor. In this regard, it would be very interesting to
produce a highly simplified model of the evolution of star clusters with three degrees of freedom
(which seems to be the minimum needed to exhibit this kind of behaviour), and incorporating the
essential physics of N -body systems. The “evaporative model” of stellar systems (cf. Spitzer 1987,
§3.1) would seem to be a suitable starting point for such an investigation.

A number of very curious issues are raised by these results. For example they show that
stellar systems are still unpredictable, even if we are able to ignore the instability of individual
stellar orbits, and concern ourselves only with statistical results. Also they illustrate the old
paradoxes by which a Hamiltonian system is able to exhibit behaviour in accordance with the laws
of statistical mechanics: it is impossible for a Hamiltonian system to possess a low-dimensional
attractor. Indeed these results suggest one other property which N -body simulations ought to
possess, namely, correct statistical behaviour in the sense of the laws of thermodynamics.

In conclusion, it can be seen that the stellar N -body problem is an excellent and
astrophysically important example of a system which, from every practical point of view, is highly
chaotic. Indeed, chaotic systems appear to be as common in stellar dynamics as they are rare in
celestial mechanics. Though it is difficult to study rigorously, it provides a concrete illustration of
several of the important aspects of more abstract chaotic systems. Finally, it raises important
questions about how such systems can be faithfully simulated.
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