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Reading these notes

The reader is expected to know basic stochastic analysis and ideally a little bit of
financial mathematics. The notation and basic results used throughout the notes are
in Appendix A.
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Section 1 is introduction. Section 2 is a brief introduction to the controlled Markov
chains: a discrete space and time setting for stochastic control problems. Section 3 cov-
ers basics of stochastic differential equations and is essential reading for what follows.
Section 4 introduces the Bellman principle / Dynamic Programming Principle and
the Bellman PDE / Hamilton–Jacobi–Bellman PDE for controlled diffusions. This is
the first set of tools that can be used for solving control problems involving controlled
diffusions. Section 5 extends Section 4 to the case of jump diffusions (without giving
proofs) and then focuses on some applications in algorithmic trading and market mak-
ing. Section 6 takes a “calculus of variations” approach to solving control problems
by establishing a “first order condition” by calculating the derivative of the objective
functional w.r.t. a perturbation in control. This is known as the Stochastic Maximum
Principle or Pontryagin’s maximum or optimality principle. Sections 4 and 6 are ba-
sically independent of each other as provide two independent ways of solving control
problems.

Exercises

You will find a number of exercises throughout these notes. You must make an effort
to solve them (individually or with friends).

Solutions to some (most) of the exercises are available but remember: no one ever
learned swimming solely by watching other people swim (and similarly no-one ever
learned mathematics solely by reading others’ solutions).

Other reading

It is recommended that you read the relevant chapters of Pham [15, at least Chapters
1-3 and 6] as well as Touzi [19, at least Chapters 1-4 and 9].

Additionally one recommends Krylov [14] for those wishing to see everything done in
great generality and with proofs that do not contain any vague arguments but it is not
an easy book to read. Chapter 1 however, is very readable and much recommended.
Those interested in applications in algorithmic trading should read Cartea, Jaimungal
and Penalva [4] and those who would like to learn about mean field games there is
Carmona and Delarue [3].
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1 Introduction to stochastic control through examples

We start with some motivating examples.

1.1 Discrete space and time

We start with an optimal stopping example.

Example 1.1. A very simple example of an optimal stopping problem is the following:
given a fair die we are told that we’re allowed to roll the die for up to three times.
After each roll we can either choose to stop the game and our gain is equal to the
number currently apearing on the die, or to carry on. If we choose to carry on then
we get nothing for this roll and we hope to get more next time. Of course if this is
the 3rd time we rolled the die then we have to accept whichever number it is we got
in this last roll.

In this case solving the problem is a matter of simple calculation, working backward
in time. If we’re in the third round then we stop, because we have no choice.

In the second round reason as follows: our expected winning in round three is

1

6
(1 + 2 + 3 + 4 + 5 + 6) =

21

6
= 3.5 .

So we stop in the second round if we rolled 4, 5 or 6 as that’s more then our expected
outcome from continuing.

In the first round we reason as follows: our expected winning from continuing into
round two are

1

6
(4 + 5 + 6) +

1

2

21

6
= 2.5 + 1.75 = 4.25

The first part corresponds to the decision to stop in round two. The second part
corresponds to the decision to continue, weighted by the respective probabilities. So
in the first round it is optimal to stop if we got 5 or 6. The optimal expected “payoff”
for this optimal stopping problem is 4 + 2

3 .

Example 1.2. There is a biased coin with p ∈ (0, 1), p ∕= 1
2 , probability of getting

heads and q = 1− p probability of getting tails.

We will start with an initial wealth x = iδ, i ∈ N with i < m, with some m ∈ N fixed
reasonably large.

At each turn we choose an action a ∈ {−1, 1}. By choosing a = 1 we bet that the
coin comes up heads and our wealth is increased by δ if we are correct, decreased by δ
otherwise. By choosing a = −1 we bet on tails and our wealth is updated accordingly.

That is, given that Xn−1 = x and our action a ∈ {−1, 1} we have

P(Xn = x+ aδ|Xn−1 = x, a) = p , P(Xn = x− aδ|Xn−1 = x, a) = q .

The game terminates when either x = 0 or x = mδ. Let N = min{n ∈ N : Xn =
0 or Xn = mδ}. Our aim is to maximize

Jα(x) = E
󰁫
Xα

N |X0 = x
󰁬

over functions α = α(x) telling what action to choose in each given state.
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1.2 Merton’s problem

In this part we give a motivating example to introduce the problem of dynamic asset
allocation and stochastic optimization. We will not be particularly rigorous in these
calculations.

The market Consider an investor can invest in a two asset Black-Scholes market: a
risk-free asset (“bank” or “Bond”) with rate of return r > 0 and a risky asset (“stock”)
with mean rate of return µ > r and constant volatility σ > 0. Suppose that the price
of the risk-free asset at time t, Bt, satisfies

dBt

Bt
= r dt or Bt = B0e

rt, t ≥ 0.

The price of the stock evolves according to the following SDE:

dSt

St
= µdt+ σ dWt,

where (Wt)t≥0 is a standard one-dimensional Brownian motion one the filtered prob-
ability space (Ω,F ,F = (Ft)t≥0,P).

The agent’s wealth process and investments Let X0
t denote the investor’s

wealth in the bank at time t ≥ 0. Let πt denote the wealth in the risky asset. Let
Xt = X0

t + πt be the investor’s total wealth. The investor has some initial capital
X0 = x > 0 to invest. Moreover, we also assume that the investor saves / consumes
wealth at rate Ct at time t ≥ 0.

There are three popular possibilities to describe the investment in the risky asset:

(i) Let ξt denote the number of units stocks held at time t (allow to be fractional
and negative),

(ii) the value in units of currency πt = ξtSt invested in the risky asset at time t,

(iii) the fraction νt =
πt
Xt

of current wealth invested in the risky asset at time t.

The investment in the bond is then determined by the accounting identity X0
t =

Xt − πt. The parametrizations are equivalent as long as we consider only positive
wealth processes (which we shall do). The gains/losses from the investment in the
stock are then given by

ξt dSt,
πt
St

dSt,
Xtνt
St

dSt .

The last two ways to describe the investment are especially convenient when the model
for S is of the exponential type, as is the Black-Scholes one. Using (ii),

Xt = x+

󰁝 t

0

πs
Ss

dSs +

󰁝 t

0

Xs − πs
Bs

dBs −
󰁝 t

0
Cs ds

= x+

󰁝 t

0

󰀅
πs(µ− r) + rXs − Cs

󰀆
ds+

󰁝 t

0
πsσ dWs
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or in differential form

dXt =
󰀅
πt(µ− r) + rXt − Ct

󰀆
dt+ πtσ dWt, X0 = x .

Alternatively, using (iii), the equation simplifies even further.1 Recall π = νX.

dXt = Xtνt
dSt

St
+Xt

󰀃
1− νt

󰀄 dBt

Bt
− Ct dt

=
󰀅
Xt

󰀃
νt(µ− r) + r

󰀄
− Ct

󰀆
dt+Xtνtσ dWt.

We can make a further simplification and obtain an SDE in “geometric Brownian
motion” format if we assume that the consumption Ct can be written as a fraction of
the total wealth, i.e. Ct = κtXt. Then

dXt = Xt

󰀅
νt(µ− r) + r − κt

󰀆
dt+Xtνtσ dWt . (1.1)

Exercise 1.3. Assuming that all coefficients in SDE (1.1) are integrable, solve the
SDE for X and hence show X > 0 when X0 = x > 0. See Exercise 1.14 for a hint.

The optimization problem The investment allocation/consumption problem is
to choose the best investment possible in the stock, bond and at the same time con-
sume the wealth optimally. How to translate the words “best investment” into a
mathematical criteria?

Classical modeling for describing the behavior and preferences of agents and investors
are: expected utility criterion and mean-variance criterion.

In the first criterion relying on the theory of choice in uncertainty, the agent com-
pares random incomes for which he knows the probability distributions. Under some
conditions on the preferences, Von Neumann and Morgenstern show that they can be
represented through the expectation of some function, called utility. Denoting it by
U , the utility function of the agent, the random income X is preferred to a random in-
come X ′ if E[U(X)] ≥ E[U(X ′)]. The deterministic utility function U is nondecreasing
and concave, this last feature formulating the risk aversion of the agent.

Example 1.4 (Examples of utility functions). The most common utility functions
are

• Exponential utility: U(x) = −e−αx, the parameter α > 0 is the risk aversion.

• Log utility: U(x) = log(x)

• Power utility: U(x) = (xγ − 1)/γ for γ ∈ (−∞, 0) ∪ (0, 1).

• Iso-elastic: U(x) = x1−ρ/(1− ρ) for ρ ∈ (−∞, 0) ∪ (0, 1).

In this portfolio allocation context, the criterion consists of maximizing the expected
utility from consumption and from terminal wealth. In the the finite time-horizon
case: T < ∞, this is

sup
ν,κ

E
󰀗󰁝 T

0
U
󰀃
κtX

ν,κ
t

󰀄
dt+ U

󰀃
Xν,κ

T

󰀄󰀘
, where Xν,κ

t = Xt must satisfy (1.1). (1.2)

1Note that, if νt expresses the fraction of the total wealth X invested in the stock, then the fraction
of wealth invested in the bank account is simply 1− νt.
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Note that we could also consider the problem including a constant discount factor
γ ∕= 0. This will lead to a problem that different to (1.2) above:

sup
ν,κ

E
󰀗󰁝 T

0
e−γtU

󰀃
κtX

ν,κ
t

󰀄
dt+ e−γTU

󰀃
Xν,κ

T

󰀄󰀘
, where Xν,κ

t = Xt must satisfy (1.1).

Without consumption, i.e. ∀ t we have κ(t) = 0, the optimization problem (1.2) can
be written as

sup
ν

E
󰀅
U
󰀃
Xν

T

󰀄󰀆
, where Xν

t = Xt must satisfy (1.1). (1.3)

Again, we could have included discounting but it’s not essential.

In the infinite time-horizon case: T = ∞ and we must include a discount factor
γ > 0 so that the integrals coverge. The optimization problem is then (recall that
Ct = κtX

ν,κ
t )

sup
κ,ν

E
󰀗󰁝 ∞

0
e−γtU

󰀃
κtX

ν,κ
t

󰀄
dt , where Xν,κ

t = Xt must satisfy (1.1).

󰀘
(1.4)

Let us go back to the finite horizon case: T < ∞. The second criterion for
describing the behavior and preferences of agents and investors, the mean-variance
criterion, relies on the assumption that the preferences of the agent depend only on
the expectation and variance of his random incomes. To formulate the feature that
the agent likes wealth and is risk-averse, the mean-variance criterion focuses on mean-
variance-efficient portfolios, i.e. minimizing the variance given an expectation.

In our context and assuming that there is no consumption, i.e. ∀ t we have Ct = 0,
then the optimization problem is written as

inf
ν

󰀋
Var

󰀃
Xν

T

󰀄
: E[Xν

T ] = m, m ∈ (0,∞)
󰁲
.

We shall see that this problem may be reduced to the resolution of a problem in the
form (1.2) for the quadratic utility function: U(x) = λ−x2, λ ∈ R. See Example 6.12.

Exercise 1.5. Consider the problem (1.3) with U(x) = xγ , γ ∈ (0, 1]. Assume
further that you are not allowed to change your investments as time goes by: i.e. you
must choose the allocation ν0 and νt = ν0 for all t ∈ [0, T ]. You should solve the
problem (1.3) in the following steps:

i) Use Exercise 1.3 to obtain the solution to (1.1).

ii) Substitute this into (1.3) and use the fact that WT ∼
√
TN(0, 1) to express (1.3)

as a function of ν0.

iii) Use calculus to maximize the above mentioned function.

Exercise 1.6. List some of the ways in which the model above may be considered
to simplify reality too much. If you can, propose a different model or changes to the
model that would rectify the issue you identified.
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1.3 Optimal liquidation problem

The optimal liquidation problem is faced by a trader wishing to sell (large) amount of
a certain asset within a limited time while trying to achieve the best execution price
despite the fact that their trading in the asset has temporary and permanent price
impacts. Trader’s inventory, an R-valued process:

dQu = −αu du with Qt = q > 0 initial inventory.

Here α will typically be mostly positive as the trader should sell all the assets. We
will denote this process Qu = Qt,q,α

u because clearly it depends on the starting point
q at time t and on the trading strategy α. Asset price, an R-valued process:

dSu = −λαu du+ σ dWu , St = S .

We will denote this process Su = St,S,α
u because clearly it depends on the starting

point S at time t and on the trading strategy. Here the constant λ controls how much
permanent impact the trader’s own trades have on its price. Trader’s execution price
(for κ > 0):

Ŝt = St − καt .

This means that there is a temporary price impact of the trader’s trading: she doesn’t
receive the full price St but less, in proportion to her selling intensity.

Quite reasonably we wish to maximize (over trading strategies α), up to to some
finite time T > 0, the expected amount gained in sales, whilst penalising the terminal
inventory (with θ > 0):

J(t, q, S,α) := E
󰀗 󰁝 T

t
Ŝt,S,α
u αu du

󰁿 󰁾󰁽 󰂀
gains from sale

+ Qt,q,α
T St,S,α

T󰁿 󰁾󰁽 󰂀
val. of inventory

− θ |Qt,q,α
T |2

󰁿 󰁾󰁽 󰂀
penalty for unsold

󰀘
.

The goal is to find
V (t, q, S) := sup

α
J(t, q, S,α) .

In Section 4.2 we will show that V satisfies a nonlinear partial differential equation,
called the HJB equation which will allow us to solve this optimal control problem and
we will see that, in the case λ = 0, the value function (see also Figure 1.1) is

V (t, q, S) = qS + γ(t)q2 ,

whilst the optimal control (see also Figure 1.2) is

a∗(t, q, S) = −1

κ
γ(t)q ,

where

γ(t) = −
󰀕
1

θ
+

1

κ
(T − t)

󰀖−1

.

It is possible to solve this with either the Bellman principle (see Exercise 4.16) or with
Pontryagin maximum principle (see Example 6.11). Problems of this type arise in
algorithmic trading. More can be found e.g. in Cartea, Jaimungal and Penalva [4].
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Figure 1.1: Value function for the Optimal Liquidation problem, Section 1.3, as func-
tion of time and inventory, in the case λ = 0, T = 1, θ = 10, κ = 1 and S = 100.

Figure 1.2: Optimal control for the Optimal Liquidation problem, Section 1.3, as
function of time and inventory, in the case λ = 0, T = 1, θ = 10 and κ = 1.
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1.4 Systemic risk - toy model

The model describes a network of N banks. We will use Xi
t to denote the logarithm

of cash reserves of bank i ∈ {1, . . . , N} at time t ∈ [0, T ]. Let us assume that there
are N+1 independent Wiener processes W 0,W 1, . . .WN . Let us fix ρ ∈ [−1, 1]. Each
bank’s reserves are impacted by Bi

t where

Bi
t :=

󰁳
1− ρ2W i

t + ρW 0
t .

We will have bank i’s reserves influenced by “its own” i.e. “idiosyncratic” source of
randomness W i and also by a source of uncertainty common to all the banks, namely
W 0 (the “common noise”). Let X̄t :=

1
N

󰁓N
i=1X

i
t i.e. the mean level of log-reserves.

We model the reserves as

dXi
u =

󰀅
a(X̄u −Xi

u) + αi
u

󰀆
du+ σdBi

u , u ∈ [t, T ] , Xi
t = xi .

Let us look at the terms involved:

i) The term a(X̄u−Xi
u) models inter-bank lending and borrowing; if bank i is below

the average then it borrows money (the log reserves increase) whilst if bank i’s
level is above the average then it lends out money (the log reserves decrease).
This happens at rate a > 0.

ii) The term αi
t is the “control” of bank i and the interpretation is that it represents

lending / borrowing outside the network of the N banks (e.g. taking deposits
from / lending to individual borrowers).

iii) The term stochastic term (with σ > 0) models unpredictable gains / losses to the
bank’s reserves with the idiosyncratic and common noises as explained above.

iv) The initial reserve (at time t) of bank i is xi.

v) Note that we should be really writing Xi,t,x,α
u for Xi

u since each bank’s reserves
depend on the starting point x = (x1, . . . , xN ) of all the banks and also on the
controls αu = (α1

u, . . . ,α
N
u ) of all the individual banks. The equations are thus

fully coupled.

We will say that in this model each bank tries to minimize

J i(t, x,α) := E
󰀗 󰁝 T

t

󰀓1
2
|αi

u|2 − q αi
u(X̄

i,t,x,α
u −Xi,t,x,α

u ) +
ε

2
|X̄i,t,x,α

u −Xi,t,x,α
u |2

󰀔
du

+
c

2
|X̄i,t,x,α

T −Xi,t,x,α
T |2

󰀘
.

Let’s again look at the terms involved:

i) The term 1
2 |α

i
u|2 indicates that lending / borrowing outside the bank network

carries a cost.

ii) With −q αi
u(X̄

i,t,x,α
u −Xi,t,x,α

u ) for some constant q > 0 we insist that bank i will
want to borrow if it’s below the mean (αi

u > 0) and vice versa.

iii) The final two terms provide a running penalty and terminal penalty for being too
different from the average (think of this as the additional cost imposed on the
bank if it’s “too big to fail” versus the inefficiency of a bank that is much smaller
than competitors).
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Amazingly, under the assumption that q2 ≤ ε it is possible to solve this problem
explicitly, using either techniques we will develop in Sections 4 or 6. This is an
example from the field of N -player games, much more can be found in Carmona and
Delarue [3].

1.5 Optimal stopping

Consider a probability space (Ω,F ,P) on which we have a d′-dimensional Wiener
process W = (Wu)u∈[0,T ] generating Fu := σ(Ws : s ≤ u). Let Tt,T be the set of all
(Ft)-stopping times taking values in [t, T ].

Given some Rd-valued stochastic process (Xt,x
u )u∈[t,T ], such that Xt,x

t = x, adapted

to the filtration (Fu)u∈[t,T ] and a reward function g : Rd → R the optimal stopping
problem is to find

w(t, x) = sup
τ∈Tt,T

E
󰀅
g(Xt,x

τ )
󰀆
. (1.5)

Example 1.7. A typical example is the American put option. In the Black–Scholes
model for one risky asset the process (Xt,x

u )u∈[t,T ] is geometric Brownian motion, W
is R-valued Wiener process (and P denotes the risk-neutral measure in our notation
here) so that

dXu = rXu du+ σXu dWu , u ∈ [t, T ] , Xt = x

where r ∈ R and σ ∈ [0,∞) are given constants. For the American put option
g(x) := [K − x]+. In this case w given by (1.6) gives the no-arbitrage price of the
American put option for current asset price x at time t.

It has been shown (see Krylov [14] or Gyöngy and Šǐska [8] )that the optimal stopping
problem (1.6) is a special case of optimal control problem given by

v(t, x) = sup
ρ∈R

E
󰀗 󰁝 T

t
g(Xt,x

u ) ρu e
−

󰁕 u
t ρr dr + g(Xt,x

T ) e−
󰁕 T
t ρr dr

󰀘
(1.6)

so that w(t, x) = v(t, x). Here the control processes ρu must be adapted and such that
for a given ρ = (ρu)u∈[t,T ] there exists n ∈ N such that ρu ∈ [0, N ] for all u ∈ [t, T ].

1.6 Basic elements of a stochastic control problem

The above investment-consumption problem and its variants (is the so-called “Merton
problem” and) is an example of a stochastic optimal control problem. Several key
elements, which are common to many stochastic control problems, can be seen.

These include:

Time horizon. The time horizon in the investment-consumption problem may be
finite or infinite, in the latter case we take the time index to be t ∈ [0,∞). We will also
consider problems with finite horizon: [0, T ] for T ∈ (0,∞); and indefinite horizon:
[0, τ ] for some stopping time τ (for example, the first exit time from a certain set).

(Controlled) State process. The state process is a stochastic process which de-
scribes the state of the physical system of interest. The state process is often given by
the solution of an SDE, and if the control process appears in the SDE’s coefficients it
is called a controlled stochastic differential equation. The evolution of the state pro-
cess is influenced by a control. The state process takes values in a set called the state

11



space, which is typically a subset of Rd. In the investment-consumption problem, the
state process is the wealth process Xν,C in (1.1).

Control process. The control process is a stochastic process, chosen by the “control-
ler” to influence the state of the system. For example, the controls in the investment-
consumption problem are the processes (νt)t and (Ct)t (see (1.1)).

We collect all the control parameters into one process denoted α = (ν, C). The control
process (αt)t∈[0,T ] takes values in an action set A. The action set can be a complete
separable metric space but most commonly A ∈ B(Rm).

For the control problem to be meaningful, it is clear that the choice of control must
allow for the state process to exist and be determined uniquely. More generally, the
control may be forced satisfy further constraints like “no short-selling” (i.e. π(t) ≥ 0)
and or the control space varies with time. The control map at time t should be decided
at time t based on the available information Ft. This translates into requiring the
control process to be adapted.

Admissible controls. Typically, only controls which satisfy certain “admissibil-
ity” conditions can be considered by the controller. These conditions can be both
technical, for example, integrability or smoothness requirements, and physical, for
example, constraints on the values of the state process or controls. For example, in
the investment-consumption problem we will only consider processes Xν,C for which
a solution to (1.1) exists. We will also require the consumption process Ct such that
the investor has non-negative wealth at all times.

Objective function. There is some cost/gain associated with the system, which may
depend on the system state itself and on the control used. The objective function con-
tains this information and is typically expressed as a function J(x,α) (or in finite-time
horizon case J(t, x,α)), representing the expected total cost/gain starting from system
state x (at time t in finite-time horizon case) if control process α is implemented.

For example, in the setup of (1.3) the objective functional (or gain/cost map) is

J(0, x, ν) = E
󰀅
U
󰀃
Xν(T )

󰀄󰀆
, (1.7)

as it denotes the reward associated with initial wealth x and portfolio process ν. Note
that in the case of no-consumption, and given the remaining parameters of the problem
(i.e. µ and σ), both x and ν determine by themselves the value of the reward.

Value function. The value function describes the value of the maximum possible gain
of the system (or minimal possible loss). It is usually denoted by v and is obtained,
for initial state x (or (t, x) in finite-time horizon case), by optimizing the cost over
all admissible controls. The goal of a stochastic control problem is to find the value
function v and find a control α∗ whose cost/gain attains the minimum/maximum
value: v(t, x) = J(t, x,α∗) for starting time t and state x. For completeness sake,
from (1.3) and (1.7), if ν∗ is the optimal control, then we have the value function

v(t, x) = sup
ν

E
󰀅
U
󰀃
Xν(T )

󰀄
|Xt = x

󰀆
= sup

ν
J(t, x, ν) = J(t, x, ν∗). (1.8)

Typical questions of interest Typical questions of interest in Stochastic control
problems include:

• Is there an optimal control?

• Is there an optimal Markov control?
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• How can we find an optimal control?

• How does the value function behave?

• Can we compute or approximate an optimal control numerically?

There are of course many more and, before we start, we need to review some concepts
of stochastic analysis that will help in the rigorous discussion of the material in this
section so far.

1.7 Exercises

The aim of the exercises in this section is to build some confidence in manipulating
the basic objects that we will be using later. It may help to browse through Section A
before attempting the exercises.

Exercise 1.8. Read Definition A.18. Show that H ⊂ S.

Exercise 1.9 (On Gronwall’s lemma). Prove Gronwall’s Lemma (see Lemma A.6) by
following these steps:

i) Let

z(t) =
󰀓
e−

󰁕 t
0 λ(r)dr

󰀔󰁝 t

0
λ(s)y(s) ds.

and show that
z′(t) ≤ λ(t)e−

󰁕 t
0 λ(r)dr (b(t)− a(t)) .

ii) Integrate from 0 to t to obtain the first conclusion Lemma A.6.

iii) Obtain the second conclusion of Lemma A.6.

Exercise 1.10 (On liminf). Let (an)n∈N be a bounded sequence. Then the number

lim
n→∞

(inf{ak : k ≥ n})

is called limit inferior and is denoted by lim infn→∞ an.

1. Show that the limit inferior is well defined, that is, the limit limn→∞ (inf{ak : k ≥ n})
exists and is finite for any bounded sequence (an).

2. Show that the sequence (an)n∈N has a subsequence that converges to limn→∞ inf an.

Hint: Argue that for any n ∈ N one can find i ≥ n such that

inf{ak : k ≥ n} ≤ ai < inf{ak : k ≥ n}+ 1

n
.

Use this to construct the subsequence we are looking for.

Exercise 1.11 (Property of the supremum/infimum). Let a, b ∈ R. Prove that

if b > 0, then sup
x∈X

󰀋
a+ bf(x)

󰀌
= a+ b sup

x∈X
f(x),

if b < 0, then sup
x∈X

󰀋
a+ bf(x)

󰀌
= a+ b inf

x∈X
f(x).
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Exercise 1.12. Assume that X = (Xt)t≥0 is a martingale with respect to a filtration
F := (Ft)t≥0. Show that:

1. if for all t ≥ 0 it holds that E|Xt|2 < ∞ then the process given by |Xt|2 is a
submartingale and

2. the process given by |Xt| is a submartingale.

Exercise 1.13 (ODEs). Assume that (rt) is an adapted stochastic process such that
for any t ≥ 0

󰁕 t
0 |rs| ds < ∞ holds P-almost surely (in other words r ∈ A).

1. Solve
dBt = Btrtdt, B0 = 1. (1.9)

2. Is the function t 󰀁→ Bt continuous? Why?

3. Calculate d(1/Bt).

Exercise 1.14 (Geometric Brownian motion). Assume that µ ∈ A and σ ∈ S. Let
W be a real-valued Wiener martingale.

1. Solve
dSt = St [µt dt+ σt dWt] , S(0) = s. (1.10)

Hint: Solve this first in the case that µ and σ are real constants. Apply Itô’s
formula to the process S and the function x 󰀁→ lnx.

2. Is the function t 󰀁→ St continuous? Why?

3. Calculate d(1/St), assuming s ∕= 0.

4. With B given by (1.9) calculate d(St/Bt).

Exercise 1.15 (Multi-dimensional gBm). Let W be an Rd-valued Wiener martingale.
Let µ ∈ Am and σ ∈ Sm×d. Consider the stochastic processes Si = (Si(t))t∈[0,T ] given
by

dSi
t = Si

tµ
i
t dt+ Si

t

m󰁛

j=1

σij
t dW j

t , S
i
0 = si, i = 1, . . . ,m. (1.11)

1. Solve (1.11) for i = 1, . . . ,m.
Hint: Proceed as when solving (1.10). Start by assuming that µ and σ are
constants. Apply the multi-dimensional Itô formula to the process Si and the
function x 󰀁→ ln(x). Note that the process Si is just R-valued so the multi-
dimensionality only comes from W being Rd valued.

2. Is the function t 󰀁→ Si
t continuous? Why?

Exercise 1.16 (Ornstein–Uhlenbeck process). Let a, b,σ ∈ R be constants such that
b > 0,σ > 0. Let W be a real-valued Wiener martingale.

1. Solve
drt = (b− art) dt+ σt dWt, r(0) = r0. (1.12)

Hint: Apply Itô’s formula to the process r and the function (t, x) 󰀁→ eatx.
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2. Is the function t 󰀁→ rt continuous? Why?

3. Calculate E[rt] and E[r2t ].

4. What is the distribution of rt?

Exercise 1.17. If X is a Gaussian random variable with E[X] = µ and Var(X) =
E[X2 − (E[X])2] = σ2 then we write X ∼ N(µ,σ2). Show that if X ∼ N(µ,σ2) then

E[eX ] = eµ+
σ2

2 .

1.8 Solutions to Exercises

Solution (Solution to Exercise 1.9). Let

z(t) =
󰀓
e−

󰁕 t
0
λ(r)dr

󰀔󰁝 t

0

λ(s)y(s) ds.

Then, almost everywhere in I,

z′(t) = λ(t)e−
󰁕 t
0
λ(r)dr

󰀕
y(t)−

󰁝 t

0

λ(s)y(s) ds

󰀖

󰁿 󰁾󰁽 󰂀
≤b(t)−a(t)

,

by the inequality in our hypothesis. Hence for a.a. s ∈ I

z′(s) ≤ λ(s)e−
󰁕 s
0
λ(r)dr (b(s)− a(s)) .

Integrating from 0 to t and using the fundamental theorem of calculus (which gives us󰁕 t

0
z′(s) ds = z(t)− z(0) = z(t)) we obtain

󰁝 t

0

λ(s)y(s) ds ≤ e
󰁕 t
0
λ(r)dr

󰁝 t

0

λ(s)e−
󰁕 s
0
λ(r)dr (b(s)− a(s)) ds

=

󰁝 t

0

λ(t)e
󰁕 t
s
λ(r)dr (b(s)− a(s)) ds.

Using the left hand side of above inequality as the right hand side in the inequality in our
hypothesis we get

y(t) + a(t) ≤ b(t) +

󰁝 t

0

λ(s)e
󰁕 t
s
λ(r)dr (b(s)− a(s)) ds,

which is the first conclusion of the lemma. Assume now further that b is monotone increasing
and a nonnegative. Then

y(t) + a(t) ≤ b(t) + b(t)

󰁝 t

0

λ(s)e
󰁕 t
s
λ(r)dr ds

= b(t) + b(t)

󰁝 t

0

−de
󰁕 t
s
λ(r)dr = b(t) + b(t)

󰀓
−1 + e

󰁕 t
0
λ(r)dr

󰀔

= b(t)e
󰁕 t
0
λ(r) dr.

Solution (Solution to Exercise 1.10). Let n ∈ N.

1. The sequence bn := inf{ak : k ≥ n} is monotone increasing as {ak : k ≥ n + 1} is a
subset of {ak : k ≥ n}, hence bn ≤ bn+1. Additionally, the sequence is also bounded
by the same bounds as the initial sequence (an). A monotone and bounded sequence of
real numbers must converge and hence we can conclude that lim infn→∞ an exists.
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2. It follows from the definition of infimum that there exists a sequence i = i(n) ≥ n such
that

bn = inf{ak : k ≥ n} ≤ ai < inf{ak : k ≥ n}+ 1

n
= bn +

1

n
.

The sequence of indices
󰀃
i(n)

󰀄
n∈N might not be monotone, but since i(n) ≥ n it is

always possible to select its subsequence, say
󰀃
j(n)

󰀄
n∈N, that is monotone.

Since |ai(n) − bn| → 0 and (bn)n∈N converges to lim infn→∞ an, then so does (ai(n))n.
As (aj(n))n is a subsequence of (ai(n))n the same is true for (aj(n))n. Hence the claim
follows.

Solution (Solution to Exercise 1.11). We will show the result when b > 0, assuming that the
sup takes a finite value. Let f∗ := supx∈X f(x), and V ∗ := supx∈X

󰀋
a+ bf(x)

󰀌
.

To show that V ∗ = a+ bf∗, we start by showing that V ∗ ≤ a+ bf∗.

Note that for all x ∈ X we have a + bf∗ ≥ a + bf(x), that is, a + bf∗ is an upper bound for
the set {y : y = a+ bf(x) for some x ∈ X}. As a consequence, its least upper bound V ∗ must
be such that a+ bf∗ ≥ V ∗ = supx∈X{a+ bf(x)}.
To show the converse, note that from the definition of f∗ as a supremum (see Definition A.1),
we have that for any ε > 0 there must exist a xε ∈ X such that f(xε) > f∗ − ε.

Hence a + bf(xε) > a + bf∗ − bε. Since xε ∈ X, it is obvious that V ∗ ≥ a + bf(xε). Hence
V ∗ ≥ a+ bf∗ − bε. Since ε was arbitrarily chosen, we have our result: V ∗ ≥ a+ bf∗.

Solution (to Exercise 1.12).

1. Since Xt is Ft-measurable it follows that |Xt|2 is also Ft-measurable. Integrability holds
by assumption. We further note that the conditional expectation of a non-negative
random variable is non-negative and hence for t ≥ s ≥ 0 we have

0 ≤ E[|Xt −Xs|2|Fs] = E[|Xt|2|Fs]− 2E[XtXs|Fs] + E[|Xs|2|Fs]

= E[|Xt|2|Fs]− 2XsE[Xt|Fs] + |Xs|2 = E[|Xt|2|Fs]− |Xs|2 ,

since Xs is Fs-measurable and since X is a martingale. Hence E[|Xt|2|Fs] ≥ |Xs|2 for
all t ≥ s ≥ 0.

2. First note that the adaptedness and integrability properties hold. Next note that󰀏󰀏E[Xt|Fs]
󰀏󰀏 ≤ E

󰁫
|Xt|

󰀏󰀏󰀏Fs

󰁬
by standard properties of conditional expectations. Since

X is a martingale we have
E[Xt|Fs] = Xs

and taking absolute value on both sides we see that

|Xs| =
󰀏󰀏E[Xt|Fs]

󰀏󰀏 ≤ E
󰁫
|Xt|

󰀏󰀏󰀏Fs

󰁬
.

Solution (Solution to Exercise 1.13). Let t ∈ [0,∞).

1. We are looking to solve:

B(t) = 1 +

󰁝 t

0

B(s)r(s) ds,

which is equivalent to

dB(t)

dt
= r(t)B(t) for almost all t, B(0) = 1.

Let us calculate (using chain rule and the above equation)

d

dt
[lnB(t)] =

dB(t)

dt
· 1

B(t)
= r(t).
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Integrating both sides and using the fundamental theorem of calculus

lnB(t)− lnB(0) =

󰁝 t

0

r(s) ds

and hence

B(t) = exp

󰀕󰁝 t

0

r(s) ds

󰀖
.

2. First we note that for any function f integrable on [0,∞) we have that the map t 󰀁→󰁕 t

0
f(x) dx is absolutely continuous in t and hence it is continuous. The function x 󰀁→ ex

is continuous and composition of continuous functions is continuous. Hence t 󰀁→ B(t)
must be continuous.

3. There are many ways to do this. We can start with (1.9) and use chain rule:

d

dt

󰀗
1

B(t)

󰀘
=

dB(t)

dt
·
󰀕
− 1

B2(t)

󰀖
= −r(t)

󰀕
− 1

B(t)

󰀖

and so

d

󰀕
1

B(t)

󰀖
= −r(t)

1

B(t)
dt.

Or we can start with the solution that we have calculated write

d

dt

󰀗
1

B(t)

󰀘
=

d

dt
exp

󰀕
−
󰁝 t

0

r(s)ds

󰀖

= −r(t) exp

󰀕
−
󰁝 t

0

r(s)ds

󰀖
= −r(t)

󰀕
− 1

B(t)

󰀖

which leads to the same conclusion again.

Solution (Solution to Exercise 1.14). 1. We follow the hint (but skip directly to the gen-
eral µ and σ). From Itô’s formula:

d
󰀃
lnS(t)

󰀄
=

1

S(t)
dS(t)− 1

2

1

S2(t)
dS(t) · dS(t) =

󰀕
µ(t)− 1

2
σ2(t)

󰀖
dt+ σ(t)dW (t).

Now we write this in the full integral notation:

lnS(t) = lnS(0) +

󰁝 t

0

󰀗
µ(s)− 1

2
σ2(s)

󰀘
ds+

󰁝 t

0

σ(s)dW (s).

Hence

S(t) = s exp

󰀕󰁝 t

0

󰀗
µ(s)− 1

2
σ2(s)

󰀘
ds+

󰁝 t

0

σ(s)dW (s)

󰀖
. (1.13)

Now this is the correct result but using invalid application of Itô’s formula. If we want
a full proof we call (1.13) a guess and we will now check that it satisfies (1.10). To that
end we apply Itô’s formula to x 󰀁→ s exp(x) and the Itô process

X(t) =

󰁝 t

0

󰀗
µ(s)− 1

2
σ2(s)

󰀘
ds+

󰁝 t

0

σ(s)dW (s).

Thus

dS(t) = d(f(X(t)) = seX(t)dX(t) +
1

2
seX(t)dX(t)dX(t)

= S(t)

󰀗󰀕
µ(t)− 1

2
σ2(t)

󰀖
dt+ σ(t)dW (t)

󰀘
+

1

2
S(t)σ2(t)dt.

Hence we see that the process given by (1.13) satisfies (1.10).
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2. The continuity question is now more intricate than in the previous exercise due to the
presence of the stochastic integral. From stochastic analysis in finance you know that
Z given by

Z(t) :=

󰁝 t

0

σ(s)dW (s)

is a continuous stochastic process. Thus there is a set Ω′ ∈ F such that P(Ω′) = 1
and for each ω ∈ Ω′ the function t 󰀁→ S(ω, t) is continuous since it’s a composition of
continuous functions.

3. If s ∕= 0 then S(t) ∕= 0 for all t. We can thus use Itô’s formula

d

󰀕
1

S(t)

󰀖
= − 1

S2(t)
dS(t) +

1

S3(t)
dS(t)dS(t)

= − 1

S(t)
[µ(t)dt+ σ(t)dW (t)] +

1

S(t)
σ2(t)dt

=
1

S(t)

󰀅󰀃
−µ(t) + σ2(t)

󰀄
dt− σ(t)dW (t)

󰀆
.

4. We calculate this with Itô’s product rule:

d

󰀕
S(t)

B(t)

󰀖
= S(t)d

󰀕
1

B(t)

󰀖
+

1

B(t)
dS(t) + dS(t)d

󰀕
1

B(t)

󰀖

= −r(t)
S(t)

B(t)
dt+ µ(t)

S(t)

B(t)
dt+ σ(t)

S(t)

B(t)
dW (t)

=
S(t)

B(t)
[(µ(t)− r(t)) dt+ σ(t)dW (t)] .

Solution (Solution to Exercise 1.15). 1. We Itô’s formula to the function x 󰀁→ ln(x) and
the process Si. We thus obtain, for Xi(t) := ln(Si(t)), that

dXi(t) = d ln(Si(t)) =
1

Si(t)
dSi(t)−

1

2

1

S2
i (t)

dSi(t)dSi(t)

= µi(t)dt+

n󰁛

j=1

σij(t)dWj(t)−
1

2

n󰁛

j=1

σ2
ij(t)dt

=

󰀵

󰀷µi(t)−
1

2

n󰁛

j=1

σ2
ij(t)

󰀶

󰀸 dt+

n󰁛

j=1

σij(t)dWj(t).

Hence

Xi(t)−Xi(0) = lnSi(t)− lnSi(t)

=

󰁝 t

0

󰀵

󰀷µi(s)−
1

2

n󰁛

j=1

σ2
ij(s)

󰀶

󰀸 ds+

n󰁛

j=1

󰁝 t

0

σij(s)dWj(s).

And so

Si(t) = Si(0) exp

󰀻
󰀿

󰀽

󰁝 t

0

󰀵

󰀷µi(s)−
1

2

n󰁛

j=1

σ2
ij(s)

󰀶

󰀸 ds+

n󰁛

j=1

󰁝 t

0

σij(s) dWj(s)

󰀼
󰁀

󰀾 .

2. Using the same argument as before and in particular noticing that for each j the function
t 󰀁→

󰁕 t

0
σij(s)dWj(s) is continuous for almost all ω ∈ Ω we get that t 󰀁→ Si(t) is almost

surely continuous.
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Solution (to Exercise 1.16). 1. What the hint suggests is sometimes referred to as the
“integrating factor technique.” We see that

d(eatr(t)) = eatdr(t) + aeatr(t)dt = eat [bdt+ σdW (t)] .

Integrating we get

eatr(t) = r(0) +

󰁝 t

0

easb ds+

󰁝 t

0

easσdW (s)

and hence

r(t) = e−atr(0) +

󰁝 t

0

e−a(t−s)b ds+

󰁝 t

0

e−a(t−s)σdW (s).

2. Yes. The arguments are the same as in previous exercises.

3. We know that stochastic integral of a deterministic integrand is a normally distributed
random variable with mean zero and variance given via the Itô isometry. Hence

Er(t) = e−atr(0) +
b

a

󰀃
1− e−at

󰀄

and

Er2(t) = (Er(t))2 + e−2atσ2E

󰀥󰀕󰁝 t

0

easdW (s)

󰀖2
󰀦

= (Er(t))2 + e−2atσ2

󰁝 t

0

e2asds = (Er(t))2 +
σ2

2a

󰀃
1− e−2at

󰀄
.

Hence

Var [r(t)] =
σ2

2a

󰀃
1− e−2at

󰀄
.

4. Stochastic integral of a deterministic integrand is a normally distributed random vari-
able. Hence for each t we know that r(t) is normally distributed with mean and variance
calculated above.

Solution (to Exercise 1.17). Let Y ∼ N(0, 1). Then

EeX = Eeµ+σY =
1√
2π

󰁝

R
eµ+σze−

1
2 z

2

dz =
1√
2π

󰁝

R
e−

1
2 [(z−σ)2−σ2−2µ]dz

= e
1
2σ

2+µ 1√
2π

󰁝

R
e−

1
2 (z−σ)2dz = e

1
2σ

2+µ,

since z 󰀁→ 1√
2π

e−
1
2 (z−σ)2 is a density of normal random variable with mean σ and variance 1

and thus its integral over the whole of real numbers must be 1.
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2 Controlled Markov chains

In this section we consider the control problem in the setting of discrete space and
time. This will allow us to introduce the dynamic programming principle and the
Bellman equation in a simpler setting that that required for controlled diffusions: in
particular most of the tricky problems around measurability won’t arise here.

2.1 Problem setting

Let S be a discrete state space. Let ∂S ⊂ S this is the set of absorbing states (often
we’ll think of this set as the boundary). Let A be an action set which will be assumed
to be finite in this section. Let (Ω,F ,P) be a probability space. For a ∈ A, y, y′ ∈ S
assume we are given pa(y, y′) which are the transition probabilities of a discrete time
Markov chain (Xα

n )n=0,1,... so that

P(Xα
n+1 = y′ |Xα

n = y) = pαn(y, y′) .

Here α is control process. We require that αn is measurable with respect to σ(Xα
k :

k ≤ n). We will label the collection of all such controlled processes by A. This covers
the description of the controlled Markov chain.

Let γ ∈ (0, 1) be a fixed discount factor. Let f : A × S → R and g : S → R be the
given “running reward” and “terminal reward”. Assume that f(a, x) = 0 for all a ∈ A
and x ∈ ∂S (in other words in the stopping states the running reward is zero). Let

Nα,x := min{n = 0, 1, . . . : Xα
n ∈ ∂S and Xα

0 = x} (2.1)

be the first hitting time of one of the absorbing states. Let Ex[·] := E[·|X0 = x] and
let

Jα(x) := Ex

󰀥
N󰁛

n=0

γnf(αn, X
α
n ) + γNg(Xα

N )

󰀦
. (2.2)

Our aim is to maximise J over all control processes α which are adapted as described
above (i.e. over all α ∈ A). Finally, for all x ∈ S, let

v(x) := max
α∈A

Jα(x) . (2.3)

Note that from (2.1) we have Nx,α = 0 for x ∈ ∂S. So for x ∈ ∂S we have v(x) = g(x),
due to (2.2)-(2.3) and since we are assuming that in the stopping states the running
reward is 0.

2.2 Dynamic programming for controlled Markov chains

Theorem 2.1. Let f and g be bounded. Then for all x ∈ S \ ∂S we have

v(x) = max
a∈A

Ex
󰀅
fa(x) + γv(Xa

1 )
󰀆
. (2.4)

Proof. Fix the control process α. From (2.2) and the tower property we get

Jα(x) = f(α0, x) + Ex

󰀥
E
󰀗 N󰁛

n=1

γnf(αn, X
α
n ) + γNg(Xα

N )|Xα
1

󰀘󰀦
. (2.5)
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Consider now a control process β given by βn = αn+1 and the associated controlled
Markov chain Y β s.t. Y β

0 = Xα
1 with the transition probabilities given by pβn(y, y′).

This means that Y β
n−1 has the same law as Xα

n and so

E
󰀗 N󰁛

n=1

γnf(αn, X
α
n ) + γNg(Xα

N )|Xα
1

󰀘
= γE

󰀗 N󰁛

n=1

γn−1f(βn−1, Y
β
n−1) + γN−1g(Y β

N−1)|Y
β
0 = Xα

1

󰀘

= γE
󰀗N−1󰁛

n=0

γnf(βn, Y
β
n ) + γN−1g(Y β

N−1)|Y
β
0 = Xα

1

󰀘
= γJβ(Xα

1 ) ,

since N − 1 is the first hitting time of ∂S for the process Y β . Hence from (2.5) we get

Jα(x) = f(α0, x) + Ex
󰀅
γJβ(Xα

1 )
󰀆

≤ f(α0, x) + Ex
󰀅
γv(Xα

1 )
󰀆
≤ max

a∈A

󰁫
f(a, x) + Ex

󰀅
γv(Xa

1 )
󰀆󰁬

.

Taking supremum on the left hand side over all control processes α leads to

v(x) ≤ max
a∈A

Ex

󰀗
fa(x) + γv(Xa

1 )

󰀘
.

It remains to prove the inequality in the other direction. Let a∗ ∈ A be the action

which achieves the maximum in maxa∈A Ex

󰀗
fa(x)+ γv(Xa

1 )

󰀘
. Let α∗,y be the control

process which, for a given y ∈ S, achieves the maximum in (2.3) (with x replaced by
y). Define a new control process

βn =

󰀝
a∗ if n = 0
α∗,y
n−1 if n > 0 and Xa∗

1 = y .

We see that the processes (x, Y α∗,Xa∗
1

0 , Y α∗,Xa∗
1

1 , . . .) and (Xβ
0 , X

β
1 , X

β
2 , . . .) are identic-

ally distributed. Then, since N − 1 is the first hitting time of ∂S by the process

Y α∗,Xa∗

, we have

Ex
󰀅
f(a∗, x) + γv(Xa∗

1 )
󰀆

= Ex

󰀥
f(a∗, x) + γEx

󰀗N−1󰁛

n=0

γnf(α
∗,Xa∗

1
n , Y α∗,Xa∗

1

n ) + γN−1g(Y α∗,Xa∗
1

N−1 )|Y0 = Xa∗
1

󰀘󰀦

= Ex

󰀥
f(a∗, x) + γEx

󰀗 N󰁛

k=1

γk−1f(α
∗,Xa∗

1
k−1 , Y α∗,Xa∗

1

k−1 ) + γN−1g(Y α∗,Xa∗
1

N−1 )|Y0 = Xa∗
1

󰀘󰀦

= Ex

󰀥
f(β0, X

β
0 ) + γ

󰀗 N󰁛

k=1

γk−1f(βk, X
β
k ) + γN−1g(Xβ

N )

󰀘󰀦

= Ex

󰀗 N󰁛

n=0

γnf(β, Xβ
n ) + γNg(Xβ

N )

󰀘
≤ v(x) .

This completes the proof.

An immediate consequence of the Bellman principle is that among all control processes
α it is enough to consider the ones that depend only on the current state. Indeed,
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define a function2 a∗ = a∗(x) as

a∗(x) ∈ argmax
b∈A

Ex
󰀅
f b(x) + γv(Xb

1)
󰀆
.

Define X∗
n as X∗

0 = x and for n ∈ N define X∗
n by P(X∗

n = y′) = pa(X
∗
n−1)(X∗

n−1, y
′).

Define the control process α∗
n := a∗(X∗

n). Then

v(x) = Ex
󰀅
fa∗(x) + γv(X∗

1 )
󰀆

i.e. the optimal payoff is achieved with this Markov control.

2.3 Bellman equation for controlled Markov chain

Note that
Ex [v(Xa

1 )] =
󰁛

y∈S
v(y)pa(x, y) .

Define the following two vectors and the matrix:

Vi := v(xi) , F a
i := f(a, xi) , i = 1, . . . , |S| , a ∈ A ,

P a
ij := pa(xi, xj) , i, j = 1, . . . , |S|, a ∈ A .

Then (2.4) can be stated as the following nonlinear system which we will call the
Bellman equation:

Vi = max
a∈A

󰀅
F a
i + γ(P aV )i

󰀆
for i such that xi ∈ S \ ∂S ,

Vi = g(xi) for i such that xi ∈ ∂S .
(2.6)

Note that if we have managed to solve (2.6) then we can very easily obtain the op-
timal control for each state i = 1, . . . , |S|. Indeed we just have to solve the (static)
maximization:

a∗i ∈ argmax
a∈A

󰀅
F a
i + γ(P aV )i

󰀆
.

On the other hand if we somehow figure out the optimal decision a∗i to be taken in
each state xi ∈ S then the Bellman equation reduces to a linear problem:

Vi = F
a∗i
i + γ(P a∗i V )i , i = 1, . . . , |S| .

There are two basic numerical algorithms that can be used to solve the Bellman
equation.

Value iteration Start with an initial guess V (0) ∈ R|S|. For k > define V (k) ∈ R|S|

recursively as

V
(k)
i = max

a∈A

󰀅
F a
i + γ(P aV (k−1))i

󰀆
, i = 1, . . . , |S| , xi ∈ S \ ∂S .

V
(k)
i = g(xi) , xi ∈ ∂S.

It can be shown that (often) limk→∞ V (k) = V and moreover this convergence is fast
(e.g. exponential). See Puterman [16, Ch. 6, Sec. 3].

2Since there may be multiple b which maximize the expression Ex
󰀅
f b(x) + γv(Xb

1)
󰀆
we need to

make a choice of a specific b to make a∗ = a∗(x) into a function taking values in A. Since A is
countable this is easy. We may, for example, index the elements of A and then always choose the one
with the lowest index.
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Policy iteration Start with an initial guess of a
(0)
i for each i = 1, . . . , S. Let V

(k)
i

and a
(k)
i , for all i = 1, . . . , S be defined through the iterative procedure for k ≥ 0:

i) Solve the linear system

Ui = F
a
(k)
i

i + γ(P a
(k)
i U)i , i = 1, . . . , |S|

and set V (k+1) = U on S \ ∂S and set V
(k+1)
i = g(xi) for all xi ∈ ∂S.

ii) Solve the static maximization problem

a
(k+1)
i ∈ argmax

a∈A

󰀅
F a
i + γ(P aV (k+1))i

󰀆
.

Again, it can be shown that (often) limk→∞ V (k) = V and moreover this convergence
is fast (e.g. exponential). See Puterman [16, Ch. 6, Sec. 4].

2.4 Q-learning for unknown environments

So far we assumed that p = pa(y, y′), f = fa(y), g = g(y) are known. If they are
unknown then Q-learning provides an iterative method for learning the value function
and hence for obtaining the optimal policy. There are other numerical methods, see
Barto and Sutton [18] for a comprehensive overview of Reinforcement Learning.

Define the Q-values (or action values) as:

Q(x, a) := fa(x) + γEx
󰁫
v(Xa

1 )
󰁬
. (2.7)

We see that this is the (discounted) expected reward for executing action a in state x
and then following the optimal policy thereafter. Let us now take the maximum over
all possible actions a ∈ A. Then

max
a∈A

Q(x, a) = max
a∈A

Ex
󰁫
fa(x) + γv(Xa

1 )
󰁬
.

From Theorem 2.4 we then see that

max
a∈A

Q(x, a) = v(x) .

From this and the definition of Q-function (2.7) we have

Q(x, a) = fa(x) + γEx
󰁫
max
b∈A

Q(Xa
1 , b)

󰁬

which we can re-arrange as

0 = Ex
󰁫
fa(x) + γmax

b∈A
Q(Xa

1 , b)−Q(x, a)
󰁬
.

At this point we are close to formulating learning the Q-function as a “stochastic
approximation” algorithm. If our state space S and action space A are finite (as
we assumed earlier e.g. in Section 2.3) then the Q function can be thought of as
a matrix Q with |S| × |A| entries3 i.e. Q ∈ R|S|×|A|. Then Qik = Q(xi, ak) with
S = {x1, . . . , x|S|} and A = {a1, . . . , a|A|}.

3For a finite set S we write |S| to denote the number of elements in S.
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Define
F(Q, X, xi, ak) := fak(xi) + γ max

k′=1,...,|A|
Q(X, ak′)−Q(xi, ak) .

To find Q we need to solve

0 = E
󰁫
F(Q, Xxi,ak , xi, ak)

󰁬
for all i = 1, . . . , |S| , k = 1, . . . , |A| ,

where Xxi,ak is the r.v. representing the state the system will be when action ak is
taken in state xi.

2.5 Robbins–Monro algorithm

Forget for a moment everything about control and Q-learning and consider the prob-
lem of finding θ ∈ Rp such that

0 = E
󰀅
c(Xθ, θ)

󰀆
,

where Xθ is an Rd-valued random variable which depends on the parameters θ and
c = c(x, θ) is function of x and the parameters θ. I.e. we can say Xθ ∼ πθ for some
family of distributions (πθ)θ∈Rp and write the problem equivalently as

0 =

󰁝

Rd

c(x, θ)πθ(dx) .

The Robbins–Monro algorithm starts with a guess θ0 and then updates the estimate
as

θk+1 = θk + δkc(x
θk) ,

where (xθk) are samples from πθk . It is possible to prove that under fairly weak
assumptions this sequence converges to the true solution as long as (δk)k∈N are such
that

󰁓
k δk = ∞ and

󰁓
k δ

2
k < ∞.

Example 2.2. You can think about the problem if finding implied volatility in the
Black–Scholes model.4 Let andXθ = S exp((r−(1/2)θ2)T+θ

√
TZ) with Z ∼ N(0, 1).

Let c(Xθ) = e−rT [Xθ − K]+ − C. Here S, the current stock price, T , the maturity,
r, the risk-free rate, K, the strike and C the market price of the call are fixed and
known. The implied volatility is θ such that

C = e−rTE
󰁫
[Xθ −K]+

󰁬
equivalently 0 = E

󰀅
c(Xθ)

󰀆
.

Example 2.3 (Ordinary least squares). Consider some Rd-valued r.v. X. We wish to
find a linear approximation of f : Rd → Rd′ so that f(X) ≈ WX+b for a matrix W ∈
Rd′×d and vector b ∈ Rd which minimizes the mean-square error E|f(X)−WX − b|2 .
If we had a finite number N of samples from X to estimate this we will solve this as
by finding the minimum of 1

N

󰁓N
k=1 |f(xk) − Wxk − b|2. The minimum is achieved

when the gradient is 0 i.e. when

N󰁛

k=1

2xk(f(xk)−Wxk − b) = 0 and

N󰁛

k=1

(f(xk)−Wxk)−Nb = 0 .

4In practice you would of course use the Black–Scholes formula and a nonlinear solver like the
bisection method or Newton method.
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Now we could solve this for the optimal (W, b).

If, however, our observations arrive in time as a sequence (x(k))k∈N, we don’t know how
many there will be and we want to keep a running estimate of the optimal (W, b) then
we would start with a guess (W (0), b(0)) and then update these using Robins–Monro:

W (k+1) = W (k)−2δkx
(k)

󰀓
f(x(k))−Wx(k)−b(k)

󰀔
and b(k+1) = b(k)−2δk

󰀓
f(x(k))−Wx(k)−b(k)

󰀔
.

The reason for this is that we want

∇W

󰁫
E|f(X)−WX − b|2

󰁬
= 0 and ∇b

󰁫
E|f(X)−WX − b|2

󰁬
= 0 .

This is

−E
󰁫
2X(f(X)−WX − b)

󰁬
= 0 and − E

󰁫
f(X)−WX − b

󰁬
= 0 .

So in the notation above our θ = (W, b) and the nonlinear function c is

c(X, θ) =

󰀣
− 2X

󰀃
f(X)−WX − b

󰀄

−
󰀃
f(X)−WX − b

󰀄
󰀤

.

2.6 The Q-learning algorithm

Coming back to Q-learning we will formulate the algorithm as a version of the Robins–
Monro method. We need to fix the learning rate at each step: (δk)k∈N such that
δk ∈ (0, 1),

󰁓
k δ

2
k < ∞ and

󰁓
k δk = ∞. We can take δk = 1

k if we wish to.

We start by making an initial guess for Q, call it Q(0) = Q(0)(x, a). The learning
proceeds in episodes, where at the k-th episode:

i) We are in the state x(k) (this can be either the resulting state of a previous episode
or one chosen at random).

ii) We select and perform action a(k) (randomly, or cycle through all possible actions
systematically, or using some ε-greedy heuristic5).

iii) We observe the state we landed in, denoting it y(k). This is our sample from

Xx(k),a(k) . If y(k) ∈ ∂S then set R(k) = f(a(k), x(k)) + g(y(k)) and we will re-start.
If y(k) ∈ S \ ∂S then set R(k) = f(a(k), x(k)) + γV (k−1)(y(k)), where

V (k−1)(y(k)) := max
b∈A

Q(k−1)(y(k), b) .

iv) We adjust the Q(k−1)(x(k), a(k)) to Q(k)(x(k), a(k)) using δk as

Q(k)(xk, ak) = Q(k)(xk, ak) + δkF(Q, y(k), x(k), a(k)) = (1− δk)Qk−1(xk, ak) + δkRk

and we leave the remaining values of Q(k) set as Q(k−1) in this episode. Finally,
if y(k) ∈ ∂S then x(k+1) is chosen at random from S, while if y(k) ∈ S \ ∂S then
x(k+1) = y(k).

5With probability ε ∈ (0, 1) we choose a random action (exploration), with probability 1 − ε we
choose the optimal action according to our best knowledge at episode k (exploitation):

a(k) ∈ argmax
b∈A

Q(k−1)(x, b) .
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That’s all. If the algorithm converges so that Q(x, a) = limk→∞Q(k)(x, a) we then
have v(x) = maxaQ(x, a) for all x and a, as we have seen above.

An optimal behaviour in an unknown environment would then balance exploration
and exploitation. You can find more on this in Sutton and Barto [18] and the proof
of convergence of the Q-learning algorithm is in Watkins and Dayan [20].

2.7 Exercises

Exercise 2.4 (Simplified version of Example 1.2). There is a biased coin with p ∈
(0, 1), p ∕= 1

2 , probability of getting heads and q = 1− p probability of getting tails.

We will start with an initial wealth x = i, i ∈ N with i < m, with some m = 2.

At each turn we choose an action a ∈ {−1, 1}. By choosing a = 1 we bet that the
coin comes up heads and our wealth is increased by 1 if we are correct, decreased by 1
otherwise. By choosing a = −1 we bet on tails and our wealth is updated accordingly.

That is, given that Xn−1 = x and our action a ∈ {−1, 1} we have

P(Xn = x+ a |Xn−1 = x, a) = p , P(Xn = x− a |Xn−1 = x, a) = q .

The game terminates when either x = 0 or x = m = 2. Let N = min{n ∈ N : Xn =
0 or Xn = m}. Our aim is to maximize

Jα(x) = E
󰁫
Xα

N |X0 = x
󰁬

over functions α = α(x) telling what action to choose in each given state.

1. Write down what the state space S and the stopping set ∂S are and write down
the transition probability matrix for P a for a = 1 and for a = −1.

2. Write down the Bellman equation for the problem.

3. Assume that p > 1/2. Guess the optimal strategy. With your guess the Bellman
equation is linear. Solve it for V .

2.8 Solutions to Exercises

Solution (to Exercise 2.4).

1. First, S = {0, 1, 2} and ∂S = {0, 2}. The transition probability matrices for
a = 1 and a = −1 are, respectively,

P (a=1) =

󰀳

󰁃
1 0 0
q 0 p
0 0 1

󰀴

󰁄 , P (a=−1) =

󰀳

󰁃
1 0 0
p 0 q
0 0 1

󰀴

󰁄 .

2. There is no running reward and γ = 1 so the Bellman equation is

Vi = max
a∈{−1,1}

󰁫
(P aV )i

󰁬
.

3. If p > 1
2 then we want to bet on heads i.e. a = 1. To solve the Bellman equation:

we know that V0 = 0, V2 = 2 so we only need to find V1. From the Bellman
equation with a = 1 we have

V1 = qV0 + 0V1 + pV2 = 2p .
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3 Stochastic control of diffusion processes

In this section we introduce existence and uniqueness theory for controlled diffusion
processes and building on that formulate properly the stochastic control problem we
want to solve. Finally we explore some properties of the value function associated to
the control problem.

3.1 Equations with random drift and diffusion

Let a probability space (Ω,F ,P) be given. Let W be a d′-dimensional Wiener process
and let ξ be a Rd-valued random variable independent of W . Let Ft := σ(ξ,Ws : s ≤
t). We consider a stochastic differential equation (SDE) of the form,

dXt = bt(Xt) dt+ σt(Xt) dWt , t ∈ [0, T ] , X0 = ξ . (3.1)

Equivalently, we can write this in the integral form as

Xt = ξ +

󰁝 t

0
bs(Xs) ds+

󰁝 t

0
σs(Xs) dWs , t ∈ [0, T ] . (3.2)

Here σ : Ω×[0, T ]×Rd → Rd×d′ and b : Ω×[0, T ]×Rd → Rd. Written component-wise,
the SDE is

dXi
t = bi(t,Xt) dt+

d′󰁛

j=1

σij(t,Xt) dW
j
t , t ∈ [0, T ] , Xi

0 = ξi, i ∈ {1, · · · ,m}.

The drift and volatility coefficients

(t,ω, x) 󰀁→
󰀃
bt(ω, x),σt(ω, x)

󰀄

are progressively measurable with respect to Ft ⊗ B(Rd); as usual, we suppress ω in
the notation and will typically write bt(x) instead of bt(ω, x) etc. Note that t = 0
plays no special role in this; we may as well start the SDE at some time t ≥ 0 (even
a stopping time), and we shall write Xt,x = (Xt,x

s )s∈[t,T ] for the solution of the SDE
started at time t with initial value x (assuming it exists and is unique).

Definition 3.1 (Solution of an SDE). We say that a process X is a (strong) solution
to the SDE (3.2) if

i) The process X is continuous on [0, T ] and adapted to (Ft)t∈[0,T ],

ii) we have

P
󰀗󰁝 T

0
|bs(Xs)| ds < ∞

󰀘
= 1 and P

󰀗󰁝 T

0
|σs(Xs)|2 ds < ∞

󰀘
= 1 ,

iii) The process X satisfies (3.1) almost surely for all t ∈ [0, T ] i.e. there is Ω̄ ∈ F
such that P(Ω̄) = 1 and for all ω ∈ Ω̄ it holds that

Xt(ω) = ξ(ω)+

󰁝 t

0
bs(ω, Xs(ω)) ds+

󰁝 t

0
σs(ω, Xs(ω)) dWs(ω) , ∀t ∈ [0, T ] . (3.3)
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Given T ≥ 0, andm ∈ N, we write Hm
T for the set of progressively measurable processes

φ such that

󰀂φ󰀂Hm
T
:=

󰀕
E
󰁝 T

0
|φt|m dt

󰀖 1
m

< ∞.

Proposition 3.2 (Existence and uniqueness of solutions). Assume that for all x ∈ Rd

the processes (bt(x))t∈[0,T ] and (σt(x))t∈[0,T ] are progressively measurable, that E|ξ|2 <
∞ and that there exists a constant K such that a.s. for all t ∈ [0, T ] and x, y ∈ Rd it
holds that

󰀂b(0)󰀂H2
T
+ 󰀂σ(0)󰀂H2

T
≤ K,

|bt(x)− bt(y)|+ |σt(x)− σt(y)| ≤ K|x− y| .
(3.4)

Then the SDE has a unique (strong) solution X on the interval [0, T ]. Moreover, there
exists a constant C = C(K,T ) such that

E

󰀥
sup

0≤t≤T
|Xt|2

󰀦
≤ C

󰀃
1 + E[ |ξ|2]

󰀄
.

We give an iterative scheme which we will show converges to the solution. To that
end let X0

t = ξ for all t ∈ [0, T ]. For n ∈ N let, for t ∈ [0, T ], the process Xn be given
by

Xn
t = ξ +

󰁝 t

0
bs(X

n−1
s ) ds+

󰁝 t

0
σs(X

n−1
s ) dWs . (3.5)

Note that here the superscript on X indicates the iteration index.6 We can see that
X0 is (Ft)t∈[0,T ]-adapted and hence (due to progressive measurability of b and σ) X1

is (Ft)t∈[0,T ]-adapted and repeating this argument we see that each Xn is (Ft)t∈[0,T ]-
adapted.

Before we prove Proposition 3.2 by taking the limit in the above iteration we will need
the following result.

Lemma 3.3. Under the conditions of Proposition 3.2 there is a constant C, depending
on K and T (but independent of n) such that for all n ∈ N and t ∈ [0, T ] it holds that

E|Xn
t |2 < C(1 + E|ξ|2)eCt .

Proof. We see that

E|Xn
t |2 ≤ 4E|ξ|2 + 4E

󰀕󰁝 t

0
|bs(Xn−1

s )| ds
󰀖2

+ 4E
󰀕󰁝 t

0
|σs(Xn−1

s )| dWs

󰀖2

.

Using Hölder’s inequality and Itô’s isometry we can see that

E|Xn
t |2 ≤ 4E|ξ|2 + 4tE

󰁝 t

0
|bs(Xn−1

s )|2 ds+ 4E
󰁝 t

0
|σs(Xn−1

s )|2 ds .

Using the Lipschitz continuity and growth assumption (3.4) we thus obtain that

E
󰁝 t

0
|bs(Xn−1

s )|2 ds ≤ 2E
󰁝 t

0
|bs(0)|2 ds+2K2E

󰁝 t

0
|Xn−1

s |2 ds ≤ 2K2

󰀕
1 + E

󰁝 t

0
|Xn−1

s |2 ds
󰀖

6Instead of a power or index in a vector.
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and similarly

E
󰁝 t

0
|σs(Xn−1

s )|2 ds ≤ 2K2

󰀕
1 + E

󰁝 t

0
|Xn−1

s |2 ds
󰀖

.

Thus for all t ∈ [0, T ] we have, with L := 16K2(t ∨ 1), that

E|Xn
t |2 ≤ L

󰀃
1 + E|ξ|2

󰀄
+ L

󰁝 t

0
E|Xn−1

s |2 ds .

Let us iterate this. For n = 1 we have

E|X1
t |2 ≤ L

󰀃
1 + E|ξ|2

󰀄
+LtE|ξ|2 ≤ L

󰀃
1 + E|ξ|2

󰀄
+LtL(1+E|ξ|2) = L

󰀃
1 + E|ξ|2

󰀄
[1 + Lt] .

For n = 2 we have

E|X2
t |2 ≤ L

󰀃
1 + E|ξ|2

󰀄
+ L

󰁝 t

0
E|X1

s |2 ds ≤ L
󰀃
1 + E|ξ|2

󰀄
+ L · L(1 + E|ξ|2)t+ L · (Lt)

2

2

≤ L(1 + E|ξ|2)
󰀗
1 + Lt+

(Lt)2

2

󰀘
.

If we carry on we see that

E|Xn
t |2 ≤ L(1 + E|ξ|2)

󰀗
1 + Lt+

(Lt)2

2!
+ · · ·+ (Lt)n

n!

󰀘
≤ L(1 + E|ξ|2)

󰀵

󰀷
∞󰁛

j=0

(Lt)j

j!

󰀶

󰀸

and hence for all t ∈ [0, T ] we have that

E|Xn
t |2 ≤ L(1 + E|ξ|2)eLt .

Proof of Proposition 3.2. We start with (3.5), take the difference between iteration
n+1 and n, take the square of the Rd norm, take supremum and take the expectation.
Then we see that

E sup
s≤t

|Xn+1
s −Xn

s |2

≤ 2E sup
s≤t

󰀏󰀏󰀏󰀏
󰁝 s

0
[br(X

n
r )− br(X

n−1
r )] dr

󰀏󰀏󰀏󰀏
2

+ 2E sup
s≤t

󰀏󰀏󰀏󰀏
󰁝 s

0
[σr(X

n
r )− σr(X

n−1
r )] dWr

󰀏󰀏󰀏󰀏
2

=: 2I1(t) + 2I2(t) .

We note that for all t ∈ [0, T ], having used Hölder’s inequality in the penultimate step
and assumption (3.4) in the final one, it holds that

I1(t) = E sup
s≤t

󰀏󰀏󰀏󰀏
󰁝 s

0
[br(X

n
r )− br(X

n−1
r )] dr

󰀏󰀏󰀏󰀏
2

≤ E sup
s≤t

󰀕󰁝 s

0
|br(Xn

r )− br(X
n−1
r )| dr

󰀖2

≤ E
󰀕󰁝 t

0
|br(Xn

r )− br(X
n−1
r )| dr

󰀖2

≤ tE
󰁝 t

0
|br(Xn

r )− br(X
n−1
r )|2 dr

≤ K2tE
󰁝 t

0
|Xn

r −Xn−1
r |2 dr .
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Moreover Mt =
󰁕 t
0 [σr(X

n
r ) − σr(X

n−1
r )] dWr is a martingale and so (|Mt|)t∈[0,T ] is

a non-negative sub-martingale. Then Doob’s maximal inequality, see Theorem A.14
with p = 2, followed by Itô’s isometry implies that for all t ∈ [0, T ] it holds that

I2(t) = E sup
s≤t

󰀏󰀏󰀏󰀏
󰁝 s

0
[σr(X

n
r )− σr(X

n−1
r )] dWr

󰀏󰀏󰀏󰀏
2

≤ 4E
󰀏󰀏󰀏󰀏
󰁝 t

0
[σr(X

n
r )− σr(X

n−1
r )] dWr

󰀏󰀏󰀏󰀏
2

= 4E
󰁝 t

0
|σr(Xn

r )− σr(X
n−1
r )|2 dr ≤ 4K2E

󰁝 t

0
|Xn

r −Xn−1
r |2 dr .

Hence, with L := 2K2(T + 4) we have for all t ∈ [0, T ] that

E sup
s≤t

|Xn+1
s −Xn

s |2 ≤ L

󰁝 t

0
E|Xn

r −Xn−1
r |2 dr . (3.6)

Let
C∗ := sup

t∈T
E|X1

t − ξ|2

and note that Lemma 3.3 implies that C∗ < ∞. Using this and iterating the estim-
ate (3.6) we see that for all t ∈ [0, T ] we have that

E sup
s≤t

|Xn+1
s −Xn

s |2 ≤ C∗L
ntn

n!
. (3.7)

For f ∈ C([0, T ];Rd) let us define the norm 󰀂f󰀂∞ := sups∈[0,T ] |fs|. Due to Chebychev–
Markov’s inequality we thus have

P
󰀗
󰀂Xn+1 −Xn󰀂∞ >

1

2n+1

󰀘
= P

󰀗
󰀂Xn+1 −Xn󰀂2∞ >

1

22(n+1)

󰀘

≤ 4n+1C∗L
ntn

n!
= 4C∗ 4

nLntn

n!
.

Let En := {ω ∈ Ω : 󰀂Xn+1(ω)−Xn(ω)󰀂∞ > 1
2n+1 }. Note that clearly7 it holds that

∞󰁛

n=0

PEn < ∞ .

By the Borel–Cantelli Lemma it thus holds that there is Ω̄ ∈ F and a random variable
N : Ω → N such that P(Ω̄) = 1 and for all ω ∈ Ω̄ we have that

󰀂Xn+1(ω)−Xn(ω)󰀂∞ ≤ 2−(n+1) ∀n ≥ N(ω) .

For any ω ∈ Ω̄, any m ∈ N and n ≥ N(ω) we then have, due to the triangle inequality,
that

󰀂Xn+m(ω)−Xn(ω)󰀂∞ ≤
m−1󰁛

j=0

󰀂Xn+j+1(ω)−Xn+j(ω)󰀂∞

≤
m−1󰁛

j=0

2−(n+j+1) = 2−(n+1) 1−
󰀃
1
2

󰀄m

1− 1
2

≤ 2−n .

(3.8)

This means that the sequence Xn(ω) is a Cauchy sequence in the Banach space
C([0, T ];Rd) and thus a limit X(ω) such that Xn(ω) → X(ω) in C([0, T ];Rd) as

7Indeed for any x ∈ R we have
󰁓∞

n=0
xn

n!
= ex < ∞.
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n → ∞. Moreover for each n ∈ N and each t ∈ [0, T ] the random variable Xn
t is Ft

measurable which means that Xt = limn→∞Xn
t is Ft measurable.

Finally we have to show that the limit X satisfies the SDE. On the left hand side the
convergence is trivial. To take the limit in the bounded variation integral we can use
simply that for all ω ∈ Ω we have that 󰀂X(ω)−Xn(ω)󰀂∞ < 2−n for n ≥ N(ω). This
follows by taking m → ∞ in (3.8) with n ∈ N fixed. Then

󰀏󰀏󰀏󰀏
󰁝 t

0
bs(ω, X

n
s (ω)) ds−

󰁝 t

0
bs(ω, Xs(ω)) ds

󰀏󰀏󰀏󰀏 ≤ K

󰁝 t

0
|Xn

s (ω)−Xs(ω)| ds → 0

as n → ∞ due to Lebesgue’s theorem on dominated convergence.

To deal with the stochastic integral we need to do a bit more work. We see that for
any t ∈ [0, T ] it holds that

E|Xn+m
t −Xn

t |2 = E

󰀏󰀏󰀏󰀏󰀏󰀏

m−1󰁛

j=0

(Xn+j+1
t −Xn+j

t )2−(n+j)2n+j

󰀏󰀏󰀏󰀏󰀏󰀏

2

.

Using Hölder’s inequality we get that for any t ∈ [0, T ] it holds that

E|Xn+m
t −Xn

t |2 ≤

󰀳

󰁃
m−1󰁛

j=0

4−(n+j)

󰀴

󰁄

󰀳

󰁃
m−1󰁛

j=0

E|Xn+j+1
t −Xn+j

t |2 4n+j

󰀴

󰁄 .

We note that
m−1󰁛

j=0

4−j =
1−

󰀃
1
4

󰀄m

1− 1
4

≤ 4

3

From (3.7) we thus get that for all m ∈ N and for all t ∈ [0, T ] it holds that

E|Xn+m
t −Xn

t |2 ≤
4

3
C∗4−n

m−1󰁛

j=0

(4Lt)n+j

(n+ j)!
≤ 4

3
C∗e4Lt4−n .

Hence for any t ∈ [0, T ] the sequence (Xn
t )n∈N is Cauchy in L2(Ω) and so Xn

t → Xt in
L2(Ω) as n → ∞ for all t ∈ [0, T ]. Finally E|Xt|2 ≤ lim infn→∞ E|Xn

t |2 ≤ C(1+|ξ|2)eLt
due to Lemma 3.3. Thus for each n ∈ N we have

E|Xn
t −Xt|2 ≤ 2E|Xn

t |2 + 2E|Xt|2 ≤ 4C(1 + |ξ|2)eLt =: g(t) .

Noting that g ∈ L1(0, T ) we can conclude, using Lebesgue’s theorem on dominated
convergence that

lim
n→∞

󰁝 T

0
E|Xn

t −Xt|2 dt =
󰁝 T

0
lim
n→∞

E|Xn
t −Xt|2 = 0 .

This, together with Itô’s isometry and assumption (3.4) allows us to take the limit in
the stochastic integral term arising in (3.5).

Remark 3.4. In the setup above the coefficients b and σ are random. In applications
we will deal essentially with two settings for b and σ.

i) b and σ are deterministic, measurable, functions, i.e. (t, x) 󰀁→ bt(x) and (t, x) 󰀁→
σt(x) are not random.
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ii) b and σ are effectively random maps, but the randomness has a specific form.
Namely, the random coefficients b(t,ω, x) and σ(t,ω, x) are of the form

bt(ω, x) := b̄
αt(ω)
t (x) and σt(ω, x) := σ̄

αt(ω)
t (x)

where b̄, σ̄ are deterministic measurable functions on [0, T ]×Rd×A , A is a com-
plete separable metric space and (αt)t∈[0,T ] is a progressively measurable process
valued in A.

This case arises in stochastic control problems that we will study later on, an
example of which can already be seen with SDE (1.1).

Some properties of SDEs

In the remainder, we always assume that the coefficients b and σ satisfy the above
conditions.

Proposition 3.5 (Further moment bounds). Let m ∈ N, m ≥ 2. Assume that for
all x ∈ Rd the processes (bt(x))t∈[0,T ] and (σt(x))t∈[0,T ] are progressively measurable,
that E|ξ|m < ∞ and that there exists a constant K such that a.s. for all t ∈ [0, T ] and
x, y ∈ Rd it holds that

󰀂b(0)󰀂Hm
T
+ 󰀂σ(0)󰀂Hm

T
≤ K,

|bt(x)− bt(y)|+ |σt(x)− σt(y)| ≤ K|x− y| .

Assume that X is a solution of (3.1). Then there exists a constant C = C(K,T,m, d, d′)
such that

E

󰀥
sup

0≤t≤T
|Xt|m

󰀦
≤ C

󰀃
1 + E[ |ξ|m]

󰀄
.

This can be proved using similar steps to those used in the proof of Lemma 3.3 but
employing the Burkholder–Davis–Gundy inequality when estimating the expectation
of the supremum of the stochastic integral term.

Proposition 3.6 (Stability). Let m ∈ N, m ≥ 2. Assume that for all x ∈ Rd the
processes (bt(x))t∈[0,T ] and (σt(x))t∈[0,T ] are progressively measurable, that E|ξ|m < ∞
and that there exists a constant K such that a.s. for all t ∈ [0, T ] and x, y ∈ Rd it
holds that

󰀂b(0)󰀂Hm
T
+ 󰀂σ(0)󰀂Hm

T
≤ K,

|bt(x)− bt(y)|+ |σt(x)− σt(y)| ≤ K|x− y| .

Let x, x′ ∈ Rd and 0 ≤ t ≤ t′ ≤ T .

i) There exists a constant C = C(K,T,m) such that

E

󰀥
sup

t≤s≤T
|Xt,x

s −Xt,x′
s |m

󰀦
≤ C|x− x′|m.
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ii) Suppose in addition that there is a constant K ′ such that

E

󰀥󰁝 s′

s
|br(0)|2 + |σr(0)|2 dr

󰀦
≤ K ′|s− s′|

for all 0 ≤ s ≤ s′ ≤ T . Then there exists C = C(K,T ) such that

E

󰀥
sup

t′≤s≤T
|Xt,x

s −Xt′,x
s |2

󰀦
≤ C(K + |x|2)|t− t′|.

To prove the above two propositions one uses often the following inequalities: Cauchy-
Schwartz, Hölder and Young’s inequality; Gronwall’s inequality (see Lemma A.6);
Doob’s maximal inequality (see Theorem A.14) and Burkholder–Davis–Gundy in-
equality.

Proposition 3.7 (Flow property). Let x ∈ Rm and 0 ≤ t ≤ t′ ≤ T . Then

Xt,x
s = X

t′,Xt,x

t′
s , s ∈ [t′, T ].

(This property holds even if t, t′ are stopping times.)

See Exercise 3.17 for proof.

Proposition 3.8 (Markov property). Let x ∈ Rd and 0 ≤ t ≤ t′ ≤ s ≤ T . If b and σ
are deterministic functions, then

Xt,x
s is a function of t, x, s, and

󰀃
Wr −Wt

󰀄
r∈[t,s].

Moreover,

E
󰀅
Φ
󰀃
Xt,x

r , t′ ≤ r ≤ s
󰀄
|Ft′

󰀆
= E

󰁫
Φ
󰀃
Xt,x

r , t′ ≤ r ≤ s
󰀄
|Xt,x

t′

󰁬

for all bounded and measurable functions Φ : C0([t′, s];Rm) → R.

On the left hand side (LHS), the conditional expectation is on Ft′ that contains all
the information from time t = 0 up to time t = t′. On the right hand side (RHS), that
information is replaced by the process Xt,x

t′ at time t = t′. In words, for Markovian
processes the best prediction of the future, given all knowledge of the present and past
(what you see on the LHS), is the present (what you see on the RHS; all information
on the past can be ignored).

3.2 Controlled diffusions

We now introduce controlled SDEs with a finite time horizon T > 0; the infinite-
horizon case is discussed later. Again, (Ω,F ,P) is a probability space with filtration
(Ft) and a d′-dimensional Wiener process W compatible with this filtration.

We are given an action set A (in general separable complete metric space) and let
A0 be the set of all A-valued progressively measurable processes, the controls. The
controlled state is defined through an SDE as follows. Let

b : [0, T ]× Rd ×A → Rd and σ : [0, T ]× Rd ×A → Rd×d′

be measurable functions.
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Assumption 3.9. Assume that for each t ∈ [0, T ] that (x, a) 󰀁→ b(t, x, a) and (x, a) 󰀁→
σ(t, x, a) are continuous, assume that for each t ∈ [0, T ] we have x 󰀁→ b(t, x, a) and
x 󰀁→ σ(t, x, a) continuous in x uniformly in a ∈ A and that there is a constant K such
that for any t, x, y, a we have

|b(t, x, a)− b(t, y, a)|+ |σ(t, x, a)− σ(t, y, a)| ≤ K|x− y|. (3.9)

Moreover for all t, x, a it holds that

|b(t, x, a)|+ |σ(t, x, a)| ≤ K(1 + |x|+ |a|) . (3.10)

We will fix m ≥ 2 and refer to the set

A := {α ∈ Hm
T : ∀ω ∈ Ω, t ∈ [0, T ] αt(ω) ∈ A and α is progressively measurable }

set as admissible controls.

Given a fixed control α ∈ A, we consider the SDE for 0 ≤ t ≤ T ≤ ∞ for s ∈ [t, T ]

dXs = b
󰀃
s,Xs,αs

󰀄
dt+ σ

󰀃
s,Xs,αs

󰀄
dWs, Xt = ξ. (3.11)

With Assumption 3.9 the SDE (3.11) is a special case of an SDE with random coef-
ficients, see (3.1). In particular, if we fix α ∈ A then taking b̃t(x) := b(t, x,αt) and
σ̃t(x) := σ(t, x,αt) we have the progressive measurability of b̃ and σ̃ (since b, σ are
assumed to be measurable and α is progressively measurable. Moreover

󰀂b̃(0)󰀂2H2
T
= E

󰁝 T

0
|b(t, 0,αt)|2 dt ≤ E

󰁝 T

0
K2(1 + |αt)|)2 dt ≤ 2K2T + 2K2󰀂α󰀂2H2

T
< ∞

and similarly 󰀂σ̃(0)󰀂2H2
T
< ∞. Finally the Lipschitz continuity of the coefficients in

space clearly holds and so due to Proposition 3.2 we have the following result.

Proposition 3.10 (Existence and uniqueness). Let t ∈ [0, T ], ξ ∈ L2(Ft) and α ∈ A0.
Then SDE (3.11) has a unique (strong) Markov solution X = Xt,ξ,α on the interval
[t, T ] such that

sup
α∈A

E sup
s∈[t,T ]

|Xs|2 ≤ c(1 + E|ξ|2) .

Moreover, the solution has the properties listed in Propositions 3.5 and 3.6.

3.3 Stochastic control problem with finite time horizon

In this section we revisit the ideas of the opening one and give a stronger mathematical
meaning to the general setup for optimal control problems. We distinguish the finite
time horizon T < ∞ and the infinite time horizon T = ∞, the functional to optimize
must differ.

In general, texts either discuss maximization or a minimization problems. Using ana-
lysis results, it is easy to jump between minimization and maximization problems:
maxx f(x) = −minx−f(x) and the x∗ that maximizes f is the same one that minim-
izes −f (draw a picture to convince yourself).
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Finite time horizon

Let

J(t, ξ,α) := E
󰀗󰁝 T

t
f(s,Xα,t,ξ

s ,αs) ds+ g(Xα,t,ξ
T )

󰀘
,

where Xt,ξ solves (3.11) (with initial condition X(t) = ξ). The J here is called the
objective functional. We refer to f as the running gain (or, if minimizing, running
cost) and to g as the terminal gain (or terminal cost).

We will ensure the good behavior of J through the following assumption.

Assumption 3.11. There is K > 0, m ∈ {0, 1, . . .} such that for all t, x, y, a we have

|g(x)− g(y)|+ |f(t, x, a)− f(t, y, a)| ≤ K(1 + |x|m + |y|m)|x− y|,

|f(t, 0, a)| ≤ K(1 + |a|2) .

Note that this assumption is not the most general. For bigger generality consult
e.g. [14].

The optimal control problem formulation We will focus on the following stochastic
control problem. Let t ∈ [0, T ] and x ∈ Rd. Let

(P )

󰀻
󰁁󰀿

󰁁󰀽

v(t, x) := sup
α∈A[t,T ]

J(t, x,α) = sup
α∈A[t,T ]

E
󰀗󰁝 T

t
f
󰀃
s,Xα,t,x

s ,αs

󰀄
ds+ g

󰀃
Xα,t,x

T

󰀄󰀘

and Xα,t,x solves (3.11) with Xα,t,x
t = x.

The solution to the problem (P), is the value function, denoted by v. One of the
mathematical difficulties in stochastic control theory is that we don’t even know at
this point whether v is measurable or not.

In many cases there is no optimal control process α∗ for which we would have v(t, x) =
J(t, x,α∗). Recall that v is the value function of the problem (P). However there is
always an ε-optimal control (simply by definition of supremum).

Definition 3.12 (ε-optimal controls). Take t ∈ [0, T ] and x ∈ Rm. Let ε ≥ 0. A
control αε ∈ A[t, T ] is said to be ε-optimal if

v(t, x) ≤ ε+ J(t, x,αε) . (3.12)

Lemma 3.13 (Lipschitz continuity in x of the value function). If Assumptions 3.9
and 3.11 hold and if A ⊂ Hm+1

T then there exists C = CT,K,m > 0 such that for all
t ∈ [0, T ] and x, y ∈ Rd we have

|J(t, x,α)− J(t, y,α)| ≤ C(1 + |x|m + |y|m)|x− y| .

and
|v(t, x)− v(t, y)| ≤ C(1 + |x|m + |y|m)|x− y| .

Proof. The first step is to show that there is CT,K,m > 0 such that for any α ∈ U we
have

I := |J(t, x,α)− J(t, y,α)| ≤ CT (1 + |x|m + |y|m)|x− y| .
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Using Assumption 3.11 (local Lipschitz continuity in x of f and g) we get

I ≤ E
󰀗󰁝 T

t
|f(s,Xt,x,α

s ,αs)− f(s,Xt,y,α
s ,αs)| ds+

󰀏󰀏g(Xt,x,α
T )− g(Xt,x,α

T )
󰀏󰀏
󰀘

≤ KE
󰀗 󰁝 T

t
(1 + |Xt,x,α

s |m + |Xt,y,α
s |m)|Xt,x,α

s −Xt,y,α
s | ds

+ (1 + |Xt,x,α
T |m + |Xt,y,α

T |m)|Xt,x,α
T −Xt,y,α

T |
󰀘
.

We note that due to Hölder’s inequality

I ≤CK,m

󰀕
E
󰁝 T

t
(1 + |Xt,x,α

s |m+1 + |Xt,y,α
s |m+1) ds

󰀖 m
m+1

󰀕
E
󰁝 T

t
|Xt,x,α

s −Xt,y,α
s |m+1 ds

󰀖 1
m+1

+ CK,m

󰀓
E(1 + |Xt,x,α

T |m+1 + |Xt,y,α
T |m+1)

󰀔 m
m+1

󰀓
E|Xt,x,α

T −Xt,y,α
T |m+1

󰀔 1
m+1

.

Then, using Propositions 3.5 and 3.6, we get

I ≤ CT,K,m

󰀣
sup

t≤s≤T
E
󰁫
|Xt,x,α

s |m+1 + |Xt,y,α
s |m+1

󰁬󰀤 m
m+1

󰀣
sup

t≤s≤T
E|Xt,x,α

s −Xt,y,α
s |m+1

󰀤 1
m+1

≤ CT,K,m(1 + |x|m + |y|m)|x− y| .

We now need to apply this property of J to the value function v. Let ε > 0 be
arbitrary and fixed. Then there is αε ∈ A such that v(t, x) ≤ ε+J(t, x,αε). Moreover
v(t, y) ≥ J(t, y,α󰂃). Thus

v(t, x)− v(t, y) ≤ ε+ J(t, x,αε)− J(t, y,α󰂃) ≤ ε+ C(1 + |x|m + |y|m)|x− y| .

With ε > 0 still the same and fixed there would be βε ∈ A such that v(t, y) ≤
ε+ J(t, y,βε). Moreover v(t, x) ≥ J(t, x,β󰂃) and so

v(t, y)− v(t, x) ≤ ε+ J(t, y,βε)− J(t, x,β󰂃) ≤ ε+ C(1 + |x|m + |y|m)|x− y| .

Hence

−ε− C(1 + |x|m + |y|m)|x− y| ≤ v(t, x)− v(t, y) ≤ ε+ C(1 + |x|m + |y|m)|x− y| .

Letting ε → 0 concludes the proof.

An important consequence of this is that if we fix t then x 󰀁→ v(t, x) is measurable (as
continuous functions are measurable).

3.4 Exercises

Exercise 3.14 (Non-existence of solution).

1. Let I =
󰀅
0, 12

󰀆
. Find a solution X for

dXt

dt
= X2

t , t ∈ I , X0 = 1 .
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2. Does a solution to the above equation exist on I = [0, 1]? If yes, show that it
satisfies Definition 3.1. If not, which property is violated?

Exercise 3.15 (Non-uniqueness of solution). Fix T > 0. Consider

dXt

dt
= 2

󰁳
|Xt| , t ∈ [0, T ] , X0 = 0 .

1. Show that X̄t := 0 for all t ∈ [0, T ] is a solution to the above ODE.

2. Show that Xt := t2 for all t ∈ [0, T ] is also a solution.

3. Find at least two more solutions different from X̄ and X.

Exercise 3.16. Consider the SDE

Xt = ξ +

󰁝 t

0
bs(Xs) ds+

󰁝 t

0
σs(Xs) dWs , t ∈ [0, T ] . (3.13)

and assume that the conditions of Proposition 3.2 hold. Show that the solution to the
SDE is unique in the sense that if X and Y are two solutions with X0 = ξ = Y0 then

P

󰀥
sup

0≤t≤T
|Xt − Yt| > 0

󰀦
= 0 .

Exercise 3.17. Consider the SDE

dXt,x
s = b(Xt,x

s ) ds+ σ(Xt,x
s ) dWs, t ≤ s ≤ T, Xt,x

t = x .

Assume it has a pathwise unique solution i.e. if Y t,x
s is another process that satisfies

the SDE then

P

󰀥
sup

t≤s≤T
|Xt,x

s − Y t,x
s | > 0

󰀦
= 0 .

Show that then the flow property holds i.e. for 0 ≤ t ≤ t′ ≤ T we have almost surely
that

Xt,x
s = X

t′,Xt,x

t′
s , ∀s ∈ [t′, T ].

3.5 Solutions to Exercises

Solution (to Exercise 3.14).

1. We can use the following method to get a guess: from the ODE we get X−2dX = dt
which means that, after integrating, we get −X−1 = t+C. So Xt = −(t+C)−1. Since
X0 = 1 we get C = −1. Thus

Xt =
1

1− t
, t ∈

󰀅
0, 1

2

󰀆
.

We check by calculating that dXt

dt = (1− t)−2 = X2
t so the equation holds in [0, 1/2].

2. We can see that limt↗1 Xt = ∞ and so the t 󰀁→ Xt is not continuous on [0, 1].

Solution (to Exercise 3.15).

1. Clearly X̄0 = 0 and for t ∈ [0, T ] we have dX̄t

dt = 0 = 2
󰁳
|X̄t|.
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2. Clearly X0 = 0 and for t ∈ [0, T ] we have dXt

dt = 2t = 2
√
t2 = 2

󰁳
|Xt|.

3. Fix any τ ∈ (0, T ) and define

X
(τ)
t :=

󰀝
0 for t ∈ [0, τ) ,

(t− τ)2 for t ∈ [τ, T ] .

Then, clearly, dX
(τ)
0 = 0 and moreover if t ∈ [0, τ) then we have

dX
(τ)
t

dt
= 0 = 2

󰁴
|X(τ)

t | ,

while if t ∈ [τ, T ] then we have

dX
(τ)
t

dt
= 2(t− τ) = 2

󰁳
|(t− τ)2| = 2

󰁴
X

(τ)
t .

So, in fact, there are uncountably many different solutions.

Solution (to Exercise 3.16). We will use exactly the same estimates as in the proof of Pro-
position 3.2, up to (3.6). We start with (3.13) written once for X and once for Y and take the
difference, take the square of the Rd norm, take supremum and take the expectation. Then
we see that

E sup
s≤t

|Xs − Ys|2

≤ 2E sup
s≤t

󰀏󰀏󰀏󰀏
󰁝 s

0

[br(Xr)− br(Yr)] dr

󰀏󰀏󰀏󰀏
2

+ 2E sup
s≤t

󰀏󰀏󰀏󰀏
󰁝 s

0

[σr(Xr)− σr(Yr)] dWr

󰀏󰀏󰀏󰀏
2

=: 2I1(t) + 2I2(t) .

We note that for all t ∈ [0, T ], having used Hölder’s inequality in the penultimate step and
assumption (3.4) in the final one, it holds that

I1(t) = E sup
s≤t

󰀏󰀏󰀏󰀏
󰁝 s

0

[br(Xr)− br(Yr)] dr

󰀏󰀏󰀏󰀏
2

≤ E sup
s≤t

󰀕󰁝 s

0

|br(Xr)− br(Yr)| dr
󰀖2

≤ E
󰀕󰁝 t

0

|br(Xr)− br(Yr)| dr
󰀖2

≤ tE
󰁝 t

0

|br(Xr)− br(Yr)|2 dr

≤ K2tE
󰁝 t

0

|Xr − Yr|2 dr .

Moreover Mt =
󰁕 t

0
[σr(Xr)−σr(Yr)] dWr is a martingale and so (|Mt|)t∈[0,T ] is a non-negative

sub-martingale. Then Doob’s maximal inequality, see Theorem A.14 with p = 2, followed by
Itô’s isometry implies that for all t ∈ [0, T ] it holds that

I2(t) = E sup
s≤t

󰀏󰀏󰀏󰀏
󰁝 s

0

[σr(Xr)− σr(Yr)] dWr

󰀏󰀏󰀏󰀏
2

≤ 4E
󰀏󰀏󰀏󰀏
󰁝 t

0

[σr(Xr)− σr(Yr)] dWr

󰀏󰀏󰀏󰀏
2

= 4E
󰁝 t

0

|σr(Xr)− σr(Yr)|2 dr ≤ 4K2E
󰁝 t

0

|Xr − Yr|2 dr .

Hence, with L := 2K2(T + 4) we have for all t ∈ [0, T ] that

E sup
s≤t

|Xs − Ys|2 ≤ L

󰁝 t

0

E|Xr − Yr|2 dr .

Hence

E sup
s≤t

|Xs − Ys|2 ≤ L

󰁝 t

0

E sup
s≤r

|Xs − Ys|2 dr .
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From Gronwall’s lemma (applied with y(t) := E sups≤t |Xs − Ys|2, a(t) = 0, b(t) = 0 and
λ(t) = L) we get that for all t ∈ [0, T ] we have

E sup
s≤t

|Xs − Ys|2 ≤ 0 .

But this means that

P
󰀗
sup
t≤T

|Xs − Ys|2 = 0

󰀘
= 1 .

Solution (to Exercise 3.17). Let Ys := X
t′,Xt,x

t′
s for s ∈ [t′, T ] and note that the process Y

solves the SDE for s ∈ [t′, T ] with Yt′ = X
t′,Xt,x

t′
t′ = Xt,x

t′ . Let Xs := Xt,x
s for s ∈ [t′, T ] and

note that this also solves the SDE for s ∈ [t′, T ] with

Xt′ = Xt,x
t′ = Yt′ .

Hence both Y and X solve the same SDE with the same starting point. By the pathwise
uniqueness property of the solutions of this SDE we then have

P
󰀗

sup
t≤s≤T

|Xs − Ys| = 0

󰀘
= 1

but this means that almost surely it holds that for all s ∈ [t′, T ] it holds that

X
t′,Xt,x

t′
s = Ys = Xs = Xt,x

s .
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4 Dynamic programming and the Hamilton–Jacobi–Bellman
equation

4.1 Dynamic programming principle

Dynamic programming (DP) is one of the most popular approaches to study the
stochastic control problem (P). The main idea was originated from the so-called Bell-
man’s principle, which states

An optimal policy has the property that whatever the initial state and initial
decision are, the remaining decisions must constitute an optimal policy with
regard to the state resulting from the first decision.

The following is the statement of Bellman’s principle / dynamic programming.

Theorem 4.1 (Bellman’s principle / Dynamic programming). For any 0 ≤ t ≤ t̂ ≤ T ,
for any x ∈ Rd, we have

v(t, x) = sup
α∈A[t,t̂]

E

󰀥󰁝 t̂

t
f
󰀃
s,Xα,t,x

s ,αs

󰀄
ds+ v

󰀃
t̂, Xα,t,x

t̂

󰀄󰀏󰀏󰀏Xα,t,x
t = x

󰀦
. (4.1)

The idea behind the dynamic programming principle is as follows. The expectation on
the RHS of (4.1) represents the gain if we implement the time t until time t̂ optimal
strategy and then implement the time t̂ until T optimal strategy. Clearly, this gain
will be no larger than the gain associated with using the overall optimal strategy from
the start (since we can apply the overall optimal control in both scenarios and obtain
the LHS).

What equation (4.1) says is that if we determine the optimal strategy separately on
each of the time intervals [t, t̂] and [t̂, T ] we get the same answer as when we consider
the whole time interval [t, T ] at once. Underlying this statement, hides a deeper one:
that if one puts the optimal stategy over [t, t̂ ) together with the optimal stategy over
[t̂, T ] this is still an optimal strategy.

Note that without Lemma 3.13 we would not even be allowed to write (4.1) since
we need v(t̂, Xα,t,x

t̂
) to be a random variable (so that we are allowed to take the

expectation).

Let us now prove the Bellman principle.

Proof of Theorem 4.1. We will start by showing that v(t, x) ≤ RHS of (4.1). We note
that with α ∈ A[t, T ] we have

J(t, x,α) = E

󰀥󰁝 t̂

t
f(s,Xα

s ,αs)ds+

󰁝 T

t̂
f(s,Xα

s ,αs)ds+ g(Xα
T )

󰀏󰀏󰀏󰀏X
α
t = x

󰀦
.

We will use the tower property of conditional expectation and use the Markov property
of the process. Let FXα

t̂
:= σ(Xα

s : t ≤ s ≤ t̂). Then

J(t, x,α)

= E

󰀥󰁝 t̂

t
f(s,Xα

s ,αs)ds+ E
󰀗󰁝 T

t̂
f(s,Xα

s ,αs)ds+ g(Xα
T )

󰀏󰀏󰀏󰀏F
Xα

t̂

󰀘 󰀏󰀏󰀏󰀏X
α
t = x

󰀦

= E

󰀥󰁝 t̂

t
f(s,Xα

s ,αs)ds+ E
󰀗󰁝 T

t̂
f(s,Xα

s ,αs)ds+ g(Xα
T )

󰀏󰀏󰀏󰀏X
α
t̂

󰀘 󰀏󰀏󰀏󰀏X
α
t = x

󰀦
.
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Now, because of the flow property of SDEs,

E
󰀗󰁝 T

t̂
f(s,Xα,t,x

s ,αs)ds+ g(Xα,t,x
T )

󰀏󰀏󰀏󰀏X
α,t,x

t̂

󰀘
= J

󰀓
t̂, Xα,t,x

t̂
, (αs)s∈[t̂,T ]

󰀔
≤ v

󰀓
t̂, Xα,t,x

t̂

󰀔
.

Hence

J(t, x,α) ≤ sup
α∈A

E

󰀥󰁝 t̂

t
f(s,Xα

s ,αs)ds+ v
󰀓
t̂, Xα,t,x

t̂

󰀔 󰀏󰀏󰀏󰀏X
α
t = x

󰀦
.

Taking supremum over control processes α on the left shows that v(t, x) ≤ RHS of (4.1).

We now need to show that RHS of (4.1) ≤ v(t, x). Fix ε > 0. Then there is αε ∈ A[t, t̂]
such that

RHS of (4.1) ≤ ε+ E

󰀥󰁝 t̂

t
f
󰀃
s,Xαε,t,x

s ,αε
s

󰀄
ds+ v

󰀃
t̂, Xαε,t,x

t̂

󰀄󰀏󰀏󰀏Xαε,t,x
t = x

󰀦
.

Let us write Xs := Xαε,t,x
s for brevity from now on. We now have to be careful so

that we can construct an ε-optimal control which is progressively measurable on the
whole [t, T ]. To that end let δ = δ(ω) > 0 be such that

2mC(1 + |Xt̂(ω)|
m)δ(ω) < ε and 2m−1δ(ω)m < 1.

where C is the constant from Lemma 3.13. Take (xi)i∈N dense in Rd. By density of
(xi)i we know that for each δ(ω) there exists i(ω) such that |xi(ω) − Xt̂(ω)| ≤ δ(ω).
Moreover

C(1 + |xi|m)δ ≤ C(1 + 2m−1|xi −Xt̂|
m + 2m−1|Xt̂|

m)δ ≤ 2mC(1 + |Xt̂|
m)δ < ε .

The open covering of Rd given by
󰁖

ω∈ΩBδ(ω)(xi(ω)) has a countable sub-cover
󰁖

k∈NBδk(xk).
Let (Qk) be constructed as follows:

Q1 = Bδ1(x1) and Qk = Bδk(xk) \
k−1󰁞

k′=1

Qk′ .

Then for each xi there is α
ε,i ∈ A(t̂, T ] such that v(t̂, xi) ≤ ε+J(t̂, xi,α

ε,i). Moreover
if Xt̂ ∈ Qi then |Xt̂|m ≤ 2m−1|Xt̂−xi|m+2m−1|xi|m and due to Lemma 3.13 we have,

|v(t̂, Xt̂)− v(t̂, xi)| ≤ C(1 + |Xt̂|
m + |xi|m)|Xt̂ − xi|

≤ C(1 + 2m−1|Xt̂ − xi|m + 2m−1|xi|m)|Xt̂ − xi|
≤ C(1 + 2m−1δm + 2m−1|xi|m)δ

≤ C(2 + 2m−1|xi|m)δ ≤ 2mC(1 + |xi|m)δ < ε .

Similarly we have
|J(t̂, xi,αε,i)− J(t̂, Xt̂,α

ε,i)| ≤ ε.

Hence we get

v(t̂, Xt̂) ≤ v(t̂, xi) + ε ≤ ε+ J(t̂, xi,α
ε,i) + ε ≤ ε+ J(t̂, Xt̂,α

ε,i) + 2ε .

And so
v(t̂, Xt̂) ≤ 3ε+ J(t̂, Xt̂,α

ε,i) .
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Therefore RHS of (4.1)

≤ 3ε+E

󰀥󰁝 t̂

t
f
󰀃
s,Xαε,t,x

s ,αε
s

󰀄
ds

+ E
󰀗󰁝 T

t̂
f(s, Y αε,i

s ,αε,i
s ) ds+ g

󰀓
Y αε,i

T

󰀔 󰀏󰀏󰀏󰀏Y
αε,i

t̂
= Xαε,t,x

t̂

󰀘 󰀏󰀏󰀏Xαε,t,x
s = x

󰀦
.

Regarding controls we now have the following: αε ∈ A[t, t̂] and for each i we have
αε,i ∈ A(t̂, T ]. From these we build one control process βε as follows:

βε
s :=

󰀫
αε
s s ∈ [t, t̂]

αε,i
s s ∈ (t̂, T ] and Xαε,t,x

t̂
∈ Qi.

This process is progressively measurable with values in A and so βε ∈ A[t, T ]. Due to
the flow property we may write that RHS of (4.1)

≤ 3ε+ E

󰀥󰁝 t̂

t
f
󰀃
s,Xβε,t,x

s ,βε
s

󰀄
ds+

󰁝 T

t̂
f(s,Xβε

s ,βε
s) ds+ g

󰀓
Xβε

T

󰀔 󰀏󰀏󰀏Xβε,t,x
s = x

󰀦
.

Finally taking supremum over all possible control strategies we see that RHS of (4.1) ≤
3ε+ v(t, x). Letting ε → 0 completes the proof.

Lemma 4.2 (12 -Hölder continuity of value function in time). Let Assumptions 3.9
and 3.11 hold. Let A ⊆ Hm+1

T . Then there is a constant C = CT,K,m > 0 such that
for any x ∈ Rd, 0 ≤ t, t̂ ≤ T we have

|v(t, x)− v(t̂, x)| ≤ C(1 + |x|m)|t− t̂|1/2 .

Proof. Still needs to be written down.

Corollary 4.3. Let Assumptions 3.9 and 3.11 hold. Let A ⊆ Hm+1
T . Then there is a

constant C = CT,K,m > 0 such that for any x, y ∈ Rd, 0 ≤ s, t ≤ T we have

|v(s, x)− v(t, y)| ≤ C(1 + |x|m + |y|m)
󰀓
|t− t̂|1/2 + |x− y|

󰀔
.

This means that the value function v is jointly measurable in (t, x). With this we get
the following.

Theorem 4.4 (Bellman’s principle / Dynamic programming with stopping time).
For any stopping times t, t̂ such that 0 ≤ t ≤ t̂ ≤ T , for any x ∈ Rd, we have (4.1).

The proof uses the same arguments as before except that now have to cover the whole
[0, T ]× Rd and we need to use the 1

2 -Hölder continuity in time as well.

Corollary 4.5 (Global optimality implies optimality from any time). Take x ∈ Rd. A

control β ∈ A[0, T ] is optimal for (P) with the state process Xs = Xβ,0,x
s for s ∈ [0, T ]

if and only if for any t̂ ∈ [0, T ] we have

v(t̂, Xt̂) = J
󰀓
t̂, Xt̂, (βr)r∈[t̂,T ]

󰀔
.
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Proof. To ease the notation we will take f = 0. The reader is encouraged to prove
the general case.

Due to the Bellman principle, Theorem 4.4, we have

v(0, x) = sup
α∈A[0,t̂]

E
󰁫
v
󰀓
t̂, Xα,0,x

t̂

󰀔󰁬
≥ E

󰁫
v
󰀓
t̂, Xβ,0,x

t̂

󰀔󰁬
. (4.2)

If β is an optimal control

v(0, x) = J(0, x,β) = E [g (XT )] ,

where the first equality follows from β being assumed to be an optimal control and
second equality is definition of J . From this, using the tower property of conditional
expectation, we see

v(0, x) = E
󰀅
E
󰀅
g (XT )

󰀏󰀏FX
t̂

󰀆󰀆
= E

󰀅
J
󰀃
t̂, Xt̂,β

󰀄󰀆
≤ E

󰀅
v
󰀃
t̂, Xt̂

󰀄󰀆
≤ v(0, x) ,

where the last inequality is (4.2) again. Since the very left and very right of these
inequalities are equal we get that

E
󰀅
J
󰀃
t̂, Xt̂,β

󰀄󰀆
= E

󰀅
v
󰀃
t̂, Xt̂

󰀄󰀆

Moreover v ≥ J and so we can conclude that v
󰀃
t̂, Xt̂

󰀄
= J

󰀃
t̂, Xt̂,β

󰀄
a.s. The completes

the first part of the proof. The “only if” part of the proof is clear because we can take
t̂ = 0 and get v(0, x) = J(0, x,β) which means that β is an optimal control.

From this observation we can prove the following description of optimality.

Theorem 4.6 (Martingale optimality). Let the assumptions required for Bellman’s
principle hold. For any (t, x) and α ∈ A let

M t,x,α
s :=

󰁝 s

t
fαr
r

󰀃
Xt,x,α

r

󰀄
dr + v

󰀃
s,Xt,x,α

s

󰀄
. (4.3)

Then the process (M t,x,α
s )s∈[t,T ] is an FX

s := σ(Xα,t,x
r ; t ≤ r ≤ s) super-martingale.

Moreover α is optimal if and only if it is a martingale.

Proof. We have by, Theorem 4.1 (the Bellman principle) that for any 0 ≤ t ≤ s ≤ ŝ ≤
T that

v
󰀃
s,Xt,x,α

s

󰀄
= sup

α̂∈A
E
󰀗󰁝 ŝ

s
f α̂r
r

󰀃
Xs,Xt,x,α

s ,α̂
r

󰀄
dr + v

󰀃
ŝ, Xs,Xt,x,α

s ,α̂
ŝ

󰀄󰀏󰀏󰀏Xα,t,x
s

󰀘
.

From the Markov property we get that

v
󰀃
s,Xt,x,α

s

󰀄
= sup

α̂∈A
E
󰀗󰁝 ŝ

s
f α̂r
r

󰀃
Xs,Xt,x,α

s ,α̂
r

󰀄
dr + v

󰀃
ŝ, Xs,Xt,x,α

s ,α̂
ŝ

󰀄󰀏󰀏󰀏FX
s

󰀘
.

Hence

v
󰀃
s,Xt,x,α

s

󰀄
≥ E

󰀗󰁝 ŝ

s
fαr
r

󰀃
Xs,Xt,x,α

s ,α
r

󰀄
dr + v

󰀃
ŝ, Xs,Xt,x,α

s ,α
ŝ

󰀄󰀏󰀏󰀏FX
s

󰀘
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and so, using the flow property of the SDE,

M t,x,α
s ≥

󰁝 s

t
fαr
r

󰀃
Xt,x,α

r

󰀄
dr + E

󰀗󰁝 ŝ

s
fαr
r

󰀃
Xt,x,α

r

󰀄
dr + v

󰀃
ŝ, Xt,x,α

ŝ

󰀄󰀏󰀏󰀏FX
s

󰀘

= E
󰁫
M t,x,α

ŝ |FX
s

󰁬
.

This means that M t,x,α is a super-martingale. Moreover we see that if α is optimal
then the inequalities above are equalities and hence M t,x,α is a martingale.

Now assume that M t,x,α
s = E[M t,x,α

ŝ |FX
s ]. We want to ascertain that the control α

drivingM t,x,α is an optimal one. But the martingale property implies that J(t, x,α) =
E[M t,x,α

T ] = E[M t,x,α
t ] = v(t, x) and so α is indeed an optimal control.

One question you may ask yourself is: How can we use the dynamic programming
principle to compute an optimal control? Remember that the idea behind the DPP is
that it is not necessary to optimize the control α over the entire time interval [0, T ] at
once; we can partition the time interval into smaller sub-intervals and optimize over
each individually. We will see below that this idea becomes particularly powerful if we
let the partition size go to zero: the calculation of the optimal control then becomes a
pointwise minimization linked to certain PDEs (see Theorem A.29). That is, for each
fixed state x we compute the optimal value of control, say a ∈ A, to apply whenever
X(t) = x.

4.2 Hamilton-Jacobi-Bellman (HJB) and verification

If the value function v = v(t, x) is smooth enough, then we can apply Itô’s formula
to v and X in (4.3). Thus we get the Hamilton-Jacobi-Bellman (HJB) equation (also
know and the Dynamic Programming equation or Bellman equation).

For notational convenience we will write σa(t, x) := σ(t, x, a), ba(t, x) := b(t, x, a) and
fa(t, x) := f(t, x, a). We then define

Lav :=
1

2
tr
󰁫
σa(σa)⊤∂xxv

󰁬
+ ba∂xv .

Recall that trace is the sum of all the elements on the diagonal of a square matrix i.e.
for a matrix (aij)di,j=1 we get tr[a] =

󰁓d
i=1 a

ii , that ∂xxv denotes the Jacobian matrix
i.e. (∂xxv)ij = ∂xi∂xjv whilst ∂xv denotes the gradient vector i.e. (∂xv)i = ∂xiv. This
means that

tr
󰁫
σa(σa)⊤∂xxv

󰁬
=

d󰁛

i,j=1

[σa(σa)⊤]ij∂xixjv and ba∂xv =

d󰁛

i=1

(ba)i∂xiv .

Theorem 4.7 (Hamilton-Jacobi-Bellman (HJB)). Assume that the Bellman principle
holds. Assume that b and σ are bounded and continuous in (t, x). If the value function
v for (P) is C1,2([0, T )× Rd), then it satisfies

∂tv + sup
a∈A

󰀓
Lav + fa

󰀔
= 0 on [0, T )× Rd

v(T, x) = g(x) ∀x ∈ Rd .

(4.4)
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Proof. Let x ∈ R and t ∈ [0, T ]. Then the condition v(T, x) = g(x) follows directly
from the definition of v. Fix α ∈ A[t, T ] and let M be given by (4.3) i.e.

Ms :=

󰁝 s

t
fαr
r

󰀃
Xt,x,α

r

󰀄
dr + v

󰀃
s,Xt,x,α

s

󰀄
.

Then, Itô’s formula applied to v and X = (Xt,x,α
s )s∈[t,T ] yields

dMs =
󰁫󰀓

∂tv + Lαsv + fαs

󰀔󰀃
s,Xα,t,x

s

󰀄󰁬
ds+

󰁫
(∂xv σ

αs)
󰀃
s,Xα,t,x

s )
󰀄󰁬

dWs.

For any (t, x) ∈ [0, T ]× R and R > 0 take the stopping time τR = τα,t,xR given by

τ := inf
󰁱
t′ ≥ t :

󰁝 t′

t
(∂xv σ

αs)
󰀃
s,Xα,t,x

s )
󰀄2

ds ≥ R
󰁲
.

We know from Theorem 4.6 that M must be a supermartingale. On the other hand
the term given by the stochastic integral is a martingale (when cosidered stopped at
τR). So (Mt∧τ )t can only be a supermartingale if for any stopping time τ̂ ≤ T we have

󰁝 τ̂∧τR

t
fαs(s,Xs) + (∂tv + Lαsv)(s,Xs) ds ≤ 0 .

Taking R → ∞ we can replace τ̂ ∧ τR by just τ̂ . Since the starting point (t, x) and
control α were arbitrary we get, using continuity of ∂tv + Lav + fa in (t, x) and a
stopping time argument (see Exercise 4.9), that

(∂tv + Lav + fa)(t, x) ≤ 0 ∀t, x, a .

Taking the supremum over a ∈ A we get

∂tv(t, x) + sup
a∈A

[(Lav + fa)(t, x)] ≤ 0 ∀t, x .

We now need to show that in fact the inequality cannot be strict. We proceed by
setting up a contradiction. Assume that there is (t, x) such that

∂tv(t, x) + sup
a∈A

[(Lav + fa)(t, x)] < 0 .

We will show that this contradicts the Bellman principle and hence we must have
equality, thus completing the proof.

Now by continuity (recall that v ∈ C1,2([0, T )×Rd)) we get that there must be ε > 0
and an associated δ > 0 such that

∂tv + sup
a∈A

[(Lav + fa)] ≤ −ε < 0 on [t, t+ δ)×Bδ(x).

Let us fix α ∈ A[t, T ] and let Xs := Xt,x,α
s . We define the stopping time

τ = τ t,x,α := inf{s > t : |Xt,x,α
s − x| > δ} ∧ (t+ δ) .

Then󰁝 τ

t
fαr(r,Xr) dr + v(τ, Xτ )

= v(t, x) +

󰁝 τ

t
fαr(r,Xr) dr + v(τ, Xτ )− v(t, x)

= v(t, x) +

󰁝 τ

t

󰁫󰀓
∂tv + Lαrv + fαr

󰀔󰀃
r,Xr

󰀄󰁬
dr +

󰁝 τ

t

󰁫
(∂xv)σ

αr

󰁬󰀃
r,Xr

󰀄
dWr

≤ v(t, x)− ε(τ − t) +

󰁝 τ

t

󰁫
(∂xv)σ

αr

󰁬󰀃
r,Xr

󰀄
dWr .
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Now we take conditional expectation Et,x := E[·|FX
t ] on both sides of the last inequal-

ity, to get

Et,x

󰀗󰁝 τ

t
fαr(r,Xr) dr + v(τ, Xτ )

󰀘
≤ v(t, x)− εEt,x [τα − t] .

Now we first take infimum over all controls α ∈ A[t, τ ] on the RHS and then supremum
over all controls α ∈ A[t, τ ] to get

sup
α∈A

Et,x

󰀗󰁝 τ

t
fαs(s,Xs)ds+ v(τ, Xτ )

󰀘
≤ v(t, x)− ε inf

α
Et,x [τα − t] .

From Exercise 4.10 we have that infα Et,x [τα − t] = m > 0 and so

sup
α∈A

Et,x

󰀗󰁝 τ

t
fαs(s,Xs)ds+ v(τ, Xτ )

󰀘
≤ v(t, x)− εm < v(t, x) .

But the Bellman principle states that:

v(t, x) = sup
α∈A

Et,x

󰀗󰁝 τ

t
fαs(s,Xs) ds+ v(τ, Xτ )

󰀘
.

Hence we’ve obtained a contradiction and completed the proof.

Exercise 4.8. Assume that X is a solution to dXs = bs(Xs) dt+σs(Xs) dWs, Xt = x,
s ∈ [t, T ] Assume that b and σ are bounded such that

ess sup
ω∈Ω

sup
s∈[0,T ]

sup
x∈Rd

|bs(ω, x)|+ |σs(ω, x)| ≤ K < ∞.

1. Show that for any m ∈ N there is c > 0 (depending on T , m and bound on b and
σ) such that for all x ∈ Rd we have

E|Xt,x
s′ −Xt,x

s |2m ≤ c|s′ − s|m .

2. Use Kolmogorov’s continuity, see Theorem A.25, to obtain Hölder continuity of
sample paths of solutions.

Exercise 4.9. Let Xt,x be the solution to the SDE dXs = bs(Xs) dt + σs(Xs) dWs,
Xt = x, s ∈ [t, T ] with b and σ like in Exercise 4.8.

Assume that h : [0, T ] × Rd → R is continuous. Assume that for any stopping time
τ ≥ t 󰁝 τ

t
h(s,Xt,x

s ) ds ≤ 0 ∀(t, x) ∈ [0, T ]× Rd .

Show that h(t, x) ≤ 0 for all (t, x) ∈ [0, T ]× Rd.

Exercise 4.10. Let Xt,x be the solution to the controlled SDE dXs = bs(Xs,αs) dt+
σs(Xs,αs) dWs, Xt = x, s ∈ [t, T ] with α adapted to the filtration generated by W .
Assume

sup
a∈A

sup
s∈[0,T ]

sup
x∈Rd

|bs(x, a)|+ |σs(x, a)| ≤ K < ∞.

Let
τ := τ t,x,α := inf{s ≥ t : |Xt,x,α

s − x| ≥ δ} .

Show that infα E[τ t,x,α − t] > 0.
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Theorem 4.11 (HJB verification). If, on the other hand, some u in C1,2([0, T )×Rd)
satisfies (4.4) and

i) if we have that for all (t, x) ∈ [0, T ] × Rd there is some measurable function
a : [0, T ]× Rd → A such that

a(t, x) ∈ argmax
a′∈A

󰀓
(La′u)(t, x) + fa′(t, x)

󰀔
, (4.5)

ii) and if

dX∗
s = b

󰀃
s,X∗

s , a(s,X
∗
s

󰀄
ds+ σ

󰀃
s,X∗

s , a(s,X
∗
s

󰀄
dWs, X∗

t = x

admits a unique solution,

iii) and if the process

t′ 󰀁→
󰁝 t′

t
∂xu

󰀃
s,X∗

s

󰀄
σ
󰀃
s,X∗

s , a(s,X
∗
s

󰀄
dWs (4.6)

is a martingale in t′ ∈ [t, T ],

then

α∗
s := a

󰀃
s,X∗

s

󰀄
s ∈ [t, T ]

is optimal for problem (P) and v(t, x) = u(t, x).

Proof. Let α∗
s = a(s,X∗

s ). Apply Itô’s formula to u and X∗ to see that

󰁝 T

t
fα∗

s
s

󰀃
X∗

s

󰀄
ds+ g(X∗

T )− u(t, x) =

󰁝 T

t
fα∗

s
s

󰀃
X∗

s

󰀄
ds+ u(T,X∗

T )− u(t, x)

=

󰁝 T

t

󰁫
∂tu(s,X

∗
s ) + Lα∗

s (s,X∗
s )u(s,X

∗
s ) + fα∗

s
s

󰀃
X∗

s

󰀄󰁬
ds

+

󰁝 T

t
∂xu

󰀃
s,X∗

s

󰀄
σ
󰀃
s,X∗

s , a(s,X
∗
s

󰀄
dWs

=

󰁝 T

t
∂xu

󰀃
s,X∗

s

󰀄
σ
󰀃
s,X∗

s , a(s,X
∗
s

󰀄
dWs ,

since for all (t, x) it holds that

sup
a∈A

[La(t, x)u(t, x) + fa(t, x)] = La(t,x)(t, x)u(t, x) + fa(t,x)(t, x) .

Hence, as the stochastic integral is a martingale by assumption,

E
󰀗 󰁝 T

t
fα∗

s
s

󰀃
X∗

s

󰀄
ds+ g(X∗

T )− u(t, x)

󰀘
= 0 .

So

u(t, x) = E
󰀗 󰁝 T

t
fα∗

s
s

󰀃
X∗

s

󰀄
ds+g(X∗

T )

󰀘
≤ sup

α∈A
E
󰀗 󰁝 T

t
fαs
s

󰀃
Xt,x,α

󰀄
ds+g(Xt,x,α)

󰀘
= v(t, x) .

(4.7)
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The same calculation with an arbitrary α ∈ A and Itô formula applied to u and Xt,x,α

leads to

E
󰀗 󰁝 T

t
fαs
s

󰀃
Xt,x,α

s

󰀄
ds+ g(Xt,x,α

T )− u(t, x)

󰀘
≤ 0 .

Hence for any ε > 0 we have

v(t, x) ≤ ε+ E
󰀗󰁝 T

t
fαε

s
s

󰀃
Xt,x,αε

s

󰀄
ds+ g(Xt,x,αε

T )

󰀘
≤ u(t, x) .

Hence v(t, x) ≤ u(t, x) and with (4.7) we can conclude that v = u.

Let

Ms :=

󰁝 s

t
fα∗

r
r

󰀃
X∗

r

󰀄
dr + u

󰀃
s,X∗

s

󰀄
.

We would first like to see that this is a martingale. To that end, let us apply Itô’s
formula to v and X∗ to see that

dMs = fα∗
s

s

󰀃
X∗

s

󰀄
ds+ dv

󰀃
s,X∗

s

󰀄

=
󰁫
∂tv(s,X

∗
s ) + Lα∗

s (s,X∗
s )v(s,X

∗
s ) + fα∗

s
s

󰀃
X∗

s

󰀄󰁬
ds+ ∂xv

󰀃
s,X∗

s

󰀄
σ
󰀃
s,X∗

s , a(s,X
∗
s

󰀄
dWs

= ∂xv
󰀃
s,X∗

s

󰀄
σ
󰀃
s,X∗

s , a(s,X
∗
s

󰀄
dWs

since v = u satisfies (4.4). By assumption this stochastic integral is a martingale
and hence M is also a martingale. By Theorem 4.6 α∗ must be an optimal control
process.

Theorem 4.11 is referred as the verification theorem. This is key for solving the control
problem: if we know the value function v, then the dynamic optimization problem
turns into a of static optimization problems at each point (t, x). Recall that (4.5) is
calculated pointwise over (t, x).

4.3 Solving control problems using the HJB equation and verifica-
tion theorem

Theorem 4.7 provides an approach to find optimal solutions:

1. Solve the HJB equation (4.4) (this is typically done by taking a lucky guess and
in fact is rarely possible with pen and paper).

2. Find the optimal Markovian control rule a(t, x) calculating (4.5). If you can,
use calculus and anyway you probably had to do this in the step above anyway.

3. Check the optimally controlled SDE X∗ has unique solution.

4. Verify the martingale condition.

This approach may end up with failures. Step one is to solve a fully non-linear second
order PDE, that may not have a solution or may have many solutions.

In step two, given u that solves (4.4), the problem is a static optimization problem.
This is generally much easier to solve.

If we can reach step three, then this step heavily depends on functions b and σ, for
which we usually check case by case.
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Example 4.12 (Merton problem with power utility and no consumption). This is the
classic finance application. The problem can be considered with multiple risky assets
but we focus on the situation from Section 1.2.

Recall that we have risk-free asset Bt, risky asset St and that our portfolio has wealth
given by

dXs = Xs(νs(µ− r) + r) ds+Xsνsσ dWs , s ∈ [t, T ] , Xt = x > 0 .

Here νs is the control and it describes the fraction of our wealth invested in the risky
asset. This can be negative (we short the stock) and it can be more than one (we
borrow money from the bank and invest more than we have in the stock).

We take g(x) := xγ with γ ∈ (0, 1) a constant. Our aim is to maximize Jν(t, x) :=
Et,x [g(Xν

T )]. Thus our value function is

v(t, x) = sup
ν∈U

Jν(t, x) = sup
ν∈U

Et,x [g(Xν
T )] .

This should satisfy the HJB equation (Bellman PDE)

∂tv + sup
u

󰀗
1

2
σ2u2x2∂xxv + x[(µ− r)u+ r]∂xv

󰀘
= 0 on [0, T )× (0,∞)

v(T, x) = g(x) = xγ ∀x > 0 .

At this point our best chance is to guess what form the solution may have. We try
v(t, x) = λ(t)xγ with λ = λ(t) > 0 differentiable and λ(T ) = 1. This way at least the
terminal condition holds. If this is indeed a solution then (using it in HJB) we have

λ′(t) + sup
u

󰀗
1

2
σ2u2γ(γ − 1) + (µ− r)γu+ rγ

󰀘
λ(t) = 0 ∀t ∈ [0, T ) , λ(T ) = 1 .

since xγ > 0 for x > 0 and thus we were allowed to divide by this. Moreover we can
calculate the supremum by observing that it is quadratic in u with negative leading
term (γ − 1)γ < 0. Thus it is maximized when u∗ = µ−r

σ2(1−γ)
. The maximum itself is

β(t) :=
1

2
σ2(u∗)2γ(γ − 1) + (µ− r)γu∗ + rγ .

Thus

λ′(t) = −β(t)λ(t) , λ(T ) = 1 =⇒ λ(t) = exp

󰀕󰁝 T

t
β(s) ds

󰀖
.

Thus we think that the value function and the optimal control are

v(t, x) = exp

󰀕󰁝 T

t
β(s) ds

󰀖
xγ and u∗ =

µ− r

σ2(1− γ)
.

This now needs to be verified using Theorem 4.11. We’ve already carried out the
maximization and found that u∗(t, x) = µ−r

σ2(1−γ)
is a constant and hence it’s clearly

measurable. Hence i) in Theorem 4.11 is satisfied.

Next, we note that the SDE for X∗ always has a solution since plugging in the u∗

we have an SDE with linear coefficients (thus Lipschitz) and Proposition 3.2 provides
existence of unique solution. Hence ii) in Theorem 4.11 is satisfied.
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Finally, we would like to check that t 󰀁→
󰁕 t
0 ∂xv(s,X

∗
s )X

∗
su

∗σ dWs is a martingale. We
note that ∂xv(s,X

∗
s ) = γλ(s)(X∗

s )
γ−1. To check that we have martingale it suffices to

show that E
󰁕 T
0 |γλ(s)(X∗

s )
γ−1X∗

su
∗σ|2 dt < ∞. Moreover

E
󰁝 T

0
|γλ(s)(X∗

s )
γ−1X∗

su
∗σ|2 dt ≤ γ2 sup

t∈[0,T ]
λ(t)2(u∗)2σ2E

󰁝 T

0
|(X∗

s )
γ |2 dt .

We see that we have to focus on the moments of (X∗)2γ . At this point we could use
Proposition 3.5 but instead we proceed manually. From Itô’s formula

d(X∗
s )

2γ = 2γ(X∗
s )

2γ−1dX∗
s +

1

2
2γ(2γ − 1)(X∗

s )
γ−2d(X∗

s )d(X
∗
s )

= (X∗
s )

2γ [2γ[u∗(µ− r) + r] ds+ γ(γ − 1)u∗σ dWs] .

We can solve this (like the SDE for geometric brownian motion) and see the solution
is log-normal so it will have 1st and 2nd moment bounded uniformly in t ∈ [0, T ].
Hence

E
󰁝 T

0
|(X∗

s )
γ |2 dt < ∞ .

Hence we verified iii) of Theorem 4.11. Thus v is indeed the value function and u∗ is
indeed the optimal control.

Example 4.13 (1d Linear-quadratic control problem). This example is a classic en-
gineering application. Note that it can be considered in multiple spatial dimensions
but here we focus on the one-dimensional case for simplicity. The multi-dimensional
version is solved using HJB in Exercise 4.15 and also later using Pontryagin optimality
principle, in Example 6.11.

We consider

dXs = [H(s)Xs +M(s)αs] ds+ σ(s)dWs , s ∈ [t, T ] , Xt = x .

Our aim is to maximize

Jα(t, x) := Et,x

󰀗󰁝 T

t
(C(s)X2

s +D(s)α2
s) ds+RX2

T

󰀘
,

where C = C(t) ≤ 0, R ≤ 0 and D = D(t), are given and deterministic and bounded
in t s.t. for some δ > 0 we have D(t) + δ < 0 for all t. The interpretation is the
following: since we are losing money at rate C proportionally to X2, our aim is to
make X2 as small as possible as fast as we can. However controlling X costs us at a
rate D proportionally to the strength of control we apply.

The value function is v(t, x) := supα J
α(t, x).

Let us write down the Bellman PDE (HJB equation) we would expect the value
function to satisfy:

∂tv + sup
a

󰀗
1

2
σ2∂2

xv + [H x+M a]∂xv + C x2 +Da2
󰀘
= 0 on [0, T )× R ,

v(T, x) = Rx2 ∀x ∈ R .

Since the terminal condition is g(x) = Rx2 let us try v(t, x) = S(t)x2 + b(t) for some
differentiable S and b. We re-write the HJB equation in terms of S and b: (omitting
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time dependence in H,M,σ, C and D), for (t, x) ∈ [0, T )× R,

S′(t)x2 + b′(t) + σ2S(t) + 2H S(t)x2 + C x2 + sup
a

󰀅
2M aS(t)x+Da2

󰀆
= 0 ,

S(T ) = R and b(T ) = 0 .

For fixed t and x we can calculate supa[2M(t)aS(t)x+D(t)a2] and hence write down
the optimal control function a∗ = a∗(t, x). Indeed since D < 0 and since the ex-
pression is quadratic in a we know that the maximum is reached with a∗(t, x) =
−(D−1M S)(t)x.

We substitute a∗ back in to obtain ODEs for S = S(t) and b = b(t) from the HJB
equation. Hence

󰀅
S′(t) + 2H S(t) + C −D−1M2S2(t)

󰀆
x2 + b′(t) + σ2S(t) = 0 ,

S(T ) = R and b(T ) = 0 .

We collect terms in x2 and terms independent of x and conclude that this can hold
only if

S′(t) = D−1M2S2(t)− 2H S(t)− C , S(T ) = R

and
b′(t) = −σ2S(t) , b(T ) = 0 .

The ODE for S is the Riccati equation which has unique solution for S(T ) = R. We
can obtain the expression for b = b(t) by simply integrating:

b(T )− b(t) = −
󰁝 T

t
σ2(r)S(r) dr .

Then

α∗(t, x) = −(D−1MS)(t)x and v(t, x) = S(t)x2 +

󰁝 T

t
σ2(r)S(r) dr . (4.8)

We’ll do verification in the general multi-dimensional case in Example 4.15.

Exercise 4.14. This is a bit of linear algebra to make reading Example 4.15 easier.

1. Let M ∈ Rd×d and x ∈ Rd. Then x⊤M x = x⊤M⊤x.

2. Let M ∈ Rd×d. Show that ∂x[x
⊤Mx] = M⊤x+Mx and if M is symmetric then

∂x[x
⊤Mx] = 2Mx.

3. Let L,M ∈ Rd×d and x ∈ Rd. Show that x⊤L⊤M⊤x = x⊤M Lx.

4. Let L ∈ Rd×d, M ∈ Sd and show that L⊤M +ML is symmetric.

Example 4.15 (Linear-quadratic control problem). This is the multi-dimensional
version and the only additional difficulty is from linear algebra. See also Example 6.11.

We consider an Rd′-valued Wiener process W , Rm-valued controls αs, H = H(t)
taking values in Rd×d and M = M(t) taking values in Rd×m, σ = σ(t) taking values
in Rd×d′ with supt∈[0,T ] |σ(t)| < ∞, x ∈ Rd and a controlled SDE

dXs = [H(s)Xs +M(s)αs] ds+ σ(s)dWs , s ∈ [t, T ] , Xt = x .
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Our aim is to minimize, for any (t, x) ∈ [0, T ]× Rd the objective

Jα(t, x) := Et,x

󰀗󰁝 T

t

󰀅
X⊤

s C(s)Xs + α⊤
s D(s)αs) ds+X⊤

T RXT

󰀘
,

over square integrable, adapted controls processes α, where C = C(t), D = D(t), R,
are given, symmetric, measurable, deterministic and bounded in t. For any x ∈ Rd

and t ∈ [0, T ] we have x⊤Cx ≥ 0, x⊤Rx ≥ 0. Moreover, there is δ > 0 such that for
all a ∈ Rm and t ∈ [0, T ] we have a⊤D(t)a ≥ δ.

The value function is v(t, x) := infα J
α(t, x) since we’re minimizing.

Let us write down the Bellman PDE (HJB equation) we would expect the value
function to satisfy:

∂tv + inf
a∈Rm

󰀗
1

2
tr
󰀅
σσ⊤∂2

xv] + [x⊤H⊤ + a⊤M⊤]∂xv + x⊤C x+ a⊤Da

󰀘
= 0 on [0, T )× Rd ,

v(T, x) = x⊤Rx ∀x ∈ Rd .

Since the terminal condition is g(x) = x⊤Rx let us try v(t, x) = x⊤S(t)x + b(t)
for some S ∈ C1([0, T ]; Sd≥0) and b ∈ C1([0, T ];R).8 We are asking for S(t) to be
symmetric and positive definite for all t which makes sense as that’s the form of the
terminal condition. Note that this means that ∂xv = 2S(t)x. We re-write the HJB
equation in terms of S and b: (omitting time dependence in S, b,H,M,σ, C and D),
for (t, x) ∈ [0, T )× R,

x⊤S′x+ b′ + tr[σσ⊤S] + x⊤2H⊤S x+ x⊤C x+ inf
a∈Rm

󰁫
2a⊤M⊤S x+ a⊤Da

󰁬
= 0 ,

S(T ) = R and b(T ) = 0 .

For fixed t and x we can calculate infa[a
⊤M⊤(S⊤+S)x+ a⊤Da] using the first order

condition
0 = 2M⊤Sx+ 2Da

and hence write down the optimal control function a∗ = a∗(t, x). Indeed, since D
is invertible and since the expression is convex in a we know that the minimum is
reached with a∗(t, x) = −(D−1M⊤ S)(t)x.

Note that (a∗)⊤ = −x⊤SMD−1 and so

2(a∗)⊤M⊤S x = −2x⊤SMD−1M⊤S x

and
(a∗)⊤Da = (a∗)⊤ = x⊤SMD−1M⊤ S x .

Thus
inf
a
[a⊤M⊤(S⊤ + S)x+ a⊤Da] = −x⊤SMD−1M⊤S x.

Substituting back into the HJB and using 2H⊤S = H⊤(S⊤ + S) and x⊤H⊤Sx =
x⊤H⊤S⊤x = x⊤S H x we get

x⊤S′x+ b′ + tr[σσ⊤S] + x⊤(H⊤S + S H)x+ x⊤C x− x⊤SMD−1M⊤S x = 0 .

8Sd
≥0 := {M ∈ Rd×d : ∀i, j = 1, . . . , d we have Mij = Mji and ∀x ∈ Rd we have x⊤Mx ≥ 0}.
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Collecting terms we thus get ODEs for S = S(t) and b = b(t) from the HJB equation
as follows

S′(t) = S(t)MD−1M⊤S(t)−H⊤ S(t)− S(t)H − C , S(T ) = R

and
b′(t) = −tr[σσ⊤S(t)] , b(T ) = 0 .

The ODE for S is the Riccati equation which has unique symmetric positive definite
solution for S(T ) = R under our assumptions.9 We can obtain the expression for
b = b(t) by simply integrating:

b(T )− b(t) = −
󰁝 T

t
tr[σσ⊤(r)S(r)] dr .

Thus, in conclusion,

α∗(t, x) = −(D−1M⊤S)(t)x and v(t, x) = x⊤S(t)x+

󰁝 T

t
tr[σσ⊤S](r) dr . (4.9)

It is time to perform verification. We see that the control function is linear in x,
continuous in t and hence jointly continuous and thus measurable. We will now check
conditions of Theorem 4.11. The SDE with the optimal control is

dX∗
s = ρ(s)X∗

s ds+ σ(s)dWs , s ∈ [t, T ] , X∗
t = x ,

where ρ := H −D−1M⊤ SM . This is deterministic and bounded in time. The SDE
thus satisfies the Lipschitz conditions and it has a unique strong solution for any t, x.

Since ∂xv(r,X
∗
r ) = 2S(r)X∗

s , since supr∈[t,T ] S
2(r) is bounded (continuous function on

a closed interval), supr∈[t,T ] |σ(r)|2 < ∞ by assumption and since supr∈[t,T ] E[|X∗
r |2] <

∞ (moment estimate for SDEs with Lipschitz coefficients) we get

E
󰁝 T

t
|S(r)|2|X∗

s |2|σ(r)|2 dr < ∞

and thus conclude that s 󰀁→
󰁕 s
t (S(r)X

∗
r )

⊤σ(r) dWr is a martingale. Thus The-
orem 4.11 tells us that the value function and control given by (4.9) are indeed optimal.

4.4 Policy Improvement Algorithm

As in the controlled Markov chain case (see Section 2.3) one can solve the control
problem using the policy improvement algorithm, stated below.

9 We can see the symmetry of the solution by considering a Picard iteration; we know that at least
locally the solution is a limit of Picard iteration procedure. We have S(T ) = R symmetric. Then if
the previous iterate is symmetric then the ODE right-hand-side is also symmetric which means that
the new value obtained by Picard iteration is also symmetric.

An important point is that H⊤S + SH is symmetric when S is symmetric (but H doesn’t need to
be). If we didn’t do the substitution 2x⊤H⊤Sx = x⊤(H⊤S + SH)x earlier we would have been left
with 2H⊤S in the equation and H⊤S is only symmetric if H is itself symmetric. In that case the
solution of the quadratic equation wouldn’t have been symmetric.
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Algorithm 1 Policy improvement algorithm:

Initialisation: make a guess of the control a0 = a0(t, x).
while difference between vn+1 and vn is large do

Given a control an = an(t, x) solve the linear PDE

∂tv
n +

1

2
tr(σσ⊤D2

xv
n) + ba

n
Dxv

n + fan = 0 on [0, T )× Rd ,

vn(T, ·) = g on x ∈ Rd .
(4.10)

Update the control

an+1(t, x) ∈ argmax
a∈A

[(baDxv
n + fa) (t, x)] . (4.11)

end while
return vn, an+1.

Of course to solve the linear PDE one would need to employ a numerical methods (e.g.
finite differences). Convergence and rate of convergence of the policy improvement
algorithm can be found e.g. in [11] and in references there.

4.5 Exercises

Exercise 4.16 (Optimal liquidation with no permanent market impact). Solve the
optimal liquidation problem of Section 1.3 in the case λ = 0 (i.e. there is no permanent
price impact of our trading on the market price).

Exercise 4.17 (Unattainable optimizer). Here is a simple example in which no op-
timal control exists, in a finite horizon setting, T ∈ (0,∞). Suppose that the state
equation is

dXs = αs ds+ dWs s ∈ [t, T ] , Xt = x ∈ R.

A control α is admissible (α ∈ A) if: α takes values in R, is (Ft)t∈[0,T ]-adapted, and

E
󰁕 T
0 α2

s ds < ∞ .

Let J(t, x,α) := E[|Xt,x,α
T |2]. The value function is v(t, x) := infα∈A J(t, x,α). Clearly

v(t, x) ≥ 0.

i) Show that for any t ∈ [0, T ], x ∈ R, α ∈ A we have E[|Xt,x,α
T |2] < ∞.

ii) Show that if αt := −cXt for some constant c ∈ (0,∞) then α ∈ A and

Jα(t, x) = JcX(t, x) =
1

2c
− 1− 2cx2

2c
e−2c(T−t).

Hint: with such an α, the process X is an Ornstein-Uhlenbeck process, see Exer-
cise 1.16.

iii) Conclude that v(t, x) = 0 for all t ∈ [0, T ), x ∈ R.

iv) Show that there is no α ∈ A such that J(t, x,α) = 0. Hint: Suppose that there
is such a α and show that this leads to a contradiction.
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v) The associated HJB equation is

∂tv + inf
a∈R

󰁱1

2
∂xxv + a∂xv

󰁲
= 0, on [0, T )× R.

v(T, x) = x2 .

Show that there is no value α ∈ R for which the infimum is attained.

Conclusions from Exercise 4.17: The value function v(t, x) = infα∈A J(t, x,α) sat-
isfies v(t, x) = 0 for all (t, x) ∈ [0, T ] × R but there is no admissible control α which
attains the v (i.e. there is no α∗ ∈ A such that v(t, x) = J(t, x,α∗)).

The goal in this problem is to bring the state process as close as possible to zero at the
terminal time T . However, as defined above, there is no cost of actually controlling
the system. We can set α arbitrarily large without any negative consequences. From
a modelling standpoint, there is often a trade-off between costs incurred in applying
control and our overall objective. Compare this with Example 4.15.

Exercise 4.18 (Merton problem with exponential utility and no consumption). We
return to the portfolio optimization problem, see Section 1.2. Unlike in Example 4.12
we consider the utility function g(x) := −e−γx, γ > 0 a constant. We will also take
r = 0 for simplicity and assume there is no consumption (C = 0). With Xt denoting
the wealth at time time t we have the value function given by

v(t, x) = sup
π∈U

E
󰁫
g
󰀓
Xπ,t,x,

T

󰀔󰁬
.

i) Write down the expression for the wealth process in terms of π, the amount of
wealth invested in the risky asset and with r = 0, C = 0.

ii) Write down the HJB equation associated to the optimal control problem. Solve
the HJB equation by inspecting the terminal condition and thus suggesting a
possible form for the solution. Write down the optimal control explicitly.

iii) Use verification theorem to show that the solution and control obtained in previ-
ous step are indeed the value function and optimal control.

Exercise 4.19 ([17]*p252, Prob. 4.8). Solve the problem

max
ν

E
󰀅
−

󰁝 T

0
ν2(t)

e−X(t)

2
dt+ eX(T )

󰀆
,

where ν takes values in R, subject to dX(t) = ν(t)e−X(t) dt+σ dW (t), X(0) = x0 ∈ R,
σ ∈ (0,∞), σ, x0 are fixed numbers.

Hint: Try a solution of the HJB equation of the form v(t, x) = φ(t)ex + ψ(t).

For more exercises, see [17, Exercise 4.13, 4.14, 4.15].

4.6 Solutions to Exercises

Solution (to Exercise 4.8). First part: Clearly

|Xt,x
s′ −Xt,x

s |2m ≤ 2m+1

󰀏󰀏󰀏󰀏󰀏

󰁝 s′

s

b(Xu) du

󰀏󰀏󰀏󰀏󰀏

2m

+ 2m+1

󰀏󰀏󰀏󰀏󰀏

󰁝 s′

s

σ(Xu) dWu

󰀏󰀏󰀏󰀏󰀏

2m

.
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From Hölder’s inequality we have
󰀏󰀏󰀏󰀏󰀏

󰁝 s′

s

b(Xu) du

󰀏󰀏󰀏󰀏󰀏

2m

≤ (s′ − s)m
󰀕󰁝 T

t

|b(Xu)|2 du
󰀖m

≤ (s′ − s)m
󰀕󰁝 T

t

K2 du

󰀖m

≤ TmK2m(s′ − s)m .

From the Burkholder–Davis–Gundy inequality, Hölder’s inequality and then with the growth assump-
tion and moment bound

E

󰀥󰀏󰀏󰀏󰀏󰀏

󰁝 s′

s

σ(Xu) dWu

󰀏󰀏󰀏󰀏󰀏

2m󰀦
≤ E

󰀥
sup

s≤r≤s′

󰀏󰀏󰀏󰀏
󰁝 r

s

σ(Xu) dWu

󰀏󰀏󰀏󰀏
2m

󰀦
≤ cmE

󰀥󰀣󰁝 s′

s

|σ(Xu)|2 du
󰀤m󰀦

≤ cmE

󰀥󰀣󰁝 s′

s

1
m

m−1 du

󰀤m−1 󰀣󰁝 s′

s

|σ(Xu)|2m du

󰀤󰀦

≤ cm(s′ − s)m−1

󰀣󰁝 s′

s

K2m du

󰀤
≤ cmK2m|s′ − s|m .

Altogether
E|Xt,x

s′ −Xt,x
s |2m ≤ K2m(Tm + cm)|s′ − s|m ,

where cm is the constant from the Burkholder–Davis–Gundy inequality.

Second part: Using the meaning of α,β from Theorem A.25 we have α = m− 1 and β = 2m so there
is a version of X which satisfies that there is a r.v. C(ω) > 0 such that for a.a. ω, any x and any
t ≤ s ≤ s′ ≤ T that

|Xt,x
s′ (ω)−Xt,x

s (ω)| ≤ C(ω)|s′ − s|δ

with δ ∈ (0, m−1
2m

). That is we get 1
2
− ε Hölder continuity for any ε > 0.

Solution (to Exercise 4.9). Assume, that there is (t, x) ∈ [0, T ] × Rd such that h(t, x) > 0. Then
there is ε > 0 such that h(t, x) > 2ε > 0. By continuity of h there is δ > 0 so that

|h(s, y)− h(t, x)| < ε ∀(s, y) ∈ [t, t+ δ)×Bδ(x) .

Let
τ := inf{s ≥ t : |Xt,x

s − x| ≥ δ} and τ̂ := (t+ δ) ∧ τ .

Then for all s ∈ [t, τ̂) we have h(s,Xt,x
s ) > ε. Hence

󰁝 τ̂

t

h(s,Xs) ds >

󰁝 τ̂

t

ε ds = ε(τ̂ − t) .

Note that from Exercise 4.8 we have that δ = |x − Xτ | ≤ C|τ − t|γ and so
󰀃

δ
C

󰀄1/γ ≤ τ − t. Hence

τ̂ − t ≥ δ ∧
󰀃

δ
C

󰀄1/γ ≥
󰀃

δ
C

󰀄1/γ
if we assume δ < 1 and C > 1.

󰁝 τ

t

h(s,Xt,x
s ) ds > ε(τ̂ − t) > 0,

is a contradiction. This implies that h(t, x) ≤ 0.

Solution (to Exercise 4.10). From Exercise 4.8 we have that δ = |x−Xt,x,α
τ | ≤ C(τ t,x,α − t)γ . Here

C = C(ω) but does not depend on α, only on the bound K. Hence

inf
α

E[τ t,x,α − t] ≥ E
󰁫󰀃

δ
C

󰀄1/γ󰁬
> 0,

since an integral over a random variable which is strictly positive must be strictly positive.

Solution (to Exercise 4.14). 1.

x⊤M x =
󰁛

i,j

xiMijxj =
󰁛

i,j

xi(M
⊤)jixj =

󰁛

i,j

xj(M
⊤)jixi = x⊤M⊤x .

2. Let I ∈ Rd×d be the identity matrix. Then

∂xi [x
⊤Mx] = ∂xi

󰁫󰁛

j,k

xjMjkxk

󰁬
=

󰁛

j,k

xjMjkIik +
󰁛

j,k

IjiMjkxk =
󰁛

j

xjMji +
󰁛

k

Mikxk

=
󰁛

j

(M⊤)ijxj +
󰁛

k

Mikxk = (M⊤x+Mx)i .

If M = M⊤ then we get ∂xi [x
⊤Mx] = 2(Mx)i.
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3. From part 1. we have

x⊤L⊤M⊤x = x⊤(L⊤M⊤)⊤x = x⊤MLx .

4. We have M = M⊤. Then

(L⊤M +ML)⊤ = (L⊤M +ML)⊤ = M⊤L+ L⊤M = L⊤M +ML .

Solution (to Exercise 4.16). Recall that we have: the inventory process:

dQu = −αu du with Qt = q > 0 initial inventory

and the asset price, an R-valued process:

dSu = −λαu du+ σ dWu , St = S .

Moreover the temporary price impact means that the execution price is

Ŝt = St − καt .

Here λ ≥ 0,σ ≥ 0 and κ ≥ 0 are constant. For given T > 0, θ > 0 we wish to maximize (over adapted,
square integrable trading strategies α), the expected amount gained in sales, whilst penalising the
terminal inventory (with θ > 0):

J(t, q, S,α) := E
󰀗 󰁝 T

t

󰁫
St,S,α
u αu − κα2

u

󰁬
du+Qt,q,α

T St,S,α
T − θ |Qt,q,α

T |2
󰀘
.

The goal is to find
V (t, q, S) := sup

α
J(t, q, S,α) .

From Theorem 4.7 we can write down the HJB equation for V = V (t, S, q). To do that we have
to figure out what the “drift” and “diffusion” coefficients are for this problem. We effectively have
x = (q, S), in the notation of Theorem 4.7 we have d = 2, d′ = 1 and the drift is

(a, t, q, S) = (a, t, x) 󰀁→ ba(t, x) =

󰀕
−a
−λa

󰀖

while the diffusion matrix10 is

(a, t, q, S) = (a, t, x) 󰀁→ σa(t, x) =

󰀕
0
σ

󰀖
.

Note that

σa(σa)⊤ =

󰀕
0 0
0 σ2

󰀖

and so
LaV (t, q, S) = 1

2
σ2∂SSV (t, q, S)− a∂qV (t, q, S)− λa∂SV (t, q, S) .

Finally we note that the “running gain” is

fa(t, x) = fa(t, q, S) = (S − κa)a .

Hence, in our case when λ = 0, the HJB equation is

∂Vt +
1

2
σ2∂SSV + sup

a∈A
{(S − κa)a− a∂qV } = 0 on [0, T )× R× R , (4.12)

with the terminal condition

V (T, q, S) = qS − θq2 ∀(q, S) ∈ R× R . (4.13)

Next we note that

a 󰀁→ (S − ∂qV )a− κa2 attains its maximum with a∗ =
S − ∂qV

2κ
.

Hence the HJB equation (4.12) becomes

∂Vt +
1

2
σ2∂SSV +

1

4κ
(S − ∂qV )2 = 0 on [0, T )× R× R . (4.14)

10One has to be careful to distinguish the constant σ and the diffusion coefficient which is a matrix-
valued function σa
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We now have to “guess” an ansatz for V and, observing the similarities here with the linear-quadratic
case of Example 4.15, we try

V (t, q, S) = β(t)qS + γ(t)q2 .

With β(T ) = 1 and γ(T ) = −θ we have the terminal condition (4.13) satisfied. To proceed we
calculate the partial derivatives of V and substitute those into the HJB (4.14) to obtain

β′(t)qS + γ′(t)q2 +
1

4κ

󰀅
S − β(t)S + 2γ(t)q

󰀆2
= 0 ∀(t, q, S) ∈ [0, T )× R× R . (4.15)

This is equivalently

β′(t)qS + γ′(t)q2

+
1

4κ

󰀅
S2 − 2β(t)S2 − 4γ(t)qS + β(t)2S2 + 4β(t)γ(t)qS + 4γ(t)2q2

󰀆

=0 ∀(t, q, S) ∈ [0, T )× R× R .

This has to hold for all S2, q2 and qS. Starting with S2 terms we get that

1− 2β(t) + β(t)2 = 0 ∀t ∈ [0, T )

which can only be true if β(t) = 1 (since β(T ) must be 1 and we need β differentiable). Considering
now the qS term we have (β′(t) = 0 since we now have β(t) = 1):

−4γ(t) + 4γ(t) = 0 ∀t ∈ [0, T )

which holds regardless of choice of γ. Finally we have the q2 terms which lead to

γ′(t) +
1

κ
γ(t)2 = 0 ∀t ∈ [0, T ) .

We recall the terminal condition γ(T ) = −θ and solve this ODE11 thus obtaining

γ(t) = −
󰀕
1

θ
+

1

κ
(T − t)

󰀖−1

.

This fully determines the value function

V (t, q, S) = qS + γ(t)q2

and the optimal control

a∗(t, q, S) = − 1

κ
γ(t)q .

We note that the optimal control is independent of S and in fact the entire control problem does not
depend on the volatility parameter σ.

Solution (to Exercise 4.17).

i) We use the fact that E
󰁕 T

0
α2
r dr < ∞ for admissible control. We also use that (a+b)2 ≤ 2a2+2b2.

Then for, any s ∈ [t, T ],

E[X2
s ] ≤ 4x2 + 4E

󰀕󰁝 s

t

αr dr

󰀖2

+ 2E(Ws −Wt)
2 .

With Hölder’s inequality we get

E[X2
s ] ≤ 4x2 + 4(s− t)E

󰁝 s

t

α2
r dr + 2(s− t) ≤ cT

󰀕
1 + x2 + E

󰁝 T

0

α2
r dr

󰀖
< ∞ . (4.16)

ii) Substitute αs = −cXs. The Ornstein-Uhlenbeck SDE, see Exercise 1.16, has solution

XT = e−c(T−t)x+

󰁝 T

t

e−c(T−r) dWr .

We square this, take expectation (noting that the integrand in the stochastic integral is determ-
inistic and square integrable):

EX2
T = e−2c(T−t)x2 + E

󰀕󰁝 T

t

e−c(T−r) dWr

󰀖2

.

11 You can for instance recall that if f(t) = − 1
t
then f ′(t) = 1

t2
and so f ′(t) = f(t)2. Manipulating

expressions of this type can lead you to the correct solution.
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With Itô’s isometry we get

EX2
T = e−2c(T−t)x2 +

󰁝 T

t

e−2c(T−r) dr .

Now we just need to integrate to obtain Jα(t, x) = JcX(t, x) = EX2
T .

iii) We know that v(t, x) ≥ 0 already. Moreover

v(t, x) = inf
α∈U

Jα(t, x) ≤ lim
c↗∞

JcX(t, x) = lim
c↗∞

󰀗
1

2c
− 1− 2cx2

2c
e−2c(T−t)

󰀘
= 0 .

iv) Assume that an optimal α∗ ∈ A exists so that E[Xα∗,t,x
T ] = Jα∗

(t, x) = 0 for any t < T and any
x. We will show this leads to contradiction.

First of all, we can calculate using Itô formula that

d|X∗
s |2 = 2X∗

sα
∗
s ds+ 2X∗

s dWs + ds .

Hence

0 = E[(X∗
T )

2] = x2 + E
󰁝 T

t

(2X∗
sα

∗
s + 1) ds+ 2E

󰁝 T

t

X∗
s dWs .

But since α∗ is admissible we have
󰁕 T

t
E(X∗

s )
2 ds < ∞ due to (4.16). This means that the

stochastic integral is a martingale and hence its expectation is zero. We now use Fatou’s lemma
and take the limit as t ↗ T . Then

−x2 = 2 lim inf
t↗T

E
󰁝 T

t

(X∗
sα

∗
s + 1) ds ≥ 2E

󰀗
lim inf
t↗T

󰁝 T

t

(X∗
sα

∗
s + 1) ds

󰀘
= 0 .

So −x2 ≥ 0. This cannot hold for all x ∈ R and so we have contradiction.

v) If ∂xv(t, x) ∕= 0, then a = ±∞. If ∂xV (t, x) = 0, then a is undefined. One way or another there
is no real number attaining the infimum.

Solution (to Exercise 4.18). The wealth process (with the control expressed as π, the amount of
wealth invested in the risky asset and with r = 0, C = 0), is given by

dXs = πsµds+ πsσ dWs , s ∈ [t, T ] , Xt = x > 0 . (4.17)

The associated HJB equation is

∂tv + sup
p∈R

󰀗
1

2
p2σ2∂xxv + p µ ∂xv

󰀘
= 0 on [0, T )× R,

v(T, x) = g(x) ∀x ∈ R .

We make a guess that v(t, x) = λ(t)g(x) = −λ(t)e−γx for some differentiable function λ = λ(t) ≥ 0.
Since we can factor out the non-negative λ(t)e−γx we get

−λ′(t)e−γx + sup
p∈R

󰀗
−1

2
p2σ2γ2 + p µ γ

󰀘
λ(t)e−γx = 0 on [0, T )× R, λ(T ) = 1.

We can divide by e−γx ∕= 0 the HJB equation will hold provided that

−λ′(t) + sup
p∈R

󰀗
−1

2
p2σ2γ2 + p µ γ

󰀘
λ(t) = 0 on [0, T ), λ(T ) = 1.

The supremum is attained for p∗ = µ
σ2γ

since the expression we are maximizing is quadratic in p with

negative leading order term. Thus λ′(t) = βλ(t) and λ(T ) = 1 with

β := − 1
2
(p∗)2σ2γ2 + p∗ µ γ = 1

2
µ2

σ2 .

We can solve the ODE for λ to obtain

λ(t) = e−β(T−t)

and hence our candidate value function and control are

v(t, x) = −e−
1
2

µ2

σ2 (T−t)e−γx and p∗ =
µ

σ2γ
.
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We now need to use Theorem 4.11 to be able to confirm that these are indeed the value function and
optimal control.

First of all the solution for optimal X∗ always exists since we just need to integrate in the expres-
sion (4.17) taking πt := p∗. We note that the resulting process is Gaussian.

Now ∂xv(s,X
∗
s ) = λ(t) γe−γX∗

s . We can now use what we know about moment generating functions
of normal random variables to conclude that

󰁝 T

t

λ(s)2 e−2γX∗
s ds < ∞.

The process

t̄ 󰀁→
󰁝 t̄

t

λ(s) e−γX∗
s dWs

is thus a true martingale and the verification is complete.

Solution (to Exercise 4.19).

ψ(t) = 0, φ(t) =
σ2

Ceσ2t/2 − 1
, C = (1 + σ2)e−σ2T/2.

5 Applications in algorithmic trading and market making

In this section we extend results from Section 4 (Bellman principle aka DPP and the
Hamilton–Jacobi–Bellman equation) to the simplest possible jump-diffusion setting.
This will allow us to talk about controlled counting processes (integer valued) which
is useful for modelling algorithmic trading and market making problems. Those who
find this interesting can find lot more applications and details in [4].

5.1 Poisson process with controlled jump intensity

A stochastic process (Nt)t≥0 is a homogenous Poisson process with intensity λ > 0 if
the following conditions hold true.

1. N0 = 0, Nt ∈ Z and for any s ≤ t we have Ns ≤ Nt.

2. It has independent increments: for t1 ≤ t2 ≤ t3 ≤ t4 the random variables
Nt4 −Nt3 is independent of Nt2 −Nt1 .

3. For any t ≥ 0 and δ > 0 we have

P(Nt+δ −Nt = n) =
(λδ)n

n!
e−λδ , n ∈ {0} ∪ N .

We see that in any infinitesimally small interval [t, t+ dt) the process either stays at
a given value (level) or jumps up with a jump size 1 (so it stays integer-valued and
increasing as per point 1). We can write P(Nt+dt = n + 1|Nt = n) = λ dt. It can be
shown that the process has a “cadlag”12 modification, that is there is a modification
which is continuous from the right (i.e. limδ↘0Nt+δ = Nt) with left-hand limits (i.e.
limδ↘0Nt−δ exists and we call the limit Nt−).

Condition 3. says that the increment Nt+δ − Nt is distributed as Poisson random
variable with intensity λδ. This implies that E

󰀅
Nt+δ − Nt

󰀆
= λδ which in turn,

together with condition 2. implies that the process (N̂t)t≥0 defined N̂t := Nt − λt is a
martingale.

12It stands for continue à droite et limite gauche i.e. right continuous with left hand limits.
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We also see that the process is generating a sequence of jump times (τi)
∞
i=1 and that

τi+1 − τi ∼ Exp(λ).

Recall that for any process the infinitesimal generator is the operator which takes a
bounded measurable function f and outputs

(Lf)(k) := lim
δ↘0

1

δ
E [f(Nt+δ)− f(Nt)|Nt = k] .

For the homogenous Poisson process with intensity λ > 0 this can be calculated as
follows. First note that

E [f(Nt+δ)− f(Nt)|Nt = k] =

∞󰁛

n=0

(λδ)n

n!
e−λδ

󰀃
f(k + n)− f(k)

󰀄

= e−λδλδ
󰀃
f(k + 1)− f(k)

󰀄
+ e−λδ

∞󰁛

n=2

(λδ)n

n!

󰀃
f(k + n)− f(k)

󰀄
.

We trivially see that

1

δ
e−λδλδ

󰀃
f(k + 1)− f(k)

󰀄
→ λ

󰀃
f(k + 1)− f(k)

󰀄
as δ ↘ 0 .

What remains is to consider

Iδ :=

󰀏󰀏󰀏󰀏e
−λδ

∞󰁛

n=2

(λδ)n

n!

󰀃
f(k + n)− f(k)

󰀄󰀏󰀏󰀏󰀏 ≤ 2󰀂f󰀂∞e−λδ

󰀕 ∞󰁛

n=0

(λδ)n

n!
− 1− λδ

󰀖

= 2󰀂f󰀂∞e−λδ(eλδ − 1− λδ) ,

where in the last equality we recongized the Taylor series expansion of the exponential
function. Using Taylor’s theorem again we see that

2󰀂f󰀂∞e−λδ(eλδ−1−λδ) = 2󰀂f󰀂∞e−λδ

󰁝 λδ

0
ey(λδ−y) dy ≤ 2󰀂f󰀂∞e−λδ

󰁝 λδ

0
eλδ(λδ−y) dy = λ2󰀂f󰀂∞δ2 .

Hence 1
δ Iδ → 0 as δ ↘ 0 and hence

(Lf)(k) = λ
󰀃
f(k + 1)− f(k)

󰀄

is the infinitesimal generator for a homogenous Poisson process with intensity λ > 0.

Let’s now have a look at what an Itô formula might look like for this pure jump
process for a function f = f(t, k) which is bounded, measurable and continuously
differentiable in t. First let us note that f(t,Nt+δ)− f(t,Nt) converges to either 0 if
∆Nt := Nt −Nt− = 0 or to f(t,Nt− + 1)− f(Nt−) if ∆Nt = 1. Next note that from
Taylor’s theorem applied to the time component we get

f(t+ δ, Nt+δ)− f(t,Nt−) = f(t+ δ, Nt+δ)− f(t,Nt+δ) + f(t,Nt+δ)− f(t,Nt−)

= f(t,Nt+δ)− f(t,Nt−) + (∂tf)(t,Nt+δ)δ +
1
2(∂

2
t f)(t,Nt+δ)δ

2 + · · ·

Given T > 0 and M ∈ N we take δ = T/N and get

f(T,NT )− f(0, N0) =

M󰁛

n=1

f(nδ, Nnδ)− f((n− 1)δ, N(n−1)δ−)

=

M󰁛

n=1

f((n− 1)δ, Nnδ)− f((n− 1)δ, N(n−1)δ−) +
M󰁛

n=1

(∂tf)((n− 1)δ, Nnδ)δ

+ δ

M󰁛

n=1

1
2(∂

2
t f)((n− 1)δ, Nnδ)δ + · · · .
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Taking the limit as M → ∞ we get

f(T,NT )− f(0, N0) =
󰁛

∆Nt>0 , 0≤t≤T

󰀃
f(t,Nt)− f(t,Nt−)

󰀄
+

󰁝 T

0
(∂tf)(t,Nt) dt .

We will write

󰁛

∆Nt>0 , 0≤t≤T

󰀃
f(t,Nt)− f(t,Nt−)

󰀄
=

󰁝 T

0

󰀃
f(t,Nt− + 1)− f(t,Nt−)

󰀄
dNt .

At first glance the above doesn’t look like the Itô formula we’re used to. We expect
to see

f(T,XT )−f(0, X0) =

󰁝 T

0
(∂t+“infinitesimal generator of X”)f(t,Xt) dt+“local martingale term” .

But in fact we can write the above in this way by recalling that dN̂t = dNt − λ dt:

f(T,NT )− f(0, N0) =

󰁝 T

0

󰀃
f(t,Nt− + 1)− f(t,Nt−)

󰀄
dNt +

󰁝 T

0
(∂tf)(t,Nt) dt

=

󰁝 T

0

󰀃
f(t,Nt− + 1)− f(t,Nt−)

󰀄
dN̂t +

󰁝 T

0

󰀃
f(t,Nt− + 1)− f(t,Nt−)

󰀄
λ dt+

󰁝 T

0
(∂tf)(t,Nt) dt

and so

f(T,NT )− f(0, N0) =

󰁝 T

0
(∂tf + Lf)(t,Nt) dt+

󰁝 T

0

󰀃
f(t,Nt− + 1)− f(t,Nt−)

󰀄
dN̂t .

Let us move away from λ > 0 constant and allow the intensity to be itself a stochastic
process (λt)t≥0 adapted to some filtration (Ft)t≥0. A stochastic process (Nt)t≥0 is
called doubly stochastic Poisson process (or a Cox process) with stochastic intensity
(λt)t≥0 if the following conditions hold true.

1. N0 = 0, Nt ∈ Z and for any s ≤ t we have Ns ≤ Nt.

2. It has independent increments: for t1 ≤ t2 the random variable Nt2 − Nt1 is
independent of Ft1−.

3. For any t ≥ 0 and δ > 0 we have

P(Nt+δ −Nt = n) =
Λ(t, t+ δ)n

n!
e−Λ(t,t+δ) , n ∈ {0} ∪ N ,

where

Λ(t, t+ δ) :=

󰁝 t+δ

t
λs ds

We can write the last condition as P(Nt−+dt − Nt− > 0) = λt− dt. Again we define

N̂t := Nt −
󰁕 t
0 λs ds and note that (N̂t)t≥0 is a martingale.

We can carry out similar analysis to what we’ve done in the case of constant intensity.
In particular it would be possible to prove the following Itô formula:
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Lemma 5.1. Let N = (Nt)t≥0 be a doubly stochastic Poisson process with intensity
(λt)t≥0. Let f = f(t, k) be a measurable function which is continuously differentiable
in t. Then

f(T,NT )− f(0, N0) =

󰁝 T

0
(∂tf +Ltf)(t,Nt) dt+

󰁝 T

0

󰀃
f(t,Nt− + 1)− f(t,Nt−)

󰀄
dN̂t ,

where (Ltf)(t, k) = λt

󰀃
f(t, k + 1)− f(t, k)

󰀄
.

Note that while (Nt)t≥0 has finite variation it has quadratic variation equal to itself
so dNt dNt = dNt and dt dNt = dNt dt = 0. Moreover if W is a Wiener process
independent of (Nt)t≥0 then dWt dNt = dNt dWt = 0.

Theorem 5.2. Let X = (Xt)t≥0 be an Rd-valued process given by

dXt = αt dt+ βt dWt + γtdNt ,

where (αt)t≥0 is Rd-valued, (βt)t≥0 is Rd×d′-valued, (Wt)t≥0 is an Rd′-valued Wiener
process, (γt)t≥0 is Rd×p-valued and (Nt)t≥0 is Rp-valued Poisson process with in-
tensities (λt)t≥0 that are Rp-valued. Let dXc

t = αt dt + βt dWt. Then for f ∈
C1,2([0,∞)× Rd) we have

df(t,Xt) = ∂tf(t,Xt) dt+

d󰁛

i=1

∂xif(t,Xt)d(X
c)it +

1

2

d󰁛

i,j=1

∂xixjf(t,Xt) d(X
c)it d(X

c)jt

+

p󰁛

j=1

󰀓
f(t,Xt− + γ·jt )− f(t,Xt−)

󰀔
dN j

t .

Here γ·jt denotes the j-th column vector (in Rd) of the matrix γt.

Example 5.3. Let us consider

dXt = Xt

󰀓
µdt+ σdWt + κ(dNu

t − dNd
t )
󰀔
, X0 = x > 0 ∈ R

µ, σ, κ ∈ (0, 1) and λ > 0 real constants with Nu and Nd two independent Poisson
processes with intensity λ. Let Nt = Nu

t −Nd
t . Then by the Itô formula (Theorem 5.2)

we have (ignoring for now that x 󰀁→ ln(x) isn’t C2(R))

d ln(Xt) =
1

Xt
Xt(µdt+ σ dWt)−

1

2

1

X2
t

σ2X2
t dWt dWt + (ln(Xt)− ln(Xt−) dNt

= (µ− 1
2σ

2) dt+ σ dWt

+
󰀓
ln(Xt + κXt)− ln(Xt)

󰀔
dNu

t +
󰀓
ln(Xt − κXt)− ln(Xt)

󰀔
dNd

t

= (µ− 1
2σ

2) dt+ σ dWt + ln
󰀓
Xt+κXt

Xt

󰀔
dNu

t + ln
󰀓
Xt−κXt

Xt

󰀔
dNd

t

= (µ− 1
2σ

2) dt+ σ dWt + ln(1 + κ) dNu
t + ln(1− κ) dNd

t .

Hence

lnXt − ln(X0) = (µ− 1
2σ

2)t+ σWt + ln(1 + κ)Nu
t + ln(1− κ)Nd

t

and so
Xt = x exp

󰀓
(µ− 1

2σ
2)t+ σWt + κNu

t − κNd
t

󰀔
,

where κ := ln(1 + κ) > 0 and κ := − ln(1− κ) > 0.

In general we will work with intensities of the form λt = λ(t,Nt−,αt−) where λ =
λ(t, n, a) is a measurable function and α = (αt)t≥0 is some adapted stochastic process
which will play the role of control.
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5.2 Controlled diffusions with jumps

We will now take the doubly stochastic Poisson process introduced in Section 5.1 and
use it drive a controlled diffusion with jumps, building on Section 3.2.

We assume there is a probability space (Ω,F ,P) and a filtration F := (Ft)t∈[0,T ] for
some fixed T > 0.

Assume that A is the space of actions (complete separable metric space or just a
subset of Rm). Admissible controls will be processes α prog. meas. w.r.t. F with
some integrability properties (e.g. m′-moments, this will depend on applications). We
will denote the set of admissible controls by A.

TakeNα to be a d′′-dimensional doubly stochastic Poisson process controlled by α with
intensity λt := λ(t,Nt−,αt−) for some Rd′′-valued measurable function λ = λ(t, n, a).

Let W be a d′-dimensional Wiener process with increments independent of F (so that
it’s a martingale w.r.t. this filtration).

The controlled SDE for Rd-valued X with jumps we wish to consider is

dXt,x,α
s = b(s,Xt,x,α

s ,αs) ds+ σ(s,Xt,x,α
s ,αs) dWs

+ γ(s,Xt,x,α
s ,αs) dN

α
s , s ∈ [t, T ] , Xt,x,α

t = x .
(5.1)

So b : [0, T ]×Rd×A → Rd, σ : [0, T ]×Rd×A → Rd×d′ and γ : [0, T ]×Rd×A → Rd×d′′ .
We shall not go into details on existence and uniqueness of solutions for these equations
like in Section 3.2 as we wish to see the applications.

Assume that we are given reward functions b : [0, T ] × Rd × A → R and g : Rd → R.
Our objective is to maximize

J(t, x,α) = Et,x

󰀗󰁝 T

t
f(s,Xα

s ,αs) ds+ g(Xα
T )

󰀘
, (5.2)

over α ∈ A, subject to Xα solving (5.1). We will also define the value function for
this control problem as

v(t, x) := sup
α∈A

J(t, x,α) . (5.3)

5.3 Bellman principle and Bellman PDE for diffusions with jumps

As we have seen in Section 4 a very useful tools for solving the control problems
and for devising algorithms are the Bellman principle / Dynamic Programming Prin-
ciple (DPP) and the Bellman or Hamilton–Jacobi–Bellman PDE. We will now state,
without proofs, what they are for the case of controlled jump diffusions.

Theorem 5.4 (Bellman principle for controlled jump diffusions). Let appropriate
assumptions on b, σ, γ, f and g hold. Let (t, x) ∈ [0, T ] × Rd. Let τ be a stopping
time such that t ≤ τ ≤ T . Then

v(t, x) = sup
α∈A

Et,x

󰀗󰁝 τ

t
f(s,Xα

s ,αs) ds+ v(τ, Xα
τ )

󰀘
.

Given the preceding discussion we can see that the infinitesimal generator is

La
t v(t, x) = b(t, x, a, )∂xv(t, x) +

1
2tr

󰀅
(σσ⊤)(t, x, a)∂xxv(t, x)

󰀆

+

d′′󰁛

j=1

λj(t, x, a)
󰀓
v
󰀃
t, x+ γ·j(t, x, a)

󰀄
− v(t, x)

󰀔
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for v ∈ C1,2((0, T ) × Rd). We now have what we need to state the Bellman PDE we
expect v given by (5.3) to satisfy.

Theorem 5.5 (Hamilton–Jacobi–Bellman PDE for controlled jump diffusions). As-
sume that the Bellman principle holds and b, σ and γ are sufficiently regular. If v
given by (5.3) is in C1,2((0, T )× Rd) then

∂tv + sup
a∈A

󰀓
Lav + fa

󰀔
= 0 on [0, T )× Rd

v(T, x) = g(x) ∀x ∈ Rd .

(5.4)

If we solve (5.4) then we should again be applying a verification theorem similar to
Theorem 4.11 to ensure that we really obtained the value function (5.3) for our control
problem. Since we haven’t given conditions under which (5.1) has unique solution we
won’t be able to use such a theorem - hence we omit it. But bear in mind that without
the verification we don’t really know what we found by solving (5.4).

Exercise 5.6 (Merton’s problem with jumps and logarithmic utility). Let us consider
a risk-free asset dBu = rBu dt for u ∈ [t, T ] and Bt = b and a risky asset of the form

dSu = Su

󰀓
µdu+ σdWu + κ(dNu

u − dNd
u)
󰀔
, u ∈ [t, T ] , St = S > 0 .

Here W is a Wiener process and Nu and Nd are Poisson processes with intensity
λ ≥ 0; all three are independent.

Let Xt,x,ν
T be the wealth of an investor who started with x > 0 at t ∈ [0, T ] following

strategy ν which specifies the fraction of total wealth invested in the risky asset. Our
aim in this exercise is to find

v(t, x) := sup
ν

Et,x,ν [ln(XT )] .

i) Assume an investor invests ξ “units” (can be fraction / negative) into the risky
asset and the remaining wealth in the risk-free asset. Show that their wealth
evolves as

dXu = Xu

󰀓
νu
󰀃
µ−r)+r

󰀔
du+Xuνu

󰀓
σ dWu+κ(dNu

u−dNd
u)
󰀔
, u ∈ [t, T ] , Xt = x ,

where ν = νu denotes the fraction of wealth invested in the risky asset.

ii) Use Itô formula to show that with Yt := lnXt we have

dYu =
󰀓
νu(µ−r)+r− 1

2σ
2ν2u

󰀔
dt+νuσ dWu+ln(1+κνu−)dN

u
u +ln(1−κνu−)dN

d
u .

iii) Thus we may equivalently search for

w(t, y) := sup
ν

Et,y,ν [YT ]

with y = lnx so that v(t, x) = w(t, lnx). Write down the Bellman equation for
this problem, in particular write what the infinitesimal generator for the process
Y is.

iv) Let us assume w(t, y) = ψ(t)y + γ(t) with ψ, γ ∈ C1([0, T ]) and ψ > 0. Use this
ansatz to solve the problem up to the static maximization

Âµ,r,σ,κ,λ := max
a

󰁫
a(µ− r) + r − 1

2σ
2a2 + λ ln(1− a2κ2)

󰁬
.

Since this doesn’t, in general, have a neat solution write down v in terms of Â,
T , t, and x.
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Figure 5.1: Typical limit order book (LOB). Left half: shows the cumulative ask
volume (red) and the bid volume (green) at various price levels (y-axis) on either side
of the mid price of about 1643. Right half: shows volumes at various bid (green) and
ask (red) levels with mid-price about 1 643.

5.4 Optimal execution with limit orders

In this section we will consider the problem of optimal order execution in a limit order
book (LOB) market placing limit orders only. This is similar to Section 1.3 where we
considered optimal execution (liquidation) using market orders only.

A market order specifies whether it’s to buy or to sell and then desired volume. It
then executes against existing limit order volume on the order book at the volume
weighted average price (VWAP) implied by the state of the book. E.g. in Figure 5.1
a market buy order for volume of 5000 will achieve VWAP of

(2764.16× 1643 + 919.77× 1644 + 1304.21× 1645 + 11.86× 1646)/5000 ≈ 1643.71 .

A limit order specifies whether it’s a buy or sell order, price and volume. Once
submitted it will be placed on the order book at the price level specified. An exception
is if it’s a buy order and there is already sell volume at that price or if it’s a sell order
and there is already buy volume at that level. In that case the portion of the volume
that would cross trades and what remains (if any) is placed on the book.

Let us now consider the simplest possible model for inventory liquidation. We have

i) An agent wishing to sell N units of a certain asset until time T > 0.

ii) The market mid price is driven by dSr = σdWr with W a Wiener process, σ > 0
constant.

iii) The agent places sell LO for volume ∆ at distance (δt)t∈[0,T ] taking values in R+

from the mid price (we ignore that LOBs have ticks). So the price at which the
LO sits is St + δt. We assume that the agent continuously amends the order so it
stays at that level. This is the control. We must have that N is divisible by ∆.
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iv) The number of market buy orders that arrive in the market is given by Poisson
process (Mt)t∈[0,T ] with rate λ > 0.

v) Not all market buy orders hit the volume of our agent. In fact their volume
only trades with probability e−κδ, with κ > 0 a constant. We call this the fill
probability. If our agent’s volume trades then they immediately replace it distance
δ > 0 from the mid.

vi) We count the market buy orders which hit our agent’s volume as (N δ
t )t∈[0,T ]. This

is a doubly stochastic Poisson process with the controlled intensity λe−κδt .

As a consequence the agent’s inventory, which is (Qt)t∈[0,T ] with Q0 = N evolves as

dQδ
t = −∆dN δ

t .

In fact it is Qδ
t = N −∆N δ

t . The agent’s cash balance changes as

dXt = ∆(St + δ) dN δ
t .

You may be asking: where did the order book enter the picture? The answer is in
the fill probability e−κδ. If you look at Figure 5.1 it is clear that the further the sell
order is from mid price (on the red side of the book) the lower the probability that
market orders will “eat up” the volume in front of it and that it will trade. There is
more discussion in [4, Chapter 8.1] justifying this modelling choice.

Assume agent wishes to maximize their cash while disposing of as much inventory
as possible. Let τt,q,δ := T ∧ min(s ≥ t : Qt,q,δ

s = 0). Then their objective can be
expressed as

J(t, S, x, q, δ) := Et,S,x,q,δ

󰁫
Xδ

τ + SτQ
δ
τ − α(Qδ

τ )
2
󰁬
,

where α > 0 captures the unsold inventory penalty. The agent’s tradeoff is thus clear:
choose high δ and sell at (possibly much) better price than midprice but with high δ
run the risk of not selling all by time T . The value function is

v(t, S, x, q) = sup
δ∈A

J(t, S, x, q, δ) .

The admissible strategies are progressively measurable, square integrable and non-
negative. Using Theorem 5.4 we can write the corresponding Bellman PDE on the
domain in space D = R× R+ × {∆, 2∆, . . . ,N} as

∂tv +
1
2σ

2∂SSv + sup
δ≥0

󰁫
λe−κδ

󰀃
v(t, S, x+∆(S + δ), q −∆)− v

󰀄󰁬
= 0 on [0, T )×D ,

v(t, x, S, 0) = x ∀t ∈ [0, T ) , x ∈ R+ , S ∈ R ,

v(T, x, S, q) = x+ qS − αq2 ∀(x, S, q) ∈ D .

The boundary at t = T corresponds to the situation when the agent ran out of time,
they have cash x, accounting value of qS for the unsold inventory q and penalty αq2

for the unsold inventory. The boundary at q = 0 corresponds to the situation when
the agent successfully sold everything and they hold cash x.

An ansatz which allows us to match the boundary conditions is

v(t, S, x, q) = x+ qS + θ(t, q)
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as long as θ(T, q) = −αq2. Let us now solve the Bellman PDE with this ansatz. We
note that

x+∆(S + δ) + S(q −∆) + θ(t, q −∆)− x− qS − θ = ∆δ + θ(t, q −∆)− θ

and hence

∂tθ + sup
δ≥0

󰁫
λe−κδ

󰀃
∆δ + θ(t, q −∆)− θ

󰀄󰁬
= 0 on [0, T )×D ,

θ(t, 0) = 0 ∀t ∈ [0, T ),

θ(T, q) = −αq2 ∀q = {0,∆, 2∆, . . . ,N} .

Letting g(t, q) = θ(t,q−∆)−θ
∆ we observe that we need to maximize the function

δ 󰀁→ e−κδ(δ + g) .

Calculating derivatives we see this is concave on [0,∞) and from the first order con-
dition we see that

e−κδ − (δ + g)κe−κδ = 0

i.e.

δ∗(t, q) =
1

κ
− g(t, q) .

To substitute this back into the equation for θ we see that

sup
δ≥0

󰁫
e−κδ

󰀃
δ + g(t, q)

󰀄󰁬
= e−1eκg(t,q) 1κ

and so

∂tθ +
1

κ
λ∆e−1 exp

󰀓
κ
θ(t, q −∆)− θ

∆

󰀔
= 0 on [0, T )× {∆, 2∆, . . . ,N} ,

θ(t, 0) = 0 ∀t ∈ [0, T ),

θ(T, q) = −αq2 ∀q = {0,∆, 2∆, . . . ,N} .

There is one more trick needed and we are done: let w(t, q) := eκ∆
−1θ(t,q) so that

κ
∆θ(t, q) = lnw(t, q). Then ∂tθ = 1

κ
1
w∂tw and the equation for w is

∆

κ

1

w(t, q)
∂tw(t, q) +

1

κ
λ∆e−1w(t, q −∆)

w(t, q)
= 0 on [0, T )× {∆, 2∆, . . . ,N}

which is

∂tw(t, q) + λe−1w(t, q −∆) = 0 on [0, T )× {∆, 2∆, . . . ,N} .

The terminal condition is w(T, q) = e−κ∆−1αq2 and w(t, 0) = 1.

5.5 Optimal limit order spread in market making

We will now consider a problem which arises in market making. A market maker is an
agent who’s objective is to stay market neutral (so ideally 0 position) while profiting
from the bid-ask spread while providing liquidity (volume that can be traded) at all
(or most) times. A possible model is the following.
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i) We fix a finite time horizon T > 0.

ii) The market mid price is driven exogenously by dSr = σdWr with W a Wiener
process, σ > 0 constant.

iii) The agent places a buy LO for volume ∆ at distance (δbt )t∈[0,T ] and sell LO for
volume ∆ at distance (δat )t∈[0,T ] from the mid price (we ignore that LOBs have

ticks). Both δbt and δt take values in R+. So the price at which the buy LO sits
is St − δbt and the price at which the sell LO sits is St + δat (buy low, sell high).
We assume that the agent continuously amends the order so it stays at that level
as the mid price moves. In this case δt = (δbt , δ

a
t ) is the control.

iv) The number of market buy / sell orders arriving in the market is given by two
independent Poisson process (M b

t )t∈[0,T ] and (Ma
t )t∈[0,T ] with rates λb > 0, λa > 0

v) Not all market buy orders hit the volume of our agent. In fact their volume

only trades with a buy LO with probability e−κbδ, with κb > 0 a constant and
with a sell LO with probability e−κaδ, with κa > 0 a constant. We call this the
fill probabilities. If our agent’s volume trades then they immediately replace it
distance δb > 0 or δa > 0 from the mid.

vi) The agent is allowed to only carry finite inventory, so Qt ∈ [k∆, k̄∆] for some
k, k̄ ∈ Z. In case Qt = k∆ we set δat = ∞ and if Qt = k̄∆ we set δbt = ∞. With
the fill probabilities above this means that we place no orders when we’ve hit the
boundary and hence our inventory cannot decrease or increase respectively.

vii) We count the market buy orders which hit our agent’s buy volume as (N b,δ
t )t∈[0,T ]

and those that hit our agent’s sell volume as (Na,δ
t )t∈[0,T ]. These are doubly

stochastic Poisson processes with the controlled intensities λe−κbδbt and λe−κaδat

respectively.

As a consequence the agent’s inventory, which is (Qt)t∈[0,T ] with Q0 = N evolves as

dQδ
u = ∆dN b,δ

u −∆dNa,δ
u , u ∈ [t, T ] , Qt = q .

The agent’s cash balance changes as

dXδ
u = −∆(Su − δbu) dN

b,δ
u +∆(Su + δau) dN

aδ
u , u ∈ [t, T ] , Xt = x .

The objective of the agent should express that they want to maximize cash, they don’t
want to hold inventory, they account for the mark-to-market value of their inventory
at time T and that they penalise any terminal time inventory holdings. Thus their
aim is to maximize:

J(t, S, x, q, δ) := Et,S,x,q,δ

󰀗
XT + ST QT − α|QT |2 − φ

󰁝 T

t
|Qu|2 du

󰀘
.

The value function of the control problem is

v(t, S, x, q) := sup
δ

J(t, S, x, q, δ) .

Recall that our state process is

dSu = σdWu , u ∈ [t, T ] , St = S ,

dXδ
u = −∆(Su − δbu) dN

b,δ
u +∆(Su + δau) dN

a,δ
u , u ∈ [t, T ] , Xt = x ,

dQδ
u = ∆dN b,δ

u −∆dNa,δ
u , u ∈ [t, T ] , Qt = q .
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The infinitesimal generator is

Lδf(S, x, q) =
1

2
∂SSf(S, x, q)

+ λbe−κbδb
󰀓
f(S, x−∆(S − δb), q +∆)− f(S, x, q)

󰀔

+ λae−κaδa (f(S, x+∆(S + δa), q −∆)− f(S, x, q)) .

Hence the Bellman equation for v is

0 =∂tv +
1

2
∂SSv − φ|q|2

+ λb sup
δb

e−κbδb
󰀓
v(t, S, x−∆(S − δb), q +∆)− v

󰀔
1{q<k̄∆}

+ λa sup
δa

e−κaδa (v(t, S, x+∆(S + δa), q −∆)− v)1{q>k∆} ,

(5.5)

in [0, T )×R×R×{k∆ : k ∈ [k, k̄]∩Z} with the terminal time condition v(T, S, x, q) =
x+ Sq − α|q|2.

Solving the Bellman equation for the market making problem

We will assume that λa = λb > 0 and κa = κb = κ. We will use the ansatz
v(t, S, x, q) = x + Sq + θ(t, q) with θ ∈ C1([0, T ]) and θ(T, q) = −α|q|2. Let us
first work out the difference terms in (5.5). The first one is:

v(t, S, x−∆(S − δb), q +∆)− v = x−∆(S − δb) + S(q +∆) + θ(t, q +∆)− x− Sq − θ(t, q)

= −∆S +∆δb + Sq + S∆+ θ(t, q +∆)− Sq − θ(t, q) = ∆δb + θ(t, q +∆)− θ(t, q) .

The second one is

v(t, S, x+∆(S + δa), q −∆)− v = ∆δa + θ(t, q −∆)− θ(t, q) .

Hence the Bellman equation (5.5) transforms to

0 = ∂tθ − φ|q|2 +∆λ sup
δb

e−κδb
󰀓
δb + gb(t, q)

󰀔
1{q<k̄∆}

+∆λ sup
δa

e−κδa (δa + ga(t, q))1{q>k∆} ,
(5.6)

where
gb(t, q) = θ(t,q+∆)−θ(t,q)

∆ , ga(t, q) = θ(t,q−∆)−θ(t,q)
∆ .

From the first order condition we see

0 =
d

dδb
e−κδ

󰀓
δb + gb(t, q)

󰀔
= e−κδ − κe−κδ

󰀓
δb + gb(t, q)

󰀔

and hence

δb,∗t =
1

κ
− gb(t, q) .

Similarly

δa,∗t =
1

κ
− ga(t, q) .
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Substituting these back into (5.6) we have

0 = ∂tθ − φ|q|2 +∆λe−1eκg
b(t,q) 1

κ
1{q<k̄∆} +∆λe−1eκg

a(t,q) 1

κ
1{q>k∆}

with t ∈ [0, T ), q ∈ [k∆, k̄∆]∩{k∆ : k ∈ Z} and with the terminal condition θ(T, q) =
−α|q|2. While this is still a non-linear equation we can transform it into a linear
one. Let θ(t, q) = ∆

κ logw(t, q) or equivalently w(t, q) = eκ∆
−1θ(t,q). Notice that

∂tθ(t, q) =
∆
κ

1
w(t,q)∂tw(t, q) and the equation for w is

0 =
∆

κ

1

w
∂tw − φ|q|2 + ∆

κ
λe−1w(t, q +∆)

w
1{q<k̄∆} +

∆

κ
λe−1w(t, q −∆)

w
1{q>k∆} ,

with t ∈ [0, T ), q ∈ [k∆, k̄∆]∩{k∆ : k ∈ Z} and with the terminal condition w(T, q) =
e−κ∆−1α|q|2 . This simplifies to

0 = ∂tw−
κ

∆
φ|q|2w+λe−1w(t, q+∆)+λe−1w(t, q−∆) , t ∈ [0, T ) , q ∈ (k∆, k̄∆)∩{k∆ : k ∈ Z} .

We can write this an ODE system. Let N = k̄ − k + 1. Let

Amn =

󰀻
󰁁󰀿

󰁁󰀽

λe−1 if m = n− 1 and n ≤ N

− κ
∆ φ |m∆|2 if m = n

λe−1 if m = n+ 1 and n ≥ 1 .

(5.7)

Then W(t) = (w(t, k∆))k∈[k,k̄]∩Z satisfies the linear ODE

W′(t) +AW(t) = 0 , t ∈ [0, T ] ,

with W(T )k = e−κ∆−1α|k∆|2 . Note that the solution is, in terms of the matrix expo-
nential, W(t) = exp((T − t)A)W(T ).

5.6 Solution to Exercises

Solution (to Exercise 5.6). i) An agent running a self-financing strategy in those two assets
has portfolio evolution given by

dXu = ξu dSu + Xu−ξuSu

Bu
dBu

= Xuνu

Su
dSu + Xu−Xuνu

Bu
dBu

= Xu

󰀓
νu

󰀃
µdu+ σ dWu + κ(dNu

u − dNd
u)
󰀄
+ (1− νu)r dt

󰀔

= Xu

󰀓
νu

󰀃
µ− r) + r

󰀔
du+Xuνu

󰀓
σ dWu + κ(dNu

u − dNd
u)
󰀔
.

ii) For Yt := lnXt we get

d lnXt =
1

Xt
dXc

t −
1

2

1

X2
t

dXc
t dX

c
t + (lnXt − lnXt−)dJt ,

where dJt = Xtνtκ(dN
u
t − dNd

t ). Hence

(lnXt − lnXt−)dJt = (lnXt − lnXt−)Xtνtκ(dN
u
t − dNd

t )

= Xtνtκ(lnXt − lnXt−)dN
u
t −Xtνtκ(lnXt − lnXt−)dN

d
t

= (ln(Xt− +Xt−νt−κ)− lnXt−)dN
u
t + (ln(Xt− −Xt−νt−κ)− lnXt−))dN

d
t

= ln
󰀓

Xt−+Xt−νt−κ−Xt−
Xt−

󰀔
dNu

t + ln
󰀓

Xt−−Xt−νt−κ−Xt−
Xt−

󰀔
dNd

t

= ln(1 + κνt−)dN
u
t + ln(1− κνt−)dN

d
t .

Hence

dYu =
󰀓
νu(µ− r) + r − 1

2σ
2ν2u

󰀔
dt+ νuσ dWu + ln(1 + κνu−)dN

u
u + ln(1− κνu−)dN

d
u .
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iii) The diffusion generator for Y is

Laf(t, y) =
󰀃
a(µ− r) + r − 1

2σ
2a2

󰀄
∂yf(t, y) +

1
2σ

2a2∂yyf(t, y)

+ λ
󰀓
f(t, y + ln(1 + aκ))− f(t, y)

󰀔
+ λ

󰀓
f(t, y + ln(1− aκ))− f(t, y)

󰀔
.

The Bellman equation is given by Theorem 5.5 and since there is no running gain it reads

∂tw + sup
a

Law = 0 in [0, T )× (0,∞) ,

with the terminal condition w(T, y) = y.

iv) We need ψ(T ) = 1, γ(T ) = 0 and the Bellaman equation becomes (pulling ψ > 0 out of
the supremum over a):

ψ′(t)y+γ′(t)+ψ(t) sup
a

󰁫
a(µ−r)+r− 1

2σ
2a2+λ

󰀓
(y+ln(1+aκ))−2y+(y+ln(1−aκ))

󰀔󰁬
= 0

for (t, y) ∈ [0, T )× R+. Note that

λ
󰀓
(y + ln(1 + aκ))− 2y + (y + ln(1− aκ))

󰀔
= λ ln(1− a2κ2) .

We thus need to maximize

a 󰀁→ a(µ− r) + r − 1
2σ

2a2 + λ ln(1− a2κ2) .

Two observations: one this is independent of (t, y) and two it’s concave (we can see that
with a bit of work) so the maximum is achieved. The expression isn’t tidy in the general
case so let’s just write

Âµ,r,σ,κ,λ := max
a

󰁫
a(µ− r) + r − 1

2σ
2a2 + λ ln(1− a2κ2)

󰁬
.

We can collect terms with and without y in the Bellman equation to see that

ψ′(t) = 0 , t ∈ [0, T ] , ψ(T ) = 1 ,

γ′(t) + ψ(t)Â = 0 , t ∈ [0, T ] , γ(T ) = 0 .

So ψ(t) = 1 for all t ∈ [0, T ] and γ(t) = Â(T − t). Then w(t, y) = y + Â(T − t) and so
v(t, x) = lnx+ Â(T − t).
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6 Pontryagin maximum principle and backward stochastic
differential equations

In the previous part, we developed the dynamic programming theory for the stochastic
control problem with Markovian system.

We introduce another approach called Pontryagin optimality principle, originally due
to Pontryagin in the deterministic case. We will also study this approach to study the
control problem (P).

6.1 Non-rigorous Derivation of Pontryagin’s Maximum Principle

Consider the control problem

(P )

󰀻
󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰀽

Maximize, over α ∈ A the functional

J(α) := E
󰀗󰁝 T

0
f
󰀃
s,Xα,0,x

s ,αs

󰀄
ds+ g

󰀃
Xα,0,x

T

󰀄󰀘
,

where Xα,0,x
t uniquely solves, for t ∈ [0, T ], the controlled SDE

Xt = x+

󰁝 t

0
b(s,Xs,αs) ds+

󰁝 t

0
σ(s,Xs,αs) dWs .

Going back to what we know about calculus, if a maximum of a certain functional
exists then it satisfies a “first order condition” which postulates that the derivative is
zero “in every direction”. Let us try to derive such first order condition.

The simplest interesting case: f = 0, σ = 0, d = 1 and A ⊆ R. So we just
have a deterministic problem with 1-dimensional state and 1-dimensional control. Let
x ∈ R and α ∈ A be fixed. Let β ∈ A. Then

d

dε
J(α+ ε(β − α))

󰀏󰀏󰀏󰀏
ε=0

= (∂xg)(X
α
T )

d

dε
X

α+ε(β−α)
T

󰀏󰀏󰀏󰀏
ε=0

.

We see that to proceed we need to calculate how the controlled process changes with

a change of control. Let us write Vt :=
d
dεX

α+ε(β−α)
t

󰀏󰀏
ε=0

. From the equation for the
controlled process we see that

Vt =

󰁝 t

0
(∂xb)(s,X

α
s ,αs)Vs ds+

󰁝 t

0
(∂ab)(s,X

α
s ,αs)(βs − αs) ds .

Note that the equation for V is affine and can be solved using an integrating factor13

so that

Vt =

󰁝 t

0
exp

󰀕󰁝 t

s
(∂xb)(r,X

α
r ,αr) dr

󰀖
(∂ab)(s,X

α
s ,αs)(βs − αs) ds .

Hence

d

dε
J(α+ε(β−α))

󰀏󰀏󰀏󰀏
ε=0

= (∂xg)(X
α
T )

󰁝 T

0
exp

󰀕󰁝 T

s
(∂xb)(r,X

α
r ,αr) dr

󰀖
(∂ab)(s,X

α
s ,αs)(βs−αs) ds .

13This works in the 1-dimensional case here. In higher dimension there still is an integrating factor
but it no longer has the explicit form written above.
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To simplify notation let us introduce the “backward process”

Y α
t := (∂xg)(X

α
T ) exp

󰀕󰁝 T

t
(∂xb)(r,X

α
r ,αr) dr

󰀖

and note that that the backward process satisfies an equation which we will refer to
as the “backward equation”:

dYt = −(∂xb)(t,X
α
t ,αt)Y

α
t dt , t ∈ [0, T ] , Y α

T = (∂xg)(X
α
T ).

Furthermore let H(t, x, y, a) := b(t, x, a)y (we will refer to H as the “Hamiltonian”)
so that (∂ab)(t,X

α
t ,αt)Y

α
t = (∂aH)(t,Xα

t , Y
α
t ,αt). Then

d

dε
J(α+ ε(β − α))

󰀏󰀏󰀏󰀏
ε=0

=

󰁝 T

0
(∂aH)(s,Xα

s , Y
α
s ,αs)(βs − αs) ds . (6.1)

If α is a (locally) optimal control then for any other control β we have, for any ε > 0,
that

J(α+ ε(β − α)) ≤ J(α)

and so

0 ≥ lim
ε→0

1

ε

󰀓
J(α+ ε(β − α))− J(α)

󰀔

=
d

dε
J(α+ ε(β − α))

󰀏󰀏󰀏󰀏
ε=0

=

󰁝 T

0
(∂aH)(t,Xα

t , Y
α
t ,αt)(βt − αt) dt .

So

0 ≥
󰁝 T

0
(∂aH)(t,Xα

t , Y
α
t ,αt)(βt − αt) dt .

Finally from the definition of the derivative we get that for almost all t ∈ [0, T ] we
have

lim
ε→0

1

ε

󰀓
H(t,Xα

t , Y
α
t ,αt+ε(βt−αt))−H(t,Xα

t , Y
α
t ,αt)

󰀔
= (∂aH)(t,Xα

t , Y
α
t ,αt)(βt−αt) .

Hence there are ε > 0 (small) such that

H(t,Xα
t , Y

α
t ,αt + ε(βt − αt)) ≤ H(t,Xα

t , Y
α
t ,αt) .

From this we can conclude that any optimal control “locally maximizes the Hamilto-
nian” and any optimal control, together with the forward and backward processes
must satify

󰀻
󰁁󰁁󰀿

󰁁󰁁󰀽

αt ∈ argmax
a∈A

H(t,Xα
t , Y

α
t , a) ,

dXα
t = b(t,Xα

t ,αt) dt , t ∈ [0, T ] , Xα
0 = x ,

dY α
t = −(∂xH)(t,Xα

t , Y
α
t ,αt) dt , t ∈ [0, T ] , Y α

T = (∂xg)(X
α
T ) .

(6.2)

Stochastic case but with f = 0 for simplicity. Now σ ∕= 0 and we have processes
in higher dimensions. Then

d

dε
J(α+ ε(β − α))

󰀏󰀏󰀏󰀏
ε=0

= E
󰀗
(∂xg)(X

α
T )

d

dε
X

α+ε(β−α)
T

󰀏󰀏󰀏󰀏
ε=0

󰀘
.
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As before, to proceed, we need to calculate how the SDE changes with a change of

control. Let us write Vt :=
d
dεX

α+ε(β−α)
s

󰀏󰀏
ε=0

. From the SDE we see that

Vt =

󰁝 t

0
(∂xb)(s,X

α
s ,αs)Vs ds+

󰁝 t

0
(∂ab)(s,X

α
s ,αs)(βs − αs) ds

+

󰁝 t

0
(∂xσ)(s,X

α
s ,αs)Vs dWs +

󰁝 t

0
(∂xσ)(s,X

α
s ,αs)(βs − αs) dWs .

Now we will work with a backward equation directly, setting Y α
T = (∂xg)(X

α
T ) as

before. It’s not so clear what its dynamics should be so let it just be a general Itô
process

dYt = Ut dt+ Zt dWt , t ∈ [0, T ] , Y α
T = (∂xg)(X

α
T ) .

Recall that we are interested in E
󰀅
YTVT

󰀆
. We see that

E
󰀅
YTVT

󰀆
=E

󰀗󰁝 T

0
Yt dVt +

󰁝 T

0
Vt dYt +

󰁝 T

0
dYt dVt

󰀘

=E
󰁝 T

0
Yt(∂xb)(t,X

α
t ,αt)Vt dt+ E

󰁝 T

0
Yt(∂ab)(t,X

α
t ,αt)(βt − αt) dt

+ E
󰁝 T

0
VtUt dt+ E

󰁝 T

0
Zt(∂xσ)(t,X

α
t ,αt)Vt dt+ E

󰁝 T

0
Zt(∂aσ)(t,X

α
t ,αt)(βt − αt) dt .

(6.3)

We would like to derive something that looks like (6.1) i.e. keep β−α terms but avoid
V in the dynamics. To that end we choose

Ut = −(∂xb)(t,X
α
t ,αt)Yt − (∂xσ)(t,X

α
t ,αt)Zt .

Then

d

dε
J(α+ ε(β − α))

󰀏󰀏󰀏󰀏
ε=0

= E [YTVT ]

= E
󰁝 T

0
(∂ab)(t,X

α
t ,αt)Yt(βt − αt) ds+ E

󰁝 T

0
(∂aσ)(t,X

α
t ,αt)Zt(βt − αt) dt .

So if we let the Hamiltonian to be

H(t, x, y, z, a) := b(t, x, a)y + σ(t, x, a)z

then

d

dε
J(α+ ε(β − α))

󰀏󰀏󰀏󰀏
ε=0

= E
󰁝 T

0
(∂aH)(t,Xα

t , Y
α
t , Zα

t ,αt)(βt − αt) dt . (6.4)

Arguing as before, see the argument going from (6.1) and (6.2), we arrive at
󰀻
󰁁󰁁󰀿

󰁁󰁁󰀽

αt ∈ argmax
a∈A

H(t,Xα
t , Y

α
t , Zα

t , a) ,

dXα
t = b(t,Xα

t ,αt) dt+ σ(t,Xα
t ,αt) dWt , t ∈ [0, T ] , Xα

0 = x ,

dY α
t = −(∂xH)(t,Xα

t , Y
α
t ,αt) dt+ Zα

t dWt , t ∈ [0, T ] , Y α
T = (∂xg)(X

α
T ) .

(6.5)

You may ask why not take Z = 0, since then (6.3) would be simplified. We would
have been able to only keep β−α terms as we wished. But without Z we would have
no reason to hope that (Yt)t∈[0,T ] is Ft-adapted since we are specifying a terminal
condition. This in turn would mean that α is not Ft-adapted which would render the
optimality criteria useless.
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6.2 Deriving a Numerical Method from Pontryiagin’s maximum prin-
ciple

Imagine we have chosen a control α ∈ A and solved the corresponding forward and
backward equations so that we haveXα and (Y α, Zα). How would we go about finding
a control that’s “better”?

Looking at (6.4) we would say that a better control would make the derivative positive
(so that we change the control in a direction of the maximum): this means we will
choose β such that

βt − αt = γ(∂aH)(t,Xα
t , Y

α
t , Ztα,αt)

for some γ > 0 because then

d

dε
J(α+ ε(β − α))

󰀏󰀏󰀏󰀏
ε=0

= γE
󰁝 T

0
|(∂aH)(t,Xα

t , Y
α
t , Zα

t ,αt)|2 dt ≥ 0 .

Of course a full algorithm would need to solve the forward SDE (easy) and the back-
ward SDE (not so easy) and carry out the update step repeatedly. In the deterministic
case solving the forward and backward ODEs is easy and the method is known as
“method of successive approximations” (MSA). It can be shown that a modification
of this algorithm converges under appropriate conditions, see [12].

6.3 Backward Stochastic Differential Equations (BSDEs)

For a deterministic differential equation

dx(t)

dt
= b(t, x(t)) t ∈ [0, T ] , x(T ) = a

we can reverse the time by changing variables. Let τ := T − t and y(τ) = x(t). Then
we have

dy(τ)

dτ
= −b(T − τ, y(τ)) τ ∈ [0, T ] , y(0) = a .

So the backward ODE is equivalent to a forward ODE.

The same argument would fail for SDEs since the time-reversed SDE would not be
adapted to the appropriate filtration and the stochastic integrals will not be well
defined.

Recall the martingale representation theorem (see Theorem A.24), which says any
ξ ∈ L2

FT
can be uniquely represented by

ξ = E[ξ] +
󰁝 T

0
φt dWt .

If we define Mt = E[ξ] +
󰁕 t
0 φsdWs, then Mt satisfies

dMt = φt dWt , MT = ξ .

This leads to the idea that a solution to a backward SDE must consist of two processes
(in the case above M and φ).

Consider the backward SDE (BSDE)

dYt = gt
󰀃
Yt, Zt

󰀄
dt+ Zt dWt, Y (T ) = ξ .

We shall give a few examples when this has explicit solution.
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Example 6.1. Assume that g = 0. In this case, Yt = E[ξ|Ft] and Z is the process
given by the martingale representation theorem.

Example 6.2. Assume that gt(y, z) = γt. In this case, take ξ̂ := ξ−
󰁕 T
0 γt dt. We get

the solution (Ŷ , Ẑ) to
dŶt = Ẑt dWt , ŶT = ξ̂

as

Ŷt = E
󰁫
ξ̂|Ft

󰁬
= E

󰀗
ξ −

󰁝 T

0
γt dt

󰀏󰀏󰀏󰀏Ft

󰀘

and we get Z from the martingale representation theorem. Then with Yt := Ŷt +󰁕 t
0 γs ds, Zt := Ẑt we have a solution (Y, Z) so in particular

Yt = E
󰀗
ξ −

󰁝 T

0
γt dt

󰀏󰀏󰀏󰀏Ft

󰀘
+

󰁝 t

0
γs ds = E

󰀗
ξ −

󰁝 T

t
γs ds

󰀏󰀏󰀏󰀏Ft

󰀘
.

Example 6.3. Assume that gt(y, z) = αty + βtz + γt and α = αt, β = βt, γ = γt are
real-valued adapted processes that satisfy certain integrability conditions (those will
become clear). Assume that W is only real valued.14 We will construct a solution
using an exponential transform and a change of measure.

Consider a new measure Q given by the Radon–Nikodym derivative

dQ
dP

= exp

󰀕
−1

2

󰁝 T

0
β2
s ds−

󰁝 T

0
βs dWs

󰀖

and assume that E
󰀅
dQ
dP

󰀆
= 1. Then, due to Girsanov’s Theorem A.23, the process

given by WQ
t = Wt +

󰁕 t
0 βs ds is a Q-Wiener process. Consider the BSDE

dȲt = γ̄t dt+ Z̄t dW
Q
t , ȲT = ξ̄ , (6.6)

where γ̄t := γt exp
󰀓
−
󰁕 t
0 αs ds

󰀔
and ξ̄ := ξ exp

󰀓
−
󰁕 T
0 αs ds

󰀔
. We know from Ex-

ample 6.2 that this BSDE has a solution (Ȳ , Z̄) and in fact we know that

Ȳt = EQ
󰀗
ξe−

󰁕 T
0 αs ds −

󰁝 T

t
γse

−
󰁕 s
0 αr dr ds

󰀏󰀏󰀏󰀏Ft

󰀘
.

We let Yt := Ȳt exp
󰀓󰁕 t

0 αs ds
󰀔
and Zt := Z̄t exp

󰀓󰁕 t
0 αs ds

󰀔
. Now using the Itô product

rule with (6.6) and the equation for WQ we can check that

dYt = d
󰀓
Ȳte

󰁕 t
0 αs ds

󰀔
= αtYt dt+ e

󰁕 t
0 αs ds dȲt = αtYt dt+ γt dt+ Zt dW

Q
t

= (αtYt + βtZt + γt) dt+ Zt dWt

and moreover YT = ξ. In particular we get

Yt = EQ
󰀗
ξe−

󰁕 T
t αs ds −

󰁝 T

t
γse

−
󰁕 s
t αr dr ds

󰀏󰀏󰀏󰀏Ft

󰀘
. (6.7)

To get the solution as an expression in the original measure we need to use the Bayes
formula for conditional expectation, see Proposition A.49. We obtain

Yt =

E
󰀗󰀓

ξe−
󰁕 T
t αs ds −

󰁕 T
t γse

−
󰁕 s
t αr dr ds

󰀔
e−

1
2

󰁕 T
0 β2

s ds−
󰁕 T
0 βs dWs

󰀏󰀏󰀏󰀏Ft

󰀘

E
󰀗
e−

1
2

󰁕 T
0 β2

s ds−
󰁕 T
0 βs dWs

󰀏󰀏󰀏󰀏Ft

󰀘 .

14It is possible to find a solution in higher dimensions but the integrating factor doesn’t have this
nice explicit form and we cannot apply Girsanov’s theorem in the same way. See [9, Section 3].
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Proposition 6.4 (Boundedness of solutions to linear BSDEs). Consider the linear
backward SDE with gt(y, z) = αty+ βtz+ γt. If α,β, γ and ξ are all bounded then the
process Y in the solution pair (Y, Z) is bounded.

Proof. This proof is left as exercise.

Example 6.5 (BSDE and replication in the Black-Scholes market). In a standard
Black-Scholes market model we have a risk-free asset dBt = rBt dt and risky assets

dSt = diag(µ)St dt+ σSt dWt .

Here µ is the drift (column) vector of the risky asset rate, σ is the volatility matrix.

Let π denote the cash amounts invested in the risky assets and Y the replicating
portfolio value (so Y −

󰁓m
i=1 π

(i) is invested in the risk-free asset). Then the self-
financing property says that (interpreting 1/S to be diag(1/S1, . . . , 1/Sm))

dYt = π⊤
t diag

󰀕
1

St

󰀖
dSt +

Yt −
󰁓m

i=1 π
(i)
t

Bt
dBt

i.e.

dYt =
󰀅
rYt + π⊤

t (µ− r)
󰀆
dt+ π⊤

t σ dWt .

We can define Zt = π⊤
t σ and if σ−1 exists then π⊤

t = Ztσ
−1 and so

dYt =
󰀅
rYt + Ztσ

−1(µ⊤ − r)
󰀆
dt+ Zt dWt.

For any payoff ξ at time T , the replication problem is to solve the BSDE given by this
differential coupled with YT = ξ. If ξ ∈ L2

FT
the equation admits a unique square-

integrable solution (Y, Z). Hence the cash amount invested in the risky assets, required
in the replicating portfolio is π⊤

t = Ztσ
−1, and the replication cost (contingent claim

price) at time t is Yt.

We see that this is a BSDE with linear driver and so from Example 6.3 we have, due
to (6.7), that

Yt = EQ
󰁫
ξe−r(T−t)

󰀏󰀏Ft

󰁬
,

where
dQ
dP

= e−
1
2
|σ−1(µ−r)|2T−(µ⊤−r)(σ−1)⊤WT .

In other words we see that Q is the usual risk-neutral measure we get in Black–Scholes
pricing.

A standard backward SDE (BSDE) is formulated as

dYt = gt
󰀃
Yt, Zt

󰀄
dt+ Zt dWt, Y (T ) = ξ, (6.8)

where g = gt(ω, y, z) must be such that gt(y, z) is at least Ft-measurable for any fixed
t, y, z. We will refer to g is called as the generator or driver of the Backward SDE.

Definition 6.6. Given ξ ∈ L2(FT ) and a generator g, a pair of (Ft)t∈[0,T ]-adapted
processes (Y, Z) is called as a solution for (6.8) if

Yt = ξ −
󰁝 T

t
gs
󰀃
Ys, Zs

󰀄
ds−

󰁝 T

t
Zs dWs, ∀t ∈ [0, T ].
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Theorem 6.7 (Existence and uniqueness for BSDEs). Suppose g = gt(y, z) satisfies

(i) We have g(0, 0) ∈ H.

(ii) There exists a constant L > 0 such that

|gt(y, z)− gt(y, z)| ≤ L(|y − y|+ |z − z|) , a.s. ∀t ∈ [0, T ] , ∀y, z, ȳ, z̄ .

Then for any ξ ∈ L2
FT

, there exists a unique (Y, Z) ∈ H×H solving the BSDE (6.8).

Recall that H is the space introduced in Definition A.18.

Proof. We consider the map Φ = Φ(U, V ) for (U, V ) in H×H. Given (U, V ) we define

(Y, Z) = Φ(U, V ) as follows. Let ξ̂ := ξ −
󰁕 T
0 gs(Us, Vs) ds. Then

E
󰁝 T

0
|gs(Us, Vs)|2 ds ≤ E

󰁝 T

0
[2|gs(Us, Vs)− gs(0, 0)|2 + 2|gs(0, 0)|2] ds

≤ E
󰁝 T

0
[2L2(|Us|2 + |Vs|2) + 2|gs(0, 0)|2] ds < ∞,

(6.9)

since U and V and g(0, 0) are in H. So ξ̂ ∈ L2(FT ) and we know that for Ŷt := E[ξ̂|Ft]
there is Z such that

dŶt = Zt dWt , ŶT = ξ̂ .

Take Yt := Ŷt +
󰁕 t
0 gs(Us, Vs) ds. Then

Yt = ξ −
󰁝 T

t
gs(Us, Vs) ds−

󰁝 T

t
Zs dWs . (6.10)

The next step is to show that (U, V ) 󰀁→ Φ(U, V ) = (Y, Z) described above is a con-
traction on an appropriate Banach space.

We will assume, for now, that |ξ| ≤ N and that |g| ≤ N . We consider (U, V ) and
(U ′, V ′). From these we obtain (Y, Z) = Φ(U, V ) and (Y ′, Z ′) = Φ(U ′, V ′). We will
write

(Ū , V̄ ) := (U − U ′, V − V ′) , (Ȳ , Z̄) := (Y − Y ′, Z − Z ′) , ḡ := g(U, V )− g(U ′, V ′) .

Then
dȲs = ḡs ds+ Z̄sdWs

and with Itô formula we see that

dȲ 2
s = 2Ȳsḡs ds+ 2ȲsZ̄s dWs + Z̄2

sds .

Hence, for some β > 0,

d(eβsȲ 2
s ) = eβs

󰀅
2Ȳsḡs ds+ 2ȲsZ̄s dWs + Z̄2

s ds+ βȲ 2
s ds

󰀆
.

Noting that, due to (6.10), we have ȲT = YT − Y ′
T = 0, we get

0 = Ȳ 2
0 +

󰁝 T

0
eβs

󰀅
2Ȳsḡs + Z̄2

s + βȲ 2
s

󰀆
ds+

󰁝 T

0
2eβsȲsZ̄s dWs .
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Since Z ∈ H we have

E
󰁝 T

0
4e2βs|Ȳs|2|Z̄s|2 ds ≤ e2βT 4N2(1 + T )2E

󰁝 T

0
|Z̄s|2 ds < ∞

and so, the stochastic integral being a martingale, we get

E
󰁝 T

0
eβs

󰀅
Z̄2
s + βȲ 2

s

󰀆
ds = −EȲ 2

0 − E
󰁝 T

0
eβs2Ȳsḡs ds ≤ 2E

󰁝 T

0
eβs|Ȳs||ḡs| ds .

Using the Lipschitz continuity of g and Young’s inequality (with ε = 1/4) we have

eβs|Ȳs||ḡs| ≤ eβs|Ȳs|L(|Ūs|+ |V̄s|) ≤ 2L2eβs|Ȳs|2 +
1

8
eβs(|Ūs|+ |V̄s|)2

≤ 2L2eβs|Ȳs|2 +
1

4
eβs(|Ūs|2 + |V̄s|2) .

We can now take β = 1 + 4L2 and we obtain

E
󰁝 T

0
eβs

󰀅
Z̄2
s + Ȳ 2

s

󰀆
ds ≤ 1

2
E
󰁝 T

0
eβs(|Ūs|2 + |V̄s|2) ds . (6.11)

We now need to remove the assumption that |ξ| ≤ N and |g| ≤ N . To that end
consider ξN := −N ∧ ξ ∨N and gN := −N ∧ g ∨N (so |ξN | ≤ N and |gN | ≤ N). We
obtain Y N , ZN as before. Note that

Yt = E[ξ|Ft] = E
󰀗
lim

N→∞
ξ̂N

󰀏󰀏Ft

󰀘
= lim

N→∞
Y N
t

due to Lebesgue’s dominated convergence for conditional expectations. Indeed, we
have |ξ̂N | ≤ |ξ|+

󰁕 T
0 |gs(Us, Vs)| ds and this is in L2 due to (6.9). Moreover

E
󰁝 T

0
|ZN

t − Zt|2 dt = E
󰀕󰁝 T

0
(ZN

t − Zt) dWt

󰀖2

= E
󰀃
Y N
T − YT + Y0 − Y N

0

󰀄2

≤ 2E|Y N
T − YT |2 + 2E|Y0 − Y N

0 |2 → 0 as N → ∞

due to Lebesgue’s dominated convergence theorem. Then from (6.11) be have, for
each N ,

E
󰁝 T

0
eβs

󰀅
|ZN

s |2 + |̄Y N
s |2

󰀆
ds ≤ 1

2
E
󰁝 T

0
eβs(|Ūs|2 + |V̄s|2) ds .

But since the RHS is independent of N , we obtain (6.11) but now without the as-
sumption that |ξ| ≤ N and |g| ≤ N . Consider now the Banach space (H ×H, 󰀂 · 󰀂),
with

󰀂(Y, Z)󰀂 := E
󰁝 T

0
eβs

󰀅
Z2
s + Y 2

s

󰀆
ds .

From (6.11) we have

󰀂Φ(U, V )− Φ(U ′, V ′)󰀂 ≤ 1

2
󰀂(U, V )− (U ′, V ′)󰀂 .

So the map Φ : H × H → H × H is a contraction and due to Banach’s Fixed Point
Theorem there is a unique (Y ∗, Z∗) which solves the equation Φ(Y ∗, Z∗) = (Y ∗, Z∗).
Hence

Y ∗
t = ξ −

󰁝 T

t
gs(Y

∗
s , Z

∗
s ) ds−

󰁝 T

t
Z∗
s dWs

due to (6.10).
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Theorem 6.8. Let (Y 1, Z1) and (Y 2, Z2) be solutions to BSDEs with generators and
terminal conditions g1, ξ1 and g2, ξ2 respectively. Assume that ξ1 ≤ ξ2 a.s. and that
g2t (Y

2
t , Z

2
t ) ≤ g1t (Y

1
t , Z

1
t ) a.e. on Ω× (0, T ). Assume finally that the generators satisfy

the assumption of Theorem 6.7 and ξ1, ξ2 ∈ L2(FT ). Then Y 1 ≤ Y 2.

Proof. We note that the BSDE satisfied by Ȳ := Y 2 − Y 1, Z̄ := Z2 − Z1 is

dȲt = [g2t (Y
2
t , Z

2
t )− g1t (Y

1
t , Z

1
t )] dt+ Z̄t dWt , ȲT = ξ̄ := ξ2 − ξ1 .

This is

dȲt =[g2t (Y
2
t , Z

2
t )− g2t (Y

1
t , Z

2
t ) + g2t (Y

1
t , Z

2
t )− g2t (Y

1
t , Z

1
t ) + g2t (Y

1
t , Z

1
t )− g1t (Y

1
t , Z

1
t )] dt

+ Z̄t dWt , ȲT = ξ̄

which we can re-write as

dȲt = [αtȲt + βtZ̄t + γt] dt+ Z̄t dWt , ȲT = ξ̄ ,

where

αt :=
g2t (Y

2
t , Z

2
t )− g2t (Y

1
t , Z

2
t )

Y 2
t − Y 1

t

1Y 1
t ∕=Y 2

t
, βt :=

g2t (Y
1
t , Z

2
t )− g2t (Y

1
t , Z

1
t )

Z2
t − Z1

t

1Z1
t ∕=Z2

t

and where
γt := g2t (Y

1
t , Z

1
t )− g1t (Y

1
t , Z

1
t ) .

Due to the Lipschitz assumption on g2 we get that α and β are bounded and since
Y i, Zi are in H we get that γ ∈ H. Thus we have an affine BSDE for (Ȳ , Z̄) and the
conclusion follows from (6.7) since we get

Ȳt = EQ

󰀥
ξ̄e−

󰁕 T
t αs ds

󰁿 󰁾󰁽 󰂀
≥0

−
󰁝 T

t
γse

−
󰁕 s
t αr dr ds

󰁿 󰁾󰁽 󰂀
≤0

󰀏󰀏󰀏󰀏Ft

󰀦
≥ 0

from the assumptions that ξ1 ≤ ξ2 a.s. and that g2t (Y
2
t , Z

2
t ) ≤ g1t (Y

1
t , Z

1
t ) a.e.

6.4 Pontryagin’s Maximum Principle as Sufficient Condition

We now return to the optimal control problem (P). Recall that given running gain f
and terminal gain g our aim is to optimally control

dXα
t = bt(Xt,αt) dt+ σt(Xt,αt) dWt, t ∈ [0, T ] , Xα

0 = x,

where α ∈ A and we assume that Assumption 3.9 holds. Recall that by optimally
controlling the process we mean a control which will maximize

J(α) := E
󰀗󰁝 T

0
f(t,Xα

t ,αt) dt+ g(Xα
T )

󰀘

over α ∈ A. Unlike in Chapter 4 we can consider the process starting from time
0 (because we won’t be exploiting the Markov property of the SDE) and unlike in
Chapter 4 we will assume that A is a subset of Rm.

We define the Hamiltonian H : [0, T ]× Rd ×A× Rd × Rd×d′ → R of the system as

Ht(x, a, y, z) := bt(x, a) y + tr[σ⊤
t (x, a) z] + ft(x, a) .
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Assumption 6.9. Assume that x 󰀁→ Ht(x, a, y, z) is differentiable for all a, t, y, z with
derivative bounded uniformly in a, t, y, z. Assume that g is differentiable in x with
the derivative having at most linear growth (in x).

Consider the adjoint BSDEs (one for each α ∈ A)

dY α
t = −∂xHt(t,Xt,αt, Y

α
t , Zα

t ) dt+ Zt dWt , Y α
T = ∂xg(X

α
T ) .

Note that under Assumption 6.9 and 3.9

E[|∂xg(Xα
T )|2] ≤ E[(K(1 + |Xα

T |)2] < ∞,

Hence, due to Theorem 6.7, the adjoint BSDEs have unique solutions (Y α, Zα).

We will now see that it is possible to formulate a sufficient optimality criteria based
on the properties of the Hamiltonian and based on the adjoint BSDEs. This is what
is known as the Pontryagin’s Maximum Principle. Consider two control processes,
α,β ∈ A and the two associated controlled diffusions, both starting from the same
initial value, labelled Xα, Xβ . Then

J(β)− J(α) = E
󰀗󰁝 T

0

󰁫
f(t,Xβ

t ,βt)− f(t,Xα
t ,αt)

󰁬
dt+ g(Xβ

T )− g(Xα
T )

󰀘
.

We will need to assume that g is concave (equivalently assume −g is convex). Then
g(x) − g(y) ≥ ∂xg(x)(x − y) and so (recalling what the terminal condition in our
adjoint equation is)

E
󰁫
g(Xβ

T )− g(Xα
T )

󰁬
≥ E

󰁫
(Xβ

T −Xα
T )∂xg(X

β
T )
󰁬
= E

󰁫
(Xβ

T −Xα
T )Y

β
T

󰁬
.

We use Itô’s product rule and the fact that Xα
0 = Xβ

0 . Let us write ∆bt := bt(X
β
t ,βt)−

bt(X
α
t ,αt) and ∆σt := σt(X

β
t ,βt)− σt(X

α
t ,αt). Then we see that

E
󰁫
(Xβ

T −Xα
T )Y

β
T

󰁬
≥ E

󰀗 󰁝 T

0
−(Xβ

t −Xα
t )∂xHt(X

β
t ,βt, Y

β
t , Zβ

t ) dt

+

󰁝 T

0
∆bt Y

β
t dt+

󰁝 T

0
tr
󰁫
∆σ⊤

t Zβ
t

󰁬
dt

󰀘
.

Note that we are missing some details here, because the second stochastic integral
term that we dropped isn’t necessarily a martingale. However with a stopping time
argument and Fatou’s Lemma the details can be filled in (and this is why we have an
inequality). We also have that for all y, z,

f(t,Xβ
t ,βt) = Ht(X

β
t ,βt, y, z)− bt(X

β
t ,βt)y − tr[σ⊤

t (X
β
t ,βt)z] ,

f(t,Xα
t ,αt) = Ht(X

α
t ,αt, y, z)− bt(X

α
t ,αt)y − tr[σ⊤

t (X
α
t ,αt)z]

and so
f(t,Xβ

t ,βt)− f(t,Xα
t ,αt) = ∆Ht −∆btY

β
t − tr(∆σ⊤

t Zβ
t )

where
∆Ht := Ht(X

β
t ,βt, Y

β
t , Zβ

t )−Ht(X
α
t ,αt, Y

β
t , Zβ

t ) .

Thus

E
󰀗󰁝 T

0

󰁫
f(t,Xβ

t ,βt)− f(t,Xα
t ,αt)

󰁬
dt

󰀘
= E

󰀗󰁝 T

0

󰁫
∆Ht −∆btY

β
t − tr(∆σ⊤

t Zβ
t )
󰁬
dt

󰀘
.
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Altogether

J(β)− J(α) ≥ E
󰀗󰁝 T

0

󰁫
∆Ht − (Xβ

t −Xα
t )∂xHt(X

β
t ,βt, Y

β
t , Zβ

t )
󰁬
dt

󰀘

If we now assume that (x, a) 󰀁→ Ht(x, a, Y
β
t , Zβ

t ) is differentiable and concave for any
t, y, z then

∆Ht ≥ (Xβ
t −Xα

t )∂xHt(X
β
t ,βt, Y

β
t , Zβ

t ) + (βt − αt)∂aHt(X
β
t ,βt, Y

β
t , Zβ

t )

and so

J(β)− J(α) ≥ E
󰀗󰁝 T

0
(βt − αt)∂aHt(X

β
t ,βt, Y

β
t , Zβ

t ) dt

󰀘
.

Finally we assume that βt is a control process which satisfies

Ht(X
β
t ,βt, Y

β
t , Zβ

t ) = max
a∈A

Ht(X
β
t , a, Y

β
t , Zβ

t ) < ∞ a.s. for almost all t.

Then J(β) ≥ J(α) for arbitrary α. In other words, such control β is optimal. Hence
we have proved the following theorem.

Theorem 6.10 (Pontryagin’s Maximum Principle). Let Assumptions 3.9 and 6.9
holds, let ⊂ Rm. Let g be concave. Let β ∈ A and let Xβ be the associated controlled
diffusion and (Y β , Zβ) the solution of the adjoint BDSE. If β ∈ A is such that

Ht(X
β
t ,βt, Y

β
t , Zβ

t ) = max
a∈A

Ht(X
β
t , a, Y

β
t , Zβ

t ) < ∞ a.s. for almost all t. (6.12)

holds and if
(x, a) 󰀁→ Ht(x, a, Y

β
t , Zβ

t )

is differentiable and concave then J(β) = supα J(α) i.e. β is an optimal control.

We can see that the Pontryagin maximum principle gives us a sufficient condition for
optimality.

Example 6.11 (Linear–quadratic control revisited). TakeW to be Rd′-valued Wiener
process and let the space where controls take values to be A = Rm. Consider Xt =
Xα,x

t taking values in Rd given by

dXt = [L(t)Xt +M(t)αt] dt+ σ(t) dWt for t ∈ [0, T ] , X0 = x ,

where L = L(t) ∈ Rd×d,M = M(t) ∈ Rd×m and σ = σ(t) ∈ Rd×d′ are bounded,
measurable, deterministic functions of t.

Further15 let C = C(t) ∈ Rd×d, D = D(t) ∈ Rm×m, F = F (t) ∈ Rd×m be determin-
istic, integrable functions of t and R ∈ Rd×d be such that C,D and R are symmetric,
C = C(t) ≤ 0, R ≤ 0 and D = D(t) ≤ −δ < 0 with some constant δ > 0. The aim
will be to maximize

Jα(x) := Ex,α

󰀗󰁝 T

0

󰁫
X⊤

t C(t)Xt + α⊤
t D(t)αt + 2X⊤

t F (t)αt

󰁬
dt+X⊤

T RXT

󰀘

15 For any matrix M we will write M ≤ 0 to denote negative definite matrices i.e. matrices such
that for any ξ ∈ Rn we have ξ⊤Mξ ≤ 0. Similarly M < 0 denotes strictly negative definite matrices
i.e. those such that for any ξ ∈ Rn we have ξ⊤Mξ < 0.
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over all adapted processes α such that E
󰁕 T
0 α2

t dt < ∞ (we will call these admissible).

The Hamiltonian is

Ht(x, a, y, z) = x⊤L(t) y+y⊤M(t) a+tr
󰁫
σ(t)⊤z

󰁬
+x⊤C(t)x+a⊤D(t) a+2x⊤F (t) a .

We see that as function of (a, x) it is a sum of linear and quadratic functions and
hence differentiable. Moreover since C ≤ 0 and D < 0 we see that it is concave.

We see that
∂xHt(x, a, y, z) = L(t)y + 2C(t)x+ 2F (t)a

and so the adjoint BSDE (Ŷ , Ẑ) for the optimal control α̂ is

dŶt = −
󰁫
L(t)Ŷt + 2C(t)X̂t + 2F (t)α̂

󰁬
dt+ Ẑt dWt for t ∈ [0, T ] , ŶT = 2RX̂T .

Note that x 󰀁→ x⊤Rx is concave (since R ≤ 0) and so the Pontryagin’s maximum
principle applies. If α̂ is the optimal control, X̂ is the associated diffusion and (Ŷ , Ẑ)
is the solution to the adjoint BSDE for α̂ then the maximum principle says that

Ht(X̂t, α̂t, Ŷt, Ẑt) = max
a∈R

Ht(X̂t, a, Ŷt, Ẑt) .

In this case the maximum is achieved when (Hamiltonian is quadratic in a with neg-
ative leading coefficient so we just differentiate w.r.t. a and see for which value this
is 0):

0 = M(t)⊤Ŷt + 2D(t) a+ 2F (t)⊤X̂t

i.e.

α̂t = −1

2
D(t)−1

󰀓
M(t)⊤Ŷt + 2F (t)⊤X̂t

󰀔
.

Inspecting the terminal condition for the adjoint BSDE leads us to “guess” that we
should have Ŷt = 2S(t)X̂t for some S ∈ C1([0, T ];Rd×d), S symmetric and S ≤ 0 with
S(T ) = R. We rewrite the optimal control with our guess for Ŷ :

α̂t = −D(t)−1
󰀓
M(t)⊤S(t) + F (t)⊤

󰀔
X̂t

and we can also write the optimally controlled SDE:

dX̂t =
󰁱
L(t) +M(t)

󰁫
−D(t)−1

󰀓
M(t)⊤S(t) + F (t)⊤

󰀔󰁬󰁲
X̂t dt+ σ(t) dWt . (6.13)

Since our guess is that Ŷt = 2S(t)X̂t we have, due to Itô’s formula

dŶt = 2S′(t)X̂t dt+ 2S(t) dX̂t

= 2S′(t)X̂t dt+ 2S(t)
󰁱
L(t) +M(t)

󰁫
−D(t)−1

󰀓
M(t)⊤S(t) + F (t)⊤

󰀔󰁬󰁲
X̂t dt

+ 2S(t)σ(t) dWt .

On the other hand the adjoint equation for Ŷ gives

dŶt = −2
󰁫
L(t)S(t) + C(t)− F (t)D(t)−1

󰀓
M(t)⊤S(t) + F (t)⊤

󰀔󰁬
X̂t dt+ Ẑt dWt .
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Since both must hold we get that Ẑt = 2S(t)σ(t) and that

S′(t) + S(t)L(t) + S(t)M(t)
󰁫
−D(t)−1

󰀓
M(t)⊤S(t) + F (t)⊤

󰀔󰁬

= −L(t)S(t)− C(t) + F (t)D(t)−1
󰀓
M(t)⊤S(t) + F (t)⊤

󰀔

so that for t ∈ [0, T ]

S′(t) = [S(t)M(t) + F (t)]D(t)−1
󰀓
M(t)⊤S(t) + F (t)⊤

󰀔
− L(t)S(t)− S(t)L(t)− C(t)

with S(T ) = R. Under our assumptions the Ricatti equation has a unique solution
such that S is symmetric and S ≤ 0.

The equation (6.13) for X̂ is linear and clearly has unique solution and all the moments
are bounded.

We observe (recalling Ŷt = 2S(t)X̂t) that

2X̂⊤
T RX̂T = 2X̂⊤

T S(T )X̂T = X̂⊤
T ŶT = X̂⊤

T ŶT−X̂⊤
0 Ŷ0+X̂⊤

0 Ŷ0 =

󰁝 T

0
d(X̂⊤

t Ŷt)+2x⊤S(0)x.

(6.14)
Let us write ψ(t) := −D(t)−1

󰀃
M(t)⊤S(t) + F (t)⊤

󰀄
, so that

dX̂t = [L(t) +M(t)ψ(t)] X̂t dt+ σ(t) dWt ,

dŶt = −2 [L(t)S(t) + C(t) + F (t)ψ(t)] X̂t dt+ 2S(t)σ dWt .

Moreover16

1

2
d(X̂⊤

t Ŷt) =
1

2

󰀓
X̂⊤

t S(t)dX̂t + X̂⊤
t dŶt + d(X̂⊤

t )dŶt

󰀔

=X̂⊤
t S(t)L(t)X̂t dt+ X̂⊤

t S(t)M(t)ψ(t)X̂t dt+ X̂⊤
t S(t)σ(t) dWt

− X̂⊤
t L(t)S(t)X̂t dt− X̂⊤

t C(t)X̂t − X̂⊤
t F (t)ψ(t)X̂t

+ X̂⊤
t S(t)σ(t) dWt + tr[σ(t)(S(t)σ(t))⊤] dt .

Hence,

1

2
d(X̂⊤

t Ŷt) = + X̂⊤
t S(t)M(t)ψ(t)X̂t dt

− X̂⊤
t C(t)X̂t − X̂⊤

t F (t)ψ(t)X̂t

+ 2X̂⊤
t S(t)σ(t) dWt + tr[σ(t)(S(t)σ(t))⊤] dt .

(6.15)

We also have

J α̂(x) = E
󰀗󰁝 T

0

󰀓
X̂⊤

t C(t)X̂t + α̂⊤
t D(t)α̂t + 2X⊤

t F (t)α̂t

󰀔
dt+RX̂2

T

󰀘
. (6.16)

Noting that α⊤
t D(t)α̂t = −X̂⊤

t (M(t)⊤S(t) + F (t)⊤)⊤ψ(t)X̂t and substituting (6.15)
into (6.14) and using this in (6.16) we see that most terms cancel and hence

J α̂(x) = E
󰀗󰁝 T

0
tr
󰁫
σ(t)(S(t)σ(t))⊤

󰁬
dt+

󰁝 T

0
2X̂⊤

t S(t)σ(t) dWt + x⊤S(0)x

󰀘
.

16 We have S symmetric. Then

x⊤SLx = (S⊤x)⊤Lx = (Sx)⊤(Lx) = (Lx)⊤Sx = x⊤LSx

where the first and last equalities are AB = (B⊤A⊤)⊤, the second equality is symmetry of S and the
third equality is properties of dot products.
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Since the solution of the SDE for X̂ has all moments bounded we have

E
󰁝 T

0
4|S(t)|2|σ(t)|4|X̂t|2 dt ≤ N

󰁝 T

0
E|X̂t|2 dt ≤ NT < ∞ .

The stochastic integral is thus a martingale and so

v(x) = J α̂(x) = x⊤S(0)x+

󰁝 T

0
tr
󰁫
σ(t)(S(t)σ(t))⊤

󰁬
dt .

Example 6.12 (Minimum variance for given expected return). We consider the
simplest possible model for optimal investment: we have a risk-free asset B with
evolution given by dBt = rBt dt and B0 = 1 and a risky asset S with evolution given
by dSt = µSt dt + σSt dWt with S0 given. For simplicity we assume that σ, µ, r are
given constants, σ ∕= 0 and µ > r. The value of a portfolio with no asset injections /
consumption is given by X0 = x and

dXα
t =

αt

St
dSt +

Xt − αt

Bt
dBt ,

where αt represents the amount invested in the risky asset. Then

dXα
t = (rXt + αt(µ− r)) dt+ σαt dWt . (6.17)

Given a desired return m > 0 we aim to find a trading strategy which would minimize
the variance of the return (in other words a strategy that gets as close to the desired

return as possible). We restrict ourselves to α such that E
󰁕 T
0 α2

t dt < ∞. Thus we
seek

V (m) := inf
α

{Var(Xα
T ) : EXα

T = m} . (6.18)

See Exercise 6.13 to convince yourself that the set over which we wish to take infimum
is non-empty. Conveniently, if, for λ ∈ R, we can calculate

v(λ) := inf
α

E
󰀅
|Xα

T − λ|2
󰀆

then [15, Proposition 6.6.5] tells us that

V (m) = sup
λ∈R

󰀅
v(λ)− (m− λ)2

󰀆
.

Furthermore
v(λ) = − sup

α
E
󰀅
−|Xα

T − λ|2
󰀆
.

Thus our aim is to maximize

Jλ(α) := E [g(Xα
T )] with g(x) = −(x− λ)2 .

Since g is concave and differentiable we will try to apply Pontryagin’s maximum
principle. As there is no running gain (i.e. f = 0) and since Xα is given by (6.17) we
have the Hamiltonian

Ht(x, a, y, z) = [rx+ a(µ− r)]y + σa z .

This, being affine in (a, x), is certainly differentiable and concave. Moreover, if there
is an optimal control β and if the solution of the adjoint BSDE is denoted (Y β , Zβ)
then

max
a

Ht(X
β
t , a, Y

β
t , Zβ

t ) = max
a

󰁫
rXβ

t Y
β
t + a(µ− r)Y β

t + σaZβ
t

󰁬
.
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The quantity being maximized is linear in a and thus it will be finite if and only if
the solution to the adjoint equation satisfies

(µ− r)Y β
t + σZβ

t = 0 a.s. for a.a t. (6.19)

From now on we omit the superscript β everywhere. Recalling the adjoint equation:

dYt = −rYt dt+ Zt dWt and YT = ∂xg(XT ) = −2(XT − λ). (6.20)

To proceed we will need to make a guess at what the solution to the adjoint BSDE
will look like. Since the terminal condition is linear in XT we will try the ansatz
Yt = ϕ(t)Xt+ψ(t) for some C1 functions ϕ and ψ. Notice that this is rather different
to the situation in Example 6.3, since there we obtain a solution but only in terms of
an unknown process arising from the martingale representation theorem. With this
ansatz we have, substituting the expression for Y on the r.h.s. of (6.20), that

dYt = −rϕ(t)Xt dt− rψ(t) dt+ Zt dWt (6.21)

and on the other hand we can use the ansatz for Y and product rule on the l.h.s.
of (6.20) to see

dYt = ϕ(t) dXt +Xtϕ
′(t) dt+ ψ′(t) dt

= ϕ(t) [rXt + βt(µ− r)] dt+ ϕ(t)σβt dWt +Xtϕ
′(t) dt+ ψ′(t) dt .

(6.22)

The second equality above came from (6.17) with β as the control. Then (6.21)
and (6.22) can simultaneously hold only if Zt = ϕ(t)σβt and if

ϕ(t) [rXt + βt(µ− r)] +Xtϕ
′(t) + ψ′(t) = −rϕ(t)Xt − rψ(t) .

This in turn will hold as long as

βt =
2rϕ(t)Xt + rψ(t) + ϕ′(t)Xt + ψ′(t)

ϕ(t)(r − µ)
. (6.23)

On the other hand from the Pontryagin maximum principle we conculded (6.19) which,
with Yt = ϕ(t)Xt + ψ(t) and Zt = ϕ(t)σβt says

(µ− r)[ϕ(t)Xt + ψ(t)] + σ2ϕ(t)βt = 0,

i.e.

βt =
(r − µ)[ϕ(t)Xt + ψ(t)]

σ2ϕ(t)
. (6.24)

But (6.23) and (6.24) can both hold only if (collecting terms with Xt and without)

ϕ′(t) =
󰀓
(r−µ)2

σ2 − 2r
󰀔
ϕ(t) , ϕ(T ) = −2

ψ′(t) =
󰀓
(r−µ)2

σ2 − r
󰀔
ψ(t) , ψ(T ) = 2λ .

(6.25)

Note that the terminal conditions arose from YT (rather than from the equations for
β). Also note that ψ clearly depends on λ but for now we omit this in our notation.
Clearly

ϕ(t) = −2e
−
󰀕
(r−µ)2

σ2 −2r

󰀖
(T−t)

and ψ(t) = 2λe
−
󰀕
(r−µ)2

σ2 −r

󰀖
(T−t)

. (6.26)
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We note that from (6.24) we can write the control as Markov control

β(t, x) = −(µ− r)[ϕ(t)x+ ψ(t)]

σ2ϕ(t)
.

Thus X driven by this control is square integrable. Indeed β is a linear function in x
and together with (6.17) and Proposition 3.6 we can conclude the square integrability.

Thus we also have E
󰁕 T
0 β2

t dt < ∞ and so the control is admissable.

We still need to know
v(λ) = −J(β) = E

󰀅
|XT − λ|2

󰀆
.

We cannot calculate this by solving for X as in Exercise 6.13 (try it). Instead we note
that

E|XT − λ|2 = E
󰀗
−1

2
ϕ(T )X2

T − ψ(T )XT + λ2

󰀘
.

From Itô’s formula for ξt := −1
2ϕ(t)X

2
t − ψ(t)Xt we get that

−dξt =
󰀃
1
2ϕ

′(t)X2
t + ψ′(t)Xt

󰀄
dt+ [ϕ(t)Xt + ψ(t)] dXt +

1
2ϕ(t) dX(t)dX(t) .

And we have that
dXt = (rXt + βt(µ− r)) dt+ σβt dWt .

Hence

−EξT = −ξ0 + E
󰁝 T

0

󰀕
1
2ϕ

′(t)X2
t + ψ′(t)Xt

+ rϕ(t)X2
t + rψ(t)Xt

+ βt(µ− r)[ϕ(t)Xt + ψ(t)]

+ 1
2ϕ(t)σ

2β2
t

󰀖
dt .

From the optimality condition (µ− r)βt[ϕ(t)Xt + ψt] + σ2ϕ(t)β2
t = 0 we get

1
2σ

2ϕ(t)β2
t = −1

2(µ− r)βt[ϕ(t)Xt + ψt]

and so

−EξT = −ξ0 + E
󰁝 T

0

󰀕
1
2ϕ

′(t)X2
t + ψ′(t)Xt

+ rϕ(t)X2
t + rψ(t)Xt

+ 1
2βt(µ− r)[ϕ(t)Xt + ψ(t)]

󰀖
dt .

This is

−EξT = −ξ0 +
(r−µ)2

σ2 E
󰁝 T

0

󰀕
1
2ϕ(t)X

2
t + ψ(t)Xt − 1

2
ϕ(t)2X2

t +2ϕ(t)ψ(t)Xt+ψ(t)2

ϕ(t)

󰀖
dt .

So

EξT = ξ0 +
1
2
(r−µ)2

σ2

󰁝 T

0

ψ(t)2

ϕ(t) dt .
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Due to (6.26) we have

EξT = ξ0 − λ2 (r−µ)2

σ2

󰁝 T

0
e−

(r−µ)2

σ2 (T−t) dt .

Hence

EξT = ξ0 − λ2

󰀥
1− e−

(r−µ)2

σ2 T

󰀦
.

But E|XT − λ|2 = EξT + λ2 and so

E|XT − λ|2 = ξ0 + λ2e−
(r−µ)2

σ2 T .

Moreover ξ0 = −1
2ϕ(0)x

2 − ψ(x)x and so

ξ0 = x2e
−
󰀕
(r−µ)2

σ2 −2r

󰀖
T
− 2xλe

−
󰀕
(r−µ)2

σ2 −r

󰀖
T
.

Finally

E|XT − λ|2 = e−
(r−µ)2

σ2 T 󰀅
x2e2rT − 2xλerT + λ2

󰀆
= e−

(r−µ)2

σ2 T 󰀃
λ− xerT

󰀄2
.

which means that
v(λ) = −κ

󰀃
λ− xerT

󰀄2
,

where κ := e−
(r−µ)2

σ2 T > 0. We thus get

V (m) = sup
λ∈R

󰀅
−κ

󰀃
λ2 − 2λxerT + x2e2rT

󰀄
− λ2 + 2λm−m2

󰀆
.

This is achieved when
0 = −κλ+ κxerT − λ+m

i.e. when λ = κxerT+m
κ+1 .

6.5 Variational connection to HJB equation

In this section we want to formally derive the HJB equation as a necessary condition
for optimality using a variational argument. We consider the control problem

(P )

󰀻
󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰀽

Maximize, over a : [0, T ]× Rd → Rm the functional

J(a) := E
󰀗󰁝 T

0
f
󰀃
s,Xa,0,ξ

s , as(X
a,0,ξ
s )

󰀄
ds+ g

󰀃
Xa,0,ξ

T

󰀄󰀘
,

where Xa,0,ξ
t , t ∈ [0, T ], is the weakly unique solution of

Xt = ξ +

󰁝 t

0
b(s,Xs, as(Xs)) ds+

󰁝 t

0
σ(s,Xs, as(Xs)) dWs .

Let us assume that b and σ are smooth and uniformly bounded and moreover σσ⊤ ≥ λI
for some λ > 0. Assume ξ ∼ p0. The controlled Fokker–Planck–Kolmogorov equation
(FPKE), see Section A.2.2, for the density of Xa,0,ξ

t , t ∈ [0, T ] is

∂tp− 1
2∇

2
󰀓
(σσ⊤)(·, a)p

󰀔
+∇ · (b(·, a)p) = 0 in (0, T )× Rd , (6.27)
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together with p(0, ·) = p0 on Rd. Note that p = pa in that it depends on the Markov
control chosen.

We will use the convention that ∇ = ∇x and integrals over domain of integration left
unspecified are over Rd.

We will now mimic the argument from Section 6.1 but instead of perturbing controlled
processes we’ll perturb the Markov controls and instead of working with the SDE we
will work with the controlled FPKE. Let us fix Markov controls (t, x) 󰀁→ a(t, x) and
(t, x) 󰀁→ a′(t, x). Then

J(a) =

󰁝 T

0

󰁝
ft(·, at)pat dx dt+

󰁝
g paT dx

and hence (using product rule)

d

dε
J(a+ ε(a′ − a))

󰀏󰀏󰀏
ε=0

=

󰁝 T

0

󰁝 󰀅
fs(·, as)vs + pas(a

′
s − as)∂afs(·, as)

󰀆
dx dt+

󰁝
g vT dx ,

where vt :=
d
dεp

a+ε(a′−a)
t and where a, a′ are two fixed Markov control functions. To

proceed we’d like an equation for v and to that end we need to take derivative in (6.27).
Note that

d

dε

󰁫
b(·, at + ε(a′t − at))p

at+ε(a′t−at)
t

󰁬 󰀏󰀏󰀏
ε=0

= b(·, at)vt + pat∇ab(·, at)(a′t − at)

and

d

dε

󰁫
(σσ⊤)(·, at + ε(a′t − at))p

at+ε(a′t−at)
t

󰁬 󰀏󰀏󰀏
ε=0

= (σσ⊤)(·, at)vt+pat

󰀓
∇a(σσ

⊤)
󰀔
(·, at)(a′t−at) .

Hence from these and (6.27) we get

0 = ∂tvt − 1
2∇

2
󰁫
(σσ⊤)(·, at)vt + pat

󰀓
∇a(σσ

⊤)
󰀔
(·, at)(a′t − at)

󰁬

+∇ ·
󰀅
b(·, at)vt + pat∇ab(·, at)(a′t − at)

󰀆
in (0, T )× Rd .

Next, we would like to find a “backward” equation for an unknown function, say
(t, x) 󰀁→ ut(x), such that uT = g and in terms of the backward equation we have

d

dε
J(a+ ε(a′ − a))

󰀏󰀏󰀏
ε=0

=

󰁝 T

0

󰁝
. . .Hamiltonian involving u . . . (a′ − a) dx dt .

At this point we don’t know exactly how the Hamiltonian should look and we don’t
know what the backward equation should be exactly. Nevertheless, since v0 = 0, we
get from the product rule that

d

dε
J(a+ ε(a′ − a))

󰀏󰀏󰀏
ε=0

=

󰁝 T

0

󰁝 󰀅
fs(·, as)vs + pas(a

′
s − as)∂afs(·, as)

󰀆
dx ds+

󰁝
uT vT dx

=

󰁝 T

0

󰁝 󰀅
ft(·, at)vt + pat (a

′
t − at)∂aft(·, at)

󰀆
dx dt+

󰁝 T

0

󰁝
ut∂tvt dx dt+

󰁝 T

0

󰁝
vt∂tut dx dt .
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We now want to choose the evolution of u i.e. choose ∂tu such that all the terms not
involving (a′t − at) cancel out. To that end we note that

󰁝
ut∂tvt dx dt =

󰁝
ut

1
2∇

2
󰁫
(σσ⊤)(·, at)vt + pat

󰀓
∇a(σσ

⊤)
󰀔
(·, at)(a′t − at)

󰁬
dx

−
󰁝

ut∇ ·
󰀅
b(·, at)vt + pat∇ab(·, at)(a′t − at)

󰀆
dx .

Since we are in the business of deciding what u should satisfy let us demand that
ut,∇ut → 0 as x → ∞ “sufficiently fast” (we could quantify this if we quantify how
pat behaves at infinity). Then, using integration by parts
󰁝

ut∂tvt dx dt =

󰁝
1
2

󰁫
tr(σσ⊤∇2ut)(·, at)vt + pat

󰀓
∇atr((σσ

⊤)(·, at)∇2ut)
󰀔
(a′t − at)

󰁬
dx

+

󰁝
∇ut ·

󰀅
b(·, at)vt + pat∇ab(·, at)(a′t − at)

󰀆
dx .

Hence if we take u such that

∂tu = −1
2tr(σσ

⊤∇2ut)(·, at)− b(·, at) ·∇ut − ft(·, at)

then

d

dε
J(a+ ε(a′ − a))

󰀏󰀏󰀏
ε=0

=

󰁝 T

0

󰁝 󰀅
∇aft(·, at) +∇ab(·, at)∇ut +

1
2

󰀓
∇atr((σσ

⊤)(·, at)∇2ut)
󰀔
(a′t − at)p

a
t

󰀆
dx ds

=

󰁝 T

0

󰁝
∇aH(·,∇ut,∇2ut, at)(a

′
t − at)p

a
t dx dt ,

where we defined, for x ∈ Rd, y ∈ Rd, z ∈ Rd×d and a ∈ Rm the Hamiltonian as

H(x, y, z, a) := 1
2tr((σσ

⊤)(x, a)z) + b(x, a) · y + f(x, a) . (6.28)

Now we observe that if a is a (locally) optimal control then for any small ε > 0 we
have

0 ≥ lim
ε→0

1

ε

󰀃
J(a+ ε(a′ − a))− J(a)

󰀄
=

d

dε
J(a+ ε(a′ − a))

󰀏󰀏󰀏
ε=0

=

󰁝 T

0

󰁝
∇aH(·,∇ut,∇2ut, at)(a

′
t − at)p

a
t dx dt .

Since we are assuming σσ⊤ ≥ λI for λ > 0 we get that pat has full support and so for
Lebesgue-almost-every t, x we have ε > 0 such that

0 ≥ H(x,∇ut(x),∇2ut(x), at(x) + ε(a′ − at(x)))−H(x,∇ut(x),∇2ut(x), at(x)) .

Hence the optimal control and forward and backward equations satisfy

at(x) ∈ argmax
a′∈Rm

H(x,∇ut(x),∇2ut(x), a
′) (t, x) ∈ (0, T )× Rd,

0 = ∂tp
a − 1

2∇
2
󰀓
(σσ⊤)(·, a)pa

󰀔
+∇ · (b(·, a)pa) in (0, T )× Rd ,

0 = ∂tu+ 1
2tr(σσ

⊤∇2ut)(·, at) + b(·, at) ·∇ut − ft(·, at) in (0, T )× Rd

uT = g .
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We note that this implies that the backward equation is

∂tu+ max
a′∈Rm

󰁫
1
2tr(σσ

⊤∇2u)(·, a′) + b(·, a′) ·∇u− f(·, a′)
󰁬
= 0 in (0, T )× Rd

with the terminal condition uT = g. This is exactly the HJB equation we’ve derived
from the Bellman principle in (4.4).

What if we wanted to see if the HJB will arise from concavity-type consideration? Let
us consider two Markov controls a′ and a. Then

J(a′)−J(a) =

󰁝 T

0

󰁝
ft(·, a′t)p′t dx dt+

󰁝
g p′T dx−

󰁝 T

0

󰁝
ft(·, at)pt dx dt−

󰁝
g pT dx ,

(6.29)
where for brevity pa

′
= p′ and pa = p are the densities of the controlled SDEs controlled

with Markov controls a′ and a′ respectively.

Let u be the solution to the linear equation

∂tu = −1
2tr(σσ

⊤(·, a)∇2ut)− b(·, a) ·∇u− f(·, a) in (0, T )× Rd ,

with uT = g. This is the equation for the value function arising from using the Markov
control a. If we want to, we can write an equation for value function arising from a′

and label it u′. This is the “backward” equation. The forward equations are given
by (6.27) and we know that p′0 = p0 and so we can write

〈g, p′T − pT 〉 = 〈uT , p′T − pT 〉 − 〈u0, p′0 − p0〉 =
󰁝 T

0
d〈ut, p′t − pt〉 ,

where we adopted the notation 〈u, v〉 =
󰁕
uv dx whenever the integral can be well

defined. Then, using some kind of product rule and plugging in the “forward” and
“backward” equations we should have, that

󰁝 T

0
d〈ut, p′t − pt〉 =

󰁝 T

0
〈ut, d(p′t − pt)〉+

󰁝 T

0
〈p′t − pt, dut〉

=

󰁝 T

0

󰁇
ut,

󰁫
1
2∇

2
󰀓
(σσ⊤)(·, a′t)p′t

󰀔
−∇ · (b(·, a′t)p′t)− 1

2∇
2
󰀓
(σσ⊤)(·, at)pt

󰀔
+∇ · (b(·, at)pt)

󰁬󰁈
dt

+

󰁝 T

0

󰁇
p′t − pt,

󰁫
− 1

2tr(σσ
⊤(·, a)∇2ut)− b(·, a) ·∇u− f(·, a)

󰁬󰁈
dt .

If we can justify that integration-by-parts leads to no boundary terms then
󰁇
ut,

1
2∇

2
󰀓
(σσ⊤)(·, a′t)p′t

󰀔󰁈
=

󰁇
1
2tr((σσ

⊤)(·, a′t)∇2ut), p
′
t

󰁈

and
−
󰁇
ut,∇ · (b(·, a′t)p′t)

󰁈
=

󰁇
∇ut · b(·, a′t), p′t

󰁈

and similarly for the terms without the prime and so

〈g, p′T − pT 〉 =
󰁝 T

0

󰁇
1
2tr(σσ

⊤(·, a′t)∇2ut), p
′
t

󰁈
+

󰁇
∇ut · b(·, a′t), p′t

󰁈
dt

−
󰁝 T

0

󰁇
p′t,

󰁫
1
2tr(σσ

⊤(·, at)∇2ut) + b(·, at) ·∇ut + f(·, at)
󰁬󰁈

dt

+

󰁝 T

0

󰁇
pt, f(·, at)

󰁈
dt .
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From this and (6.29) we have that

J(a′)− J(a) =

󰁝 T

0
〈ft(·, a′t), p′t〉 − 〈ft(·, at), pt〉 dt+ 〈g, p′T − pT 〉 dt

=

󰁝 T

0
〈ft(·, a′t), p′t〉+

󰁇
1
2(σσ

⊤)(·, a′t)∇2ut, p
′
t

󰁈
+

󰁇
∇ut · b(·, a′t), p′t

󰁈

−
󰁇
p′t,

󰁫
1
2tr(σσ

⊤(·, at)∇2ut) + b(·, at) ·∇u+ f(·, at)
󰁬󰁈

dt

=

󰁝 T

0

󰁇
p′t,

1
2tr((σσ

⊤)(·, a′t)∇2ut) +∇ut · b(·, a′t) + ft(·, a′t)

− 1
2tr(σσ

⊤(·, at)∇2ut)− b(·, at) ·∇u− f(·, at)
󰁈
dt .

Using the definition of the Hamiltonian (6.28) we get

J(a′)− J(a) =

󰁝 T

0

󰁇
p′t, H(·,∇ut,∇2ut, a

′
t)−H(·,∇ut,∇2ut, at)

󰁈
dt .

Assuming the Hamiltonian is concave in a for every x, y, z we have

H(x, y, z, a′)−H(x, y, z, a) ≤ (∇aH)(x, y, z, a)(a′ − a)

and so

J(a′)− J(a) ≤
󰁝 T

0

󰁇
p′t, (∇aH)(·,∇ut,∇2ut, at) · (a′ − a)

󰁈
dt . (6.30)

Now assume that
at(x) ∈ argmaxb∈RpH(x,∇ut,∇2ut, b)

then (∇aH)(·,∇ut,∇2ut, at) · (a′ − a) = 0 and so J(a′)− J(a) ≤ 0.

6.6 Exercises

Exercise 6.13 (To complement Example 6.12). Show that, under the assumptions
of Example 6.12, the set {Var(Xα

T ) : EXα
T = m} is nonempty.

Exercise 6.14 (Merton’s problem with exponential utility, no consumption, using
Pontryagin’s Maximum Principle). Consider a model with a risky asset (St)t∈[0,T ] and
a risk-free asset (Bt)t∈[0,T ] given by

dSt = µSt dt+ σSt dWt t ∈ [0, T ] , S0 = S ,

dBt = rBt dt t ∈ [0, T ] , S0 = S ,B0 = 1 ,

where µ, r ∈ R and σ > 0 are given constants. Let (Xt)t∈[0,T ] denote the value of a
self-financing investment portfolio with X0 = x > 0 and let αt denote the fraction of
the portfolio value Xt invested in the risky asset. We note that Xt depends on the
investment strategy αt and so we write Xt = Xα

t . We will only consider α that are

real-valued, adapted and such that E
󰁕 T
0 α2

t dt < ∞, denoting such strategies A and
calling them admissable.

Our aim is to find the investment strategy α̂ which maximizes, over α ∈ A,

J(α) = E [− exp(−γXα
T )] ,

for some γ > 0.
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i) Use the definition of a self-financing portfolio to derive the equation for the port-
folio value:

dXt = Xt [αt(µ− r) + r] dt+Xtαtσ dWt .

ii) Write down the Hamiltonian for the problem and the adjoint BSDE for the op-
timal portfolio (use α̂ to denote the optimal control, (Ŷ , Ẑ) to denote the BSDE).

iii) Explain how Pontryagin’s maximum principle implies that

Ẑt = −µ− r

σ
Ŷt .

iv) Noting that ŶT = γe−γX̂T use the “ansatz” Ŷt = φte
−ψtX̂t with some φ,ψ ∈

C1([0, T ]) such that φT = γ and ψT = γ. Hence show that

X̂tα̂t = e−r(T−t)µ− r

γσ2
.

6.7 Solutions to the exercises

Solution (to Exercise 6.13). We start by solving (6.17) for some αt = a constant. Note that (with
X = Xα)

d(e−rtXt) = e−rt [dXt − rXt dt] = e−rt [a(µ− r) dt+ σa dWt] .

Thus

e−rTXT = x+

󰁝 T

0

e−rta(µ− r) dt+

󰁝 T

0

σae−rt dWt .

Since the stochastic integral is a true martingale

EXT = erTx+ erT a(µ− r)

󰁝 T

0

e−rt dt = erTx+ a(µ− r)
1

r

󰀓
erT − 1

󰀔
.

Thus with

a = r
m− erTx

(µ− r)(erT − 1)

we see that EXT = m and so the set is non-empty.

Solution (to Exercise 6.14). i) We have

dXt =
αtXt

St
dSt +

Xt − αtXt

Bt
dBt = αtXtµdt+ αtXtσ dWt +Xtr dt− αtXtr dt

so
dXt = Xt [αt(µ− r) + r] dt+Xtαtσ dWt .

ii) Let us write down the Hamiltonian:

Ht(x, a, y, z) = x[a(µ− r) + r]y + x aσ z

so
∂xHt(x, a, y, z) = [a(µ− r) + r]y + aσ z .

The adjoint BSDE for the optimal portfolio X̂, which we denote (Ŷ , Ẑ) then is

dŶt = −[α̂t(µ− r) + r]Ŷt dt− α̂tσẐt dt+ Ẑt dWt t ∈ [0, T ] , ŶT = γ exp(−γX̂T ) . (6.31)

We can show that X̂t > 0 since x > 0. Hence |ŶT |2 = γ2 exp(−2γX̂T ) ≤ γ2 and so ŶT ∈ L2(FT ).
The above affine BSDE thus has a unique solution (Ŷ , Ẑ) and we may proceed.

iii) We note that the terminal reward function g(x) = −e−γx is concave. We can check that the
Hamiltonian is concave in x as well as in a but not in (x, a), so the optimality principle as a
sufficient condition doesn’t apply.

Nevertheless, according to the optimality principle the optimal control α̂ must satisfy

Ht(X̂t, α̂t, Ŷt, Ẑt) = max
a∈R

󰁫
X̂t

󰀃
a(µ− r)− r

󰀄
Ŷt + X̂taσẐt

󰁬
.
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We need the Hamiltonian to be finite which in turns means that it must hold that

X̂tŶt(µ− r) + X̂tẐtσ = 0 .

Hence

Ẑt = −µ− r

σ
Ŷt . (6.32)

iv) We will use the “ansatz” Ŷt = φte
−ψtX̂t with some φ,ψ ∈ C1([0, T ]) such that φT = γ and

ψT = γ. We note that

d(−ψtX̂t) = −ψtX̂t[α̂t(µ− r) + r] dt− ψtX̂tα̂tσ dWt − ψ′
tX̂t dt

so that

dŶt = φtd(e
−ψtX̂t) + e−ψtX̂tdφt

= e−ψtX̂t

󰁫
φtd(−ψtX̂t) +

1

2
φtd(−ψtX̂t)d(−ψtX̂t) + dφt

󰁬

= e−ψtX̂t

󰁫
− ψtφtdX̂t − X̂tφtdψt +

1

2
φtψ

2
t dX̂tdX̂t + dφt

󰁬

= e−ψtX̂t

󰁫
− ψtφtX̂t

󰀅
(α̂t(µ− r) + r) dt+ α̂tσ dWt

󰀆
− X̂tφtψ

′
t dt+

1

2
φtψ

2
t α̂

2
t X̂

2
t σ

2 dt+ φ′
t dt

󰁬
.

If we now go to the adjoint BSDE (6.31) and substitute for Ẑt from (6.32) we see that we must
also have

dŶt = −rŶtdt−
µ− r

σ
Ŷt dWt .

Equating the “dW terms” leads to

µ− r

σ2
= ψtX̂tα̂t =⇒ X̂tα̂t =

µ− r

σ2ψt
.

Equating the “dt terms” will let us identify ψ and φ. Indeed we get

−rφte
−ψtX̂t = e−ψtX̂t

󰁫
− ψtφtX̂t

󰀅
(α̂t(µ− r) + r)

󰀆
− X̂tφtψ

′
t +

1

2
φtψ

2
t α̂

2
t X̂

2
t σ

2 + φ′
t

󰁬
.

Substituting the control and dividing by the exponential term leads to:

−rφt = −φt

󰀓
(µ−r)2

σ2 + ψtX̂tr
󰀔
− X̂tφtψ

′
t +

1
2
φt

(µ−r)2

σ2 + φ′
t .

This simplifies to

−rφt = −ψtφtX̂tr − 1
2
φt

(µ−r)2

σ2 − X̂tφtψ
′
t + φ′

t .

From this we get (equating the terms with Xt and without):

φ′
t =

󰀓
1
2

(µ−r)2

σ2 − r
󰀔
φt , φT = γ

ψ′
t = −rψt , ψT = γ .

Hence

φt = γ exp
󰀓
(T − t)

󰀓
1
2

(µ−r)2

σ2 − r
󰀔󰀔

, t ∈ [0, T ] ,

ψt = γ exp(r(T − t)) , t ∈ [0, T ] .

So finally the optimal control is:

X̂tα̂t = e−r(T−t) µ− r

γσ2
.

A Appendix

A.1 Basic notation and useful review of analysis concepts

Here we set the main notation for the rest of the course. These pages serve as an easy
reference.
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General For any two real numbers x, y,

x ∧ y = min{x, y}, x ∨ y = max{x, y}, x+ = max{x, 0}, x− = max{−x, 0}.

Sets, metrics and matrices N is the set of strictly positive integers and N0 =
N ∪ {0}.
Rd denotes the d-dimensional Euclidean space of real numbers. For any x = (x1, · · · , xd),
y = (y1, · · · , yd) in Rd, we denote the inner product by xy and by | · | the Euclidean
norm i.e.

xy :=

d󰁛

i=1

xiyi and |x| :=
󰀕 d󰁛

i=1

x2i

󰀖 1
2

Rd×n denotes the set of real valued d × n-matrices; In denotes the n × n-identity
matrix. For any σ ∈ Rn×d, σ = (σij)1≤i≤n,1≤j≤d we write the transpose of σ as
σ⊤ = (σji)1≤j≤d,1≤i≤n ∈ Rd×n. We write the trace operator of an n × n-matrix σ as

Tr(σ) =
󰁓n

i=1 σii. For a matrices we will use the norm |σ| :=
󰀃
Tr(σσ⊤)

󰀄1/2
.

Definition A.1 (Supremum/Infimum). Given a set S ⊂ R, we say that µ is the
supremum of S if (i) µ ≥ x for each x ∈ S and if (ii) for every ε > 0 there exists an
element y ∈ S such that y > µ− ε. We write µ = supS.

The infimum is defined symmetrically as follows: λ is the infimum if (i) λ ≤ x for each
x ∈ S and if (ii) for every ε > 0 there exists an element y ∈ S such that y < λ + ε.
We write λ = inf S.

Note that supremum is the least upper bound, i.e. the smallest real number greater
than or equal to all the elements of the set S. Infimum is the greatest lower bound, i.e.
the largest number smaller than or equal to all the elements of the set S. It is also
important to note that the infimum (or supremum) do not necessarily have to belong
to the set S.

Functions, derivatives For any set A, the indicator function of A is

A(x) = 1 if x ∈ A, otherwise A(x) = 0 if x /∈ A.

We write Ck(A) is the space of all real-valued continuous functions on A with con-
tinuous derivatives up to order k ∈ N0, A ⊂ Rn. In particular C0(A) is the space of
real-valued functions on A that are continuous.

For a real-valued function functions f = f(t, x) defined I ×A we write ∂tf , ∂xif and
∂xixjf for 1 ≤ i, j ≤ n for its partial derivatives. By Df we denote the gradient vector
of f and by D2f the Hessian matrix of f (whose entries 1 ≤ i, j ≤ d are given by
∂xixjf(t, x)).

Consider an interval I (and think of I as a time interval I = [0, T ] or I = [0,∞)).
Then C1,2(I×A) is the set of real valued functions f = f(t, x) on I×A whose partial
derivatives ∂tf , ∂xif and ∂xixjf for 1 ≤ i, j ≤ n exist and are continuous on I ×A.

Integration and probability We use (Ω,F ,P) to denote a probability space with
P being the probability measure and F the σ-algebra.

96



“P-a.s.” denotes “almost surely for the probability measure P” (we often omit the
reference to P). “µ-a.e.” denotes “almost everywhere for the measure µ”; here µ
will not be a probability measure. This means is that a statement Z made about
ω ∈ Ω holds P-a.s. if there is a set E ∈ F such that P(E) = 0 and Z is true for all
ω ∈ Ec = Ω \ E.

B(U) is the Borel σ-algebra generated by the open sets of the topological space U .

E[X] is the expectation of the random variable X with respect to a probability P.
E[X|G] is the conditional expectation of X given G. The variance of the random vari-
able X, possibly vector valued, is denoted by Var(X) = E[(X − E(X))(X − E(X))⊤].

Since we may define different measures on the same σ-algebra we must sometimes
distinguish which measure is used for expectation, conditional expectation or variance.
We thus sometimes write EQ[X], EQ[X|G] or VarQ to show which measure was used.

General analysis definitions and inequalities

Definition A.2 (Convex function). A function f : R → (−∞,∞] is called convex if

∀ λ ∈ [0, 1] ∀ x, y ∈ R f
󰀃
λx+ (1− λ)y

󰀄
≤ λf(x) + (1− λ)f(y).

If a function f is convex then it is differentiable a.e. and (with f ′
− denoting its left-

derivative, f ′
+ its right-derivative) and we have

f ′
+(x) := lim

y↘x

f(y)− f(x)

y − x
= inf

y>x

f(y)− f(x)

y − x
,

f ′
−(x) := lim

y↗x

f(y)− f(x)

y − x
= sup

y<x

f(y)− f(x)

y − x
.

So, from the expression with infimum we see that,

if y > x then f ′
+(x) ≤

f(y)− f(x)

y − x
which implies f(y) ≥ f(x)+f ′

+(x)(y−x) for y > x.

Moreover, from the expression with supremum we see that17,

if y < x then f ′
−(x) ≥

f(y)− f(x)

y − x
which implies f(y) ≥ f(x)+f ′

−(x)(y−x) for y < x.

We review a few standard analysis inequalities, some not named and some others
named: Cauchy-Schwarz, Holder, Young and Gronwall’s inequality.

∀x ∈ R x ≤ 1 + x2

∀a, b ∈ R 2ab ≤ a2 + b2

∀ n ∈ N ∀a, b ∈ R |a+ b|n ≤ 2n−1
󰀃
|a|n + |b|n

󰀄

Lemma A.3 (Cauchy–Schwarz inequality). Let H be a Hilbert space with inner
product (·, ·) and norm | · |H . If x, y ∈ H then (x, y) ≤ |x|H |y|H .

Example A.4. i) If x, y ∈ Rd then xy < |x||y|.
17As y < x we multiply by negative number, flipping the inequality.
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ii) We can check that L2(Ω) with inner product given by E[XY ] forX,Y ∈ L2(Ω) is a

Hilbert space. Hence the Cauchy–Schwarz inequality is E[XY ] ≤
󰀃
E[X2]

󰀄1/2󰀃E[Y 2]
󰀄1/2

.

Lemma A.5 (Young’s inequality). Let a, b ∈ R. Then for any ε ∈ (0,∞) for any
p, q ∈ (1,∞) such that 1/p+ 1/q = 1 it holds that

ab ≤ ε
|a|p
p

+
1

ε

|b|q
q

.

The above inequality is not the original Young’s inequality, that is for the choice ε = 1.
The one here is the original Young’s inequality with the choice (ab) = (εa)(b/ε).

Lemma A.6 (Gronwall’s lemma / inequality). Let λ = λ(t) ≥ 0, a = a(t), b = b(t)
and y = y(t) be locally integrable, real valued functions defined on I (with I = [0, T ]
or I = [0,∞)) such that λy is also locally integrable and for almost all t ∈ [0, T ]

y(t) + a(t) ≤ b(t) +

󰁝 t

0
λ(s)y(s) ds.

Then

y(t) + a(t) ≤ b(t) +

󰁝 t

0
λ(s)e

󰁕 t
s λ(r)dr(b(s)− a(s)) ds for almost all t ∈ I.

Furthermore, if b is monotone increasing and a is non-negative, then

y(t) + a(t) ≤ b(t)e
󰁕 t
0 λ(r) dr, for almost all t ∈ I.

If the function y in Gronwall’s lemma is continuous then the conclusions hold for all
t ∈ I. For proof see Exercise 1.9.

Some fundamental probability results

(Following the notation established in SAF) we define lim inf and lim sup.

Definition A.7 (limsup & liminf). Let (an)n∈N be any sequence in R = R∪{−∞,∞}

lim
n→

inf
∞

an := lim
n→∞

lim
k→∞

min{an, an+1, an+2, . . . , ak} = inf
n

sup
k≥n

ak,

lim
n→

sup
∞

an := lim
n→∞

lim
k→∞

max{an, an+1, an+2, . . . , ak} = sup
n

inf
k≥n

ak.

Clearly lim infn→∞ an ≤ lim supn→∞ an and if limn→∞ an =: a exists, then lim infn→∞ an =
lim supn→∞ an = a. On the other hand, if lim infn→∞ an ≥ lim supn→∞ an, then
limn→∞ an = a exists.

Exercise A.8 (lim sup and lim inf of RV are RV). Show that lim infn→∞Xn and
lim supn→∞Xn are random variables for any sequence of random variables Xn.

Lemma A.9 (Fatou’s lemma). Let (Xn)n∈N be a sequence of non-negative random
variables. Then

E
󰁫
lim inf
n→∞

Xn

󰁬
≤ lim inf

n→∞
E[Xn].

Moreover,
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i) If there exists a r.v. Y such that E[ |Y | ] < ∞ and Y ≤ Xn ∀n (allows Xn < 0),
then

E
󰁫
lim inf
n→∞

Xn

󰁬
≤ lim inf

n→∞
E[Xn].

ii) If there exists a r.v. Y such that E[ |Y | ] < ∞ and Y ≥ Xn ∀n, then

E
󰀗
lim sup
n→∞

Xn

󰀘
≥ lim sup

n→∞
E [Xn] .

The first part of the above lemma does not require integrability of the sequence of
(Xn)n∈N due to the use of the Monotone Convergence Theorem in its proof. The
enumerated statements follow as a corollary of the first statement. Of course, a version
of Fatou’s lemma using conditional expectations also exists (simply replace E[·] with
E[·|Ft]).

Lemma A.10 (Hölder’s inequality). Let (X,X , µ) be a measure space (i.e. X is a
set, X a σ-algebra and µ a measure). Let p, q > 1 be real numbers s.t. 1/p+ 1/q = 1
or let p = 1, q = ∞. Let f ∈ Lp(X,µ), g ∈ Lq(X,µ). Then

󰁝

X
|fg| dµ ≤

󰀕󰁝

X
|f |pdµ

󰀖 1
p
󰀕󰁝

X
|g|qdµ

󰀖 1
q

In particular if p, q are such that 1/p+1/q = 1 and X ∈ Lp(Ω), Y ∈ Lq(Ω) are random
variables then

E[ |XY | ] ≤ E[ |X|p ]
1
pE[ |Y |q ]

1
q .

Lemma A.11 (Minkowski’s inequality or triangle inequality). Let (X,X , µ) be a
measure space (i.e. X is a set, X a σ-algebra and µ a measure). For any p ∈ [1,∞]
and f, g ∈ Lp(X,µ)

󰀕󰁝

X
|f + g|p dµ

󰀖 1
p

≤
󰀕󰁝

X
|f |p dµ

󰀖 1
p

+

󰀕󰁝

X
|g|p dµ

󰀖 1
p

.

Lemma A.12 (Jensen’s inequality). Let f be a convex function and X be any random
variable with E[|X|] < ∞. Then

f
󰀃
E[X]

󰀄
≤ E

󰀅
f(x)

󰀆
.

A.2 Some useful results from stochastic analysis

For convenience we state some results from stochastic analysis. Proofs can be found
for example in Stochastic Analysis for Finance lecture notes, in [15], [2] or [10].

Probability Space

Let us always assume that (Ω,F ,P) is a fixed probability space. We assume that F is
complete which means that all the subsets of sets with probability zero are included
in F . We assume there is a filtration (Ft)t∈[0,T ] (which means Fs ⊆ Ft ⊆ F) such
that F0 contains all the sets of probability zero.
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Stochastic Processes, Martingales

A stochastic process X = (Xt)t≥0 is a collection of random variables Xt which take
values in Rd.

We will always assume that stochastic processes are measurable. This means that
(ω, t) 󰀁→ X(ω)t taken as a function from Ω× [0,∞) to Rd is measurable with respect
to σ-algebra F ⊗ B([0,∞)).18 This product is defined as the σ-algebra generated by
sets E×B such that E ∈ F and B ∈ B([0,∞)). From Theorem A.35 we then get that

t 󰀁→ Xt(ω) is measurable for all ω ∈ Ω.

We say X is (Ft)t≥0 adapted if for all t ≥ 0 we have that Xt is Ft-measurable.

Definition A.13. Let X be a stochastic process that is adapted to (Ft)t≥0 and such
that for every t ≥ 0 we have E[|Xt|] < ∞. If for every 0 ≤ s < t ≤ T we have

i) E[Xt|Fs] ≥ Xs a.s.then the process is called submartingale.

ii) E[Xt|Fs] ≤ Xs a.s.then the process is called supermartingale.

iii) E[Xt|Fs] = Xs a.s.then the process is called martingale.

For submartingales we have Doob’s maximal inequality:

Theorem A.14 (Doob’s submartingale inequality). Let X ≥ 0 be an (Ft)t∈[0,T ]-
submartingale and p > 1 be given. Assume E

󰀅
Xp

T

󰀆
< ∞. Then

E
󰁫

sup
0≤t≤T

Xp
t

󰁬
≤

󰀕
p

p− 1

󰀖p

E
󰀅
Xp

T

󰀆
.

Definition A.15 (Local Martingale). A stochastic process X is called a local mar-
tingale if is there exists a sequence of stopping time (τn)n∈N such that τn ≤ τn+1 and
τn → ∞ as n → ∞ and if the stopped process (X(t ∧ τn))t≥0 is a martingale for every
n.

Lemma A.16 (Bounded from below local martingales are supermartingales). Let
(Mt)t∈[0,T ] be a local Martingale and assume it is positive or more generally bounded
from below. Then M is a super-martingale.

Proof. The proof makes use of Fatou’s Lemma A.9 above. Since M is a local Mar-
tingale then there exists a sequence of stopping times (τn)n∈N increasing to infinity
a.s. such that the stopped process Mn

t := Mt∧τn is a Martingale. We have then,
using Fatou’s lemma for any 0 ≤ s ≤ t ≤ T

E[Mt|Fs] = E[lim inf
n→∞

Mn
t |Fs] ≤ lim inf

n→∞
E[Mn

t |Fs] = lim inf
n→∞

Mn
s = Ms,

and hence M is a supermartingale.

Exercise A.17 (Submartingale). In view of the previous lemma, is a bounded from
above local martingale a submartingale?

18 If the process is almost surely continuous i.e. if the map [0,∞) ∋ t 󰀁→ Xt(ω) ∈ Rd is continuous
for almost all ω ∈ Ω then Ω × [0,∞) ∋ (ω, t) 󰀁→ X(ω) ∈ Rd is a so-called Carathéodory map the
stochastic process will be measurable due to e.g. Aliprantis and Border [1, Lemma 4.51].
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Integration Classes and Itô’s Formula

Definition A.18. By H we mean all R-valued and adapted processes g such that for
any T > 0 we have

󰀂g󰀂2HT
:= E

󰀗󰁝 T

0
|gs|2ds

󰀘
< ∞.

By S we mean all R-valued and adapted processes g such that for any T > 0 we have

P
󰀗󰁝 T

0
|gs|2ds < ∞

󰀘
= 1.

The importance of these two classes is that stochastic integral with respect to W is
defined for all integrands in class S and this stochastic integral is a continous local
martingale. For the class H the stochastic integral with respect to W is a martingale.

Definition A.19. By A we denote R-valued and adapted processes g such that for
any T > 0 we have

P
󰀗󰁝 T

0
|gs|ds < ∞

󰀘
= 1.

By Hd×n, Sd×n we denote processes taking values the space of d×n-matrices such that
each component of the matrix is in H or S respectively. By Ad we denote processes
taking values in Rd such that each component is in A

Itô processes and Itô Formula

We will need the multi-dimensional version of the Itô’s formula. Let W be an n-
dimensional Wiener martingale with respect to (F)t≥0. Let σ ∈ Sm×d and let b ∈ Am.
We say that the d-dimensional process X has the stochastic differential

dXt = bt dt+ σt dWt (A.1)

for t ∈ [0, T ], if

Xt = X0 +

󰁝 t

0
bs ds+

󰁝 t

0
σs dW (s).

Such a process is also called an Itô process.

The Itô formula or chain rule for stochastic processes Before we go into the
main result, let us go over an example from classic analysis. Take three functions,
u = u(t, x), g = g(t) and h = h(t) given by h(t) := u

󰀃
t, g(t)

󰀄
. Let us compute d

dth(t).

Since h is given as a composition of functions, we use here is the standard chain for
functions of several variables (this takes into account that the variation of h arising
from changes in t comes from the variation of g and also from the first component in
u). Thus we have

d

dt
h(t) =

󰀃
∂tu

󰀄󰀃
t, g(t)

󰀄
+

󰀃
∂xu

󰀄󰀃
t, g(t)

󰀄 d

dt
g(t).

We want to see the contrast with Itô formula, which has to be written in integral form
(since W has almost everywhere non-differentiable paths). To that end, we integrate

󰁝 t

0

d

dt
h(s) ds =

󰁝 t

0

󰀃
∂tu

󰀄󰀃
s, g(s)

󰀄
ds+

󰁝 t

0

󰀃
∂xu

󰀄󰀃
s, g(s)

󰀄 d

dt
g(s) ds
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and use the Fundamental theorem of calculus

h(t)− h(0) =

󰁝 t

0

󰀃
∂tu

󰀄󰀃
s, g(s)

󰀄
ds+

󰁝 t

0

󰀃
∂xu

󰀄󰀃
s, g(s)

󰀄
dg(s)

which can be written in the differential notation as

dh(t) = ∂tf
󰀃
t, g(t)

󰀄
dt+ ∂xf

󰀃
t, g(t)

󰀄
dg(t). (A.2)

Compare (A.2) with (A.3) below. You see a fundamental difference: the second deriv-
ative term! It appears there exactly because the Wiener process has non-differentiable
paths and hence a correction to (A.2) is needed.

We have then the following important result.

Theorem A.20 (Multi-dimensional Itô formula). Let X be a m-dimensional Itô pro-
cess given by (A.1). Let u ∈ C1,2([0, T ]×Rm). Then the process given by u(t,Xt) has
the stochastic differential

du
󰀃
t,Xt

󰀄
= ∂tu

󰀃
t,Xt

󰀄
dt+

d󰁛

i=1

∂xiu
󰀃
t,Xt

󰀄
dXi

t

+
1

2

d󰁛

i,j=1

∂xixju
󰀃
t,Xt

󰀄
dXi

t dX
j
t ,

(A.3)

where for i, j = 1, . . . ,m

dt dt = dt dW i
t = 0, dW i

t dW
j
t = δij dt.

We now consider a very useful special case. Let X and Y be R-valued Itô processes.
We will apply to above theorem with f(x, y) = xy. Then ∂xf = y, ∂yf = x, ∂xxf =
∂yyf = 0 and ∂xyf = ∂yxf = 1. Hence from the multi-dimensional Itô formula we
have

df
󰀃
Xt, Yt

󰀄
= Yt dXt +Xt dYt +

1

2
dYt dXt +

1

2
dXt dYt.

Hence we have the following corollary

Corollary A.21 (Itô’s product rule). Let X and Y be R-valued Itô processes. Then

d
󰀃
XtYt

󰀄
= Xt dYt + Yt dXt + dXt dYt.

Martingale Representation Formula and Girsanov’s theorem

Theorem A.22 (Lévy characterization). Let (Ft)t∈[0,T ] be a filtration. Let X =
(Xt)t∈[0,T ] be a continuous m-dimensional local martingale with respect to (Ft)t∈[0,T ]

such that X0 = 0 and dXi
t dX

j
t = δij dt for i, j = 1, . . . , d. Then X is a Wiener

martingale with respect to (Ft)t∈[0,T ].

So essentially any continuous local martingale with the right quadratic variation is a
Wiener process.
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Theorem A.23 (Girsanov). Let (Ft)t∈[0,T ] be a filtration. Let W = (Wt)t∈[0,T ] be a
d-dimensional Wiener martingale with respect to (Ft)t∈[0,T ]. Let ϕ = (ϕt)t∈[0,T ] be a
d-dimensional process adapted to (Ft)t∈[0,T ] such that

E
󰀅 󰁝 T

0
|ϕs|2 ds

󰀆
< ∞.

Let

Lt := exp

󰀝
−
󰁝 t

0
ϕ⊤
s dW (s)− 1

2

󰁝 t

0
|ϕs|2 ds

󰀞
(A.4)

and assume that E[LT ] = 1. Let Q be a new measure on FT given by the Radon-
Nikodym derivative dQ = L(T ) dP. Then

WQ
t := Wt +

󰁝 t

0
ϕs ds

is a Q-Wiener martingale.

We don’t give proof but only make some useful observations.

1. Clearly L0 = 1.

2. The Novikov condition is a useful way of establishing that E[LT ] = 1: if

E
󰁫
e

1
2

󰁕 T
0 |ϕt|2 dt

󰁬
< ∞

then L is a martingale (and hence E[LT ] = E[L0] = 1).

3. Applying Itô’s formula to f(x) = exp(x) and

dXt = −ϕ⊤
t dWt −

1

2
|ϕt|2 dt

yields
dLt = −Ltϕ

⊤
t dWt.

Theorem A.24 (Martingale representation). Let W = (Wt)t∈[0,T ] be a d-dimensional
Wiener martingale and let (Ft)t∈[0,T ] be generated by W . Let M = (Mt)t∈[0,T ] be a
continuous real valued martingale with respect to (Ft)t∈[0,T ].

Then there exists unique adapted d-dimensional process h = (ht)t∈[0,T ] such that for
t ∈ [0, T ] we have

Mt = M0 +

d󰁛

i=1

󰁝 t

0
his dW

i
s .

If the martingale M is square integrable then h is in H.

Essentially what the theorem is saying is that we can write continuous martingales
as stochastic integrals with respect to some process as long as they’re adapted to the
filtration generated by the process.

Theorem A.25 (Kolmogorov continuity criteria). Let (Xt)t∈[0,T ] be a stochastic pro-
cess taking values in a separable Banach space (E, 󰀂 · 󰀂) such that for some C > 0,
α > 0, β > 1 we have that t, s ∈ [0, T ] it holds that

E󰀂Xt −Xs󰀂β ≤ C|t− s|1+α .
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Then there is a version of X such that for any δ ∈ (0,α/β) and for almost all ω ∈ Ω
there is a random variable c = c(ω)δ,T such that

|Xt(ω)−Xs(ω)| ≤ c(ω)|t− s|δ .

That is, the sample paths are δ-Hölder continuous.

A.2.1 PDEs and Feynman–Kac Formula

(This section can be traced back to either [15] or SAF notes (Section 16).)

In the case of deterministic maps b and σ in (3.1), the so-called diffusion SDE, we can
give the following definition of Infinitesimal generator.

Definition A.26 (Infinitesimal generator (associated to an SDE)). Let b and σ be de-
terministic functions in (3.1). For all t ∈ [0, T ], the following second order differential
operator L is called the infinitesimal generator associated to the diffusion (3.1),

Lϕ(t, x) = b(t, x)Dϕ(t, x) +
1

2
Tr(σσ⊤D2ϕ)(t, x), ϕ ∈ C0,2([0, T ]× Rm).

Although the above definition does seems weird and unfamiliar, the operator L appears
every time one uses the Itô formula to ϕ(t,Xt) where the process (Xt)t∈[0,T ] is the
solution to (3.1).

Exercise A.27. Let (Xt)t∈[0,T ] be the solution to (3.1).

Show that for ϕ ∈ C1,2([0, T ]× R), we have

dϕ(t,Xt) =
󰀃
∂tϕ+ Lϕ

󰀄
(t,Xt) dt+

󰀃
∂xϕσ

󰀄
(t,Xt) dWt.

It is possible to see that expectations of functions of stochastic process satisfy certain
PDEs.

Exercise A.28. For any (t, x) ∈ [0, T ]×R, define the stochastic process (Xt,x
s )s∈[t,T ]

as
Xt,x

s = x+Ws −Wt .

Let Et,x[ · ] := E[ · |Xt = x]. Define a function v = v(t, x) as

v(t, x) = Et,x
󰀅
g
󰀃
XT

󰀄 󰀆
∀ (t, x) ∈ [0, T )× R .

Assume that v ∈ C1,2([0, T )×R) and that
󰀃
∂xv(s,Xs)

󰀄
s∈[t,T ]

∈ L2([0, T ]×Ω;R). Show
that

∂tv +
1

2
∂xxv = 0 on [0, T )× R ,

v(T, ·) = g on R .

Hints:

i) Apply Itô formula to the function v and process Xt,x between t and some τ ≥ t
a stopping time.
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ii) Use the Markov and flow properties to show that (v(s,Xt,x
s ))s∈[t,T ] is a mar-

tingale. Use fact that the stochastic integral is a martingale (the condition󰀃
∂xv(s,Xs)

󰀄
s∈[t,T ]

∈ L2([0, T ] × R) ensures stochastic integral is a martingale).

Conclude that the “ds” integral terms from the Itô formula must be 0.

iii) Convince yourself that the PDE must hold; you can use the conclusion of Exer-
cise 4.9.

Solution (to Exercise A.28). First we trivially observe that v(T, x) = E[g(XT )|XT =
x] = g(x) and so the terminal conditon holds. It remains to verify the PDE holds.

Let us treat (t, x) as fixed and we omit it from notation for a moment. We have
dXs = dWs and with Itô formula we get

dv(s,Xs) = ∂tv(s,Xs) ds+ ∂xv(s,Xs) dXs +
1

2
∂xxv(s,Xs) dXsdXs

=
󰀓
∂t +

1

2
∂xx

󰀔
v(s,Xs) ds+ ∂xv(s,Xs) dWs .

Integrating from t to an arbitrary stopping time τ ≥ t we get

v(τ, Xt,x
τ )− v(t, x) =

󰁝 τ

t

󰀓
∂t +

1

2
∂xx

󰀔
v(s,Xt,x

s ) ds+

󰁝 τ

t
∂xv(s,Xs) dWs .

Next we show that (v(s,Xt,x
s ))s∈[t,T ] is a martingale. Take s ≥ s′ ≥ t and observe that

E[v(s,Xt,x
s )|Fs′ ] = E[v(s,Xt,x

s )|Xt,x
s′ ] = v(s,X

s′,Xt,x

s′
s ) = v(s,Xt,x

s )

where the first equality holds by Markov property, second equality is just what the con-
ditional expectation is while third equality is the flow property. Thus (v(s,Xt,x

s ))s∈[t,T ]

is a martingale.

We note that v(τ, Xt,x
τ ) = E

󰁫
g(Xτ,Xt,x

τ

T )
󰁬
= E[g(Xt,x

T )] = v(t, x) again due to the flow

property. Hence

0 = v(τ, Xt,x
τ )− v(t, x) =

󰁝 τ

t

󰀓
∂t +

1

2
∂xx

󰀔
v(s,Xt,x

s ) ds+

󰁝 τ

t
∂xv(s,Xs) dWs .

Moreover, since we’re assuming
󰀃
∂xv(s,Xs)

󰀄
s∈[t,T ]

∈ L2([0, T ]× R) we know that the

stochastic integral is a martingale i.e. almost surely

0 =

󰁝 τ

t

󰀓
∂t +

1

2
∂xx

󰀔
v(s,Xt,x

s ) ds

with τ ≥ t an arbitrary stopping time. This can only be true if ∂tv+
1
2∂xxv = 0, which

we prove in Exercise 4.9.

It is possible, for certain classes of SDE and differential equations, to write the solution
to a PDE as an expectation of (a function of) the solution to the SDE associated to
the differential operator appearing in the PDE; it is not surprising that the PDE
differential operator must be the infinitesimal generator. That is the core message of
the next result.
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Theorem A.29 (Feynman-Kac formula in 1-dim). Assume that the function v :
[0, T ] × R → R belongs to C1,2([0, T ) × R) ∩ C0([0, T ] × R) and is a solution to the
following boundary value problem

∂tv(t, x) + b(t, x)∂xv(t, x) +
1

2
σ2(t, x)∂xxv(t, x)− rv(t, x) = 0, (A.5)

v(T, x) = h(x), (A.6)

where b and σ are deterministic functions.

For any (t, x) ∈ [0, T ] × R, define the stochastic process (Xs)s∈[t,T ] as the solution to
the SDE

dXs = b(s,Xs) ds+ σ(s,Xs) dWs, ∀ s ∈ [t, T ], Xt = x. (A.7)

Assume that the stochastic process
󰀃
e−rsσ(s,Xs)∂xv(s,Xs)

󰀄
s∈[t,T ]

∈ L2([0, T ]× R).

Then the solution v of (A.5)-(A.6) can be expressed as (with Et,x[·] = E[·|Xt = x])

v(t, x) = e−r(T−t)Et,x

󰀅
h
󰀃
XT

󰀄 󰀆
∀ (t, x) ∈ [0, T × R.

Proof. The proof is rather straightforward and is based on a direct application of Itô’s
formula.

Define the process (Ys)s∈[t,T ] as Ys = e−rsv(s,Xs) whereX is given by (A.7). Applying
Itô’s formula to Y , i.e. computing dYs gives

dYs = d
󰀓
e−rsv(s,Xs)

󰀔

= (−r)e−rsv ds+ e−rs∂sv ds+ e−rs∂xv dXs +
1

2
e−rs∂xxv

󰀃
dXs

󰀄2

= e−rs
󰀅
− rv + ∂tv + b∂xv +

1

2
σ2∂xxv

󰀆
ds+ e−rs

󰀅
σ∂xv

󰀆
dWs,

where the v function is evaluated in point (s,Xs). Using the equality given by (A.5)
we see that the ds term disappears completely leaving

dYs = d
󰀓
e−rsv(s,Xs)

󰀔
= e−rs

󰀅
σ(s,Xs)∂xv(s,Xs)

󰀆
dWs.

Integrating both sides from s = t to s = T gives

󰀅
e−rsv(s,Xs)

󰁬󰀏󰀏󰀏
s=T

s=t
=

󰁝 T

t
e−ruσ(u,Xu)∂xv(u,Xu) dWu

⇔ e−rtv(t,Xt) = e−rT v(T,XT )−
󰁝 T

t
e−ruσ(u,Xu)∂xv(u,Xu) dWu,

⇔ v(t,Xt) = e−r(T−t)v(T,XT )−
󰁝 T

t
e−r(u−t)σ(u,Xu)∂xv(u,Xu) dWu.

Taking expectations E(t,x)[·] on both sides (recall that the process X starts at time t
in position x; this is the meaning of the subscript (t, x) in the expectation sign),

v(t,Xt) = e−r(T−t)Et,x

󰀅
v(T,XT )

󰀆
= e−r(T−t)Et,x

󰀅
h(XT )

󰀆
,

where the expectation of the stochastic integral disappears due to the properties of
the stochastic integral, since by assumption we have

󰀃
e−rsσ(s,Xs)∂xv(s,Xs)

󰀄
s∈[t,T ]

∈
L2([0, T ]× R).
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Exercise A.30 (Two extensions of the Feynman-Kac formula). a) Redo the previous
proof when the constant r is replaced by a function r : [0, T ] × R → R; assume r to
be bounded and continuous. Hint instead of e−rs, use exp{−

󰁕 s
t r(u,Xu) du}.

b) Redo the previous proof when the PDE (A.5) is equal to some f(t, x) instead of
being equal to zero.

A.2.2 Fokker–Planck–Kolmogorov equation

Let us fix a reference probability space (Ω,F ,P). Let B(Rd) denote the set of all
R-valued, bounded measurable functions on Rd. Let P(Rd) denote the set of all
probability measures on Rd. For any µ ∈ P(Rd) and any φ ∈ B(Rd) let

〈µ,φ〉 :=
󰁝

Rd

φ(x)µ(dx) .

Recall that if ξ : Ω → Rd then Law(ξ) ∈ P(Rd) is given by Law(ξ)(B) = P(ξ ∈ B) for
all B ∈ B(Rd). Note that for any φ ∈ B(Rd) we have

〈Law(ξ),φ〉 =
󰁝

Rd

φ(x)Law(ξ)(dx) = E[φ(ξ)] .

Let us introduce L : C2
b (Rd) → B(Rd) as

Lφ := b ·∇φ+
1

2
tr[σσ⊤∇2φ] , (A.8)

where ∇φ is the gradient vector of all the first order partial derivatives of φ and ∇2φ
is the Hessian matrix of all the second order partial derivatives of φ.

Theorem A.31. Assume that there is K such that |b(x)|+ |σ(x)| ≤ K(1 + |x|). Let
X be a solution to

Xt = ξ +

󰁝 t

0
b(Xs) ds+

󰁝 t

0
σ(Xs) dWs , t ∈ I , ξ a given Rd-valued r.v. (A.9)

on I such that for any T > 0 there is CT > 0 so that supt≤T E|Xt|2 ≤ CTE|ξ|2. Let
νt := Law(Xt). Then νt is a solution to

〈νt,φ〉 = 〈ν0,φ〉+
󰁝 t

0
〈νs, Lφ〉 ds ∀φ ∈ C2

b (Rd) , t ∈ I . (A.10)

Proof. Let us fix t ∈ I. Let us apply Itô’s formula to the process X and the function
φ. We get

φ(Xt) = φ(X0) +

󰁝 t

0
b(Xs) ·∇φ(Xs) ds+

󰁝 t

0
(∇φ(Xs))

⊤σ(Xs) dWs

+

󰁝 t

0

1

2
tr[σ(Xs)σ(Xs)

⊤∇2φ(Xs)] ds

= φ(X0) +

󰁝 t

0
(Lφ)(Xs) ds+

󰁝 t

0
(∇φ(Xs))

⊤σ(Xs) dWs .

Due to our assumptions

E
󰁝 t

0
|σ(Xs)|2 ds ≤ E

󰁝 t

0
K2(1 + |Xs|)2 ds ≤ 2K2t+ 2K2t sup

s≤t
E|Xs|2 < ∞

107



and so the stochastic integral above is a martingale. Thus taking expectation we get

E[φ(Xt)] = E[φ(X0)] +

󰁝 t

0
E[(Lφ)(Xs)] ds .

Since νt = Law(Xt) we get

〈νt,φ〉 = 〈ν0,φ〉+
󰁝 t

0
〈νs, Lφ〉 ds .

Noting that t ∈ I and φ ∈ C2
b (Rd) were arbitrary concludes the proof.

We give the following result without proof.

Theorem A.32. Assume that there is K > 0 such that for all i, j we have |∂xibi|L∞(Rd) ≤
K and |∂xi∂xjai,j |L∞(Rd) ≤ K. Show that if ν is a measure valued solution to (A.10)

such that there is u0 ∈ L2(Rd) and u0(x) dx = ν0(dx) then there is u : Rd × I → R
such that u(t, x) dx = νt(dx) and for any t′ > 0 we have u ∈ L∞(0, t′;L2(Rd)).

It is further possible to show that (under further assumptions) this density has more
regularity (e.g. by showing it belongs to appropriate Sobolev space and then using
Sobolev embedding [5, Ch. 7]). We won’t do that here but just note that in that case
the FPKE equation has a classical solution.

Alternatively it is possible to develop a strong solution theory for these equations
using what is sometimes referred to as the “paramterix” method, see [6]; in fact the
book covers both forward and backward equations.

Corollary A.33. Let ν = (νt)t∈I be as in Theorem A.31. If there exists u ∈ C2,1(Rd×
I) such that u(t, ·) is the density of νt w.r.t. the Lebesgue measure (i.e. we have
νt(dx) = u(x, t) dx) for every t ∈ I \ {0} then u solves

∂tu = L∗u on Rd × (I \ {0}) ,
where

L∗ψ = ∇ ·
󰀓
− ψb+

1

2
∇ ·

󰀃
σσ⊤ψ

󰀄󰀔
.

Proof. In this proof all integrals without explicitly specified domain of integration are
over Rd and all summation indices run from 1 to d. From Theorem A.31 we get

󰁝
u(t, ·)φ dx =

󰁝
u(0, ·)φ dx+

󰁝 t

0

󰁝
u(s, ·)Lφ dx .

From integration by parts (noting φ has compact support) we get
󰁝

u(s, ·)b ·∇φ dx = −
󰁝

∇ ·
󰀃
u(s, ·)b

󰀄
φ dx

and 󰁝
u(s, ·)tr[σσ⊤∇2φ] dx =

󰁛

i,j

󰁝
u(s, ·)σij∂xi∂xjφ dx

=
󰁛

i,j

󰁝
∂xi∂xj

󰀅
σiju(s, ·)

󰀆
φ dx =

󰁝
∇∇ ·

󰀅
σiju(s, ·)

󰀆
φ dx .

Hence for all φ ∈ C2
0 (Rd) we have

󰁝
u(t, ·)φ dx =

󰁝
u(0, ·)φ dx+

󰁝 t

0

󰁝
L∗u(s, ·)φ dx .

From this and differentiablity in time of u the conclusion follows.
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A.3 Other useful results

The aim of this section is to collect, mostly without proofs, results that are needed
or useful for this course but that cannot be covered in the lectures i.e. prerequisites.
You are expected to be able to use the results given here.

A.3.1 Linear Algebra

The inverse of a square real matrix A exists if and only if det(A) ∕= 0.

The inverse of square real matricies A and B exists if and only if the inverse of AB
exists and moreover (AB)−1 = B−1A−1.

The inverse of a square real matrix A exists if and only if the inverse of AT exists and
(AT )−1 = (A−1)T .

If x is a vector in Rd then diag(x) denotes the matrix in Rd×d with the entries of x
on its diagonal and zeros everywhere else. The inverse of diag(x) exists if and only if
xi ∕= 0 for all i = 1, . . . , d and moreover

diag(x)−1 = diag(1/x1, 1/x2, . . . , 1/xd).

A.3.2 Real Analysis and Measure Theory

Let (X,X , µ) be a measure space (i.e. X is a set, X a σ-algebra and µ a measure).

Lemma A.34 (Fatou’s Lemma). Let f1, f2, . . . be a sequence of non-negative and
measurable functions. Then the function defined point-wise as

f(x) := lim inf
k→∞

fk(x)

is X -measurable and 󰁝

X
f dµ ≤ lim inf

k→∞

󰁝

X
fk dµ.

Consider sets X and Y with σ-algebras X and Y. By X ×Y we denote the collection
of sets C = A × B where A ∈ X and B ∈ Y. By X ⊗ Y = σ(X × Y), which is the
σ-algebra generated by X × Y.

Theorem A.35. Let f : X × Y → R be a measurable function, i.e. measurable
with respect to the σ-algebras X ⊗ Y and B(R). Then for each x ∈ X the function
y 󰀁→ f(x, y) is measurable with respecto to Y and B(R). Similarly for each y ∈ Y the
function x 󰀁→ f(x, y) is measurable with respecto to X and B(R).

The proof is short and so it’s easiest to just include it here.

Proof. We first consider functions of the form f = 1C with C ∈ X ⊗ Y. Let

H = {C ∈ X ⊗ Y : y 󰀁→ 1C(x, y) is F −measurable for each fixed x ∈ E}.

It is easy to check that H is a σ-algebra. Moreover if C = A × B with A ∈ X and
B ∈ Y then

y 󰀁→ 1C(x, y) = 1A(x)1B(y).
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As x is fixed 1A(x) is just a constant and since B ∈ Y the function y 󰀁→ 1A(x)1B(y)
must be measurable. Hence X ×Y ⊆ H and thus X ⊗Y ⊆ H. But H ⊆ X ⊗Y and so
H = X ⊗Y. Hence if f is a simple function then the conclusion of the theorem holds.

Now consider f ≥ 0 and let fn be a sequence of simple functions increasing to f . Then
for a fixed x the function y 󰀁→ gn(y) = fn(x, y) is measurable. Moreover since g(y) =
limn→∞ gn(y) = f(x, y) and since the limit of measurable functions is measurable
we get the result for f ≥ 0. For general f = f+ − f− the result follows using the
result for f+ ≥ 0, f− ≥ 0 and noting that the difference of measurable functions is
measurable.

Consider measure spaces (X,X , µx), (Y,Y, µy). That is, X and Y are sets, X and Y
are σ-algebras and µx and µy are measures on X and Y respectively. For all details
on Fubini’s Theorem we refer to Kolmogorov and Fomin [13].

Theorem A.36 (Fubini). Let µ be the Lebesgue extension of µx⊗µy. Let A ∈ X ⊗Y.
and let f : A → R be a measurable function (considering B(R), the Borel σ-algebra on
R). If f is integrable i.e. if 󰁝

A
|f(x, y)|dµ < ∞

then

󰁝

A
f(x, y)dµ =

󰁝

X

󰀗󰁝

Ax

f(x, y)dµy

󰀘
dµx =

󰁝

Y

󰀥󰁝

Ay

f(x, y)dµx

󰀦
dµy,

where Ax := {y ∈ Y : (x, y) ∈ A} and Ay := {x ∈ X : (x, y) ∈ A}.

Remark A.37. The conclusion of Fubini’s theorem implies that for µx-almost all
x the integral

󰁕
Ax

f(x, y)dµy exists which in turn implies that the function f(x, ·) :
Ax → R must be measurable. This statement also holds if we exchange x for y.

A.3.3 Conditional Expectation

Let (Ω,F ,P) be given.

Theorem A.38. Let X be an integrable, F-measurable, random variable. If G ⊆ F
is a σ-algebra then there exists a unique G measurable random variable Ŷ such that

∀G ∈ G
󰁝

G
XdP =

󰁝

G
Ŷ dP.

The proof can be found in xxxx xxxx but an outline is as follows. Let us write L2(G)
for the space of all G-measurable r.v.s Y such that 󰀂Y 󰀂2 :=

󰀃
E[|Y |2]

󰀄1/2
< ∞. Then

we have the following:

Lemma A.39. Let G ⊆ F be a sub-σ-algebra and let X ∈ L2(F). Let α = infY ∈L2(G) 󰀂X−
Y 󰀂2. Then there exists Ŷ ∈ L2(G) such that 󰀂X − Ŷ 󰀂2 = α.

Proof. xxxx xxxx

Corollary A.40 (Orthogonal projection). Let G ⊆ F be a sub-σ-algebra and let
X ∈ L2(F). Let Ŷ be given by Lemma A.39. Then for all Z ∈ L2(G) we have

E
󰀅
(X − Ŷ )Z

󰀆
= 0 .
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Proof. Let α be also given by Lemma A.39. Fix Z ∈ L2(G). If Z = 0 a.s. then the
conclusion is true so we can assume that Z ∕= 0 a.s. Then for any t ∈ R we have

α2 ≤ 󰀂X − (Ŷ + tZ)󰀂22 = 󰀂X − Ŷ 󰀂22 − 2󰀂(X − Ŷ )tZ󰀂22 + 󰀂tZ󰀂22
= α2 − 2tE

󰀅
(X − Ŷ )Z

󰀆
+ t2E

󰀅
Z2

󰀆
.

Since this must hold for all t ∈ R it must also hold for the one minimizing the right
hand side. Thus we must have

α2 ≤ α2 −

󰀓
E
󰀅
(X − Ŷ )Z

󰀆󰀔2

E
󰀅
Z2

󰀆 .

But this can only be true if E
󰀅
(X − Ŷ )Z

󰀆
= 0.

Now take G ∈ G and apply Corollary A.40 with Z = 1G. Then

E[X1G] = E[Ŷ 1G] .

This proves Theorem A.38 for X ∈ L2(F). This can be extended to X ∈ L1(F) by
approximation (consider X ≥ 0 first and take Xn = X ∧ n ∈ L2(F).

Definition A.41. Let X be an integrable random variable. If G ⊆ F is a σ-algebra
then G-measurable random variable from Theorem A.38 is called the conditional ex-
pectation of X given G and write E(X|G) := Ŷ .

Conditional expectations are rather abstract notion so two examples might help.

Example A.42. Consider G := {∅,Ω}. So G is just the trivial σ-algebra.

First note that any random variable Z measurable w.r.t. G must be a constant. Indeed
if Z is G-measurable and non-constant, then it assumes at least two values c1 and c2.
The set Z−1({c1}) must be in G (as {c1} is a closed set) but this set is non-empty (as
c1 is a value of Z) and not Ω (as the points ω where Z assumes the value c2 are not
in it). So this set cannot be in G leading to a contradiction.

For a random variable X we then have, by definition, that Z is the conditional ex-
pectation (denoted E[X|G]), if and only if

󰁝

Ω
ZdP =

󰁝

Ω
XdP.

The right hand side of the above expression is in fact just EX and so the equality
would be satisfied if we set Z = EX (just a constant). Indeed then (going right to
left)

EX =

󰁝

Ω
XdP =

󰁝

Ω
ZdP =

󰁝

Ω
EXdP = EX

󰁝

Ω
dP = EX.

Example A.43. Let X ∼ N(0, 1). Let G = {∅, {X ≤ 0}, {X > 0},Ω}. One can (and
should) check that this is a σ-algebra. By definition the conditional expectation is a
unique random variable that satisfies

󰁝

Ω
1{X>0}ZdP =

󰁝

Ω
1{X>0}XdP,

󰁝

Ω
1{X≤0}ZdP =

󰁝

Ω
1{X≤0}XdP,

󰁝

Ω
ZdP =

󰁝

Ω
XdP .

(A.11)
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It is a matter of integrating with respect to normal density to find out that

󰁝

Ω
1{X>0}XdP =

󰁝 ∞

0
xφ(x)dx =

1

2

󰁵
2

π
,

󰁝

Ω
1{X≤0}XdP = −1

2

󰁵
2

π
. (A.12)

Since Z must be G measurable it can only take two values:

Z =

󰀝
z1 on {X > 0},
z2 on {X ≤ 0},

for some real constants z1 and z2 to be yet determined. But (A.11) and (A.12) taken
together imply that

1

2

󰁵
2

π
=

󰁝

Ω
1{X>0}ZdP =

󰁝

Ω
1{X>0}z1dP = z1P(X > 0) =

1

2
z1.

Hence z1 =
󰁳

2/π. Similarly we calculate that z2 = −
󰁳

2/π. Finally we check that
the third equation in (A.11) holds. Thus

E[X|G] = Z =

󰀻
󰀿

󰀽

󰁴
2
π on {X > 0},

−
󰁴

2
π on {X ≤ 0}.

Here are some further important properties of conditional expectations which we
present without proof.

Theorem A.44 (Properties of conditional expectations). Let X and Y be random
variables. Let G be a sub-σ-algebra of F .

1. If G = {∅,Ω} then E(X|G) = EX.

2. If X = x a. s. for some constant x ∈ R then E(X|G) = x a.s. .

3. For any α,β ∈ R

E(αX + βY |G) = αE(X|G) + βE(Y |G).

This is called linearity.

4. If X ≤ Y almost surely then E(X|G) ≤ E(Y |G)a.s. .

5. |E(X|G)| ≤ E(|X| |G).

6. If Xn → X a. s. and |Xn| ≤ Z for some integrable Z then E(Xn|G) → E(X|G)
a. s. . This is the “dominated convergence theorem for conditional expectation”.

7. If Y is G measurable then E(XY |G) = Y E(X|G).

8. Let H be a sub-σ-algebra of G. Then

E(X|H) = E(E(X|G)|H).

This is called the tower property. A special case is EX = E(E(X|G)).

9. If σ(X) is independent of G then E(X|G) = EX.
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Example A.45. Let X and Z be F-measurable, integrable and independent. Let

Y = f(X) + g(Z)

for some deterministic functions f and g s.t. E[|f(X)|] + E[|g(Z)|] < ∞. We would
like to calculate E[Y |X] = E[Y |σ(X)]. Clearly

E[Y |X] = E[f(X) + g(Z)|X] = f(X) + E[g(Z)] ,

due to points 7. and 9. of Theorem A.44 .

Definition A.46. Let X and Y be two random variables. The conditional expecta-
tion of X given Y is defined as E(X|Y ) := E(X|σ(Y )), that is, it is the conditional
expectation of X given the σ-algebra generated by Y .

Definition A.47. Let X a random variables and A ∈ F an event. The conditional
expectation of X given A is defined as E(X|A) := E(X|σ(A)). This means it is the
conditional expectation of X given the sigma algebra generated by A i.e. E(X|A) :=
E(X|{∅, A,Ac,Ω}).

We can immediately see that E(X|A) = E(X|1A).

Recall that if X and Y are jointly continuous random variables with joint density
(x, y) 󰀁→ f(x, y) then for any measurable function ρ : R2 → R such that E|ρ(X,Y )| <
∞ we have

Eρ(X,Y ) =

󰁝

R

󰁝

R
ρ(x, y)f(x, y)dydx.

Moreover the marginal density of X is

g(x) =

󰁝

R
f(x, y)dy

while the marginal density of Y is

h(y) =

󰁝

R
f(x, y)dx.

Theorem A.48. Let X and Y be jointly continuous random variables with joint
density (x, y) 󰀁→ f(x, y). Then for any measurable function ϕ : R → R such that
E|ϕ(Y )| < ∞ the conditional expectation of ϕ(Y ) given X is

E(ϕ(Y )|X) = ψ(X)

where ψ : R → R is given by

ψ(x) = 1{g(x)>0}

󰁕
R ϕ(y)f(x, y)dy

g(x)
.

Proof. Every A in σ(X) must be of the form A = {ω ∈ Ω : X(ω) ∈ B} for some B in
B(R). We need to show that for any such A

󰁝

A
ψ(X)dP =

󰁝

A
ϕ(Y )dP.
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But since E|ϕ(Y )| < ∞ we can use Fubini’s theorem to show that
󰁝

A
ψ(X)dP = E1Aψ(X) = E1{X∈B}ψ(X) =

󰁝

B
ψ(x)g(x)dx

=

󰁝

B

󰁝

R
ϕ(y)f(x, y)dydx =

󰁝

R

󰁝

R
1B(x)ϕ(y)f(x, y)dxdy

= E1{X∈B}ϕ(Y ) =

󰁝

A
ϕ(Y )dP.

Let on (Ω,F) be a measurable space. Recall that we say that a measure Q is absolutely
continuous with respect to a measure P if P(E) = 0 implies that Q(E) = 0. We write
Q << P.

Proposition A.49. Take two probability measures P and Q such that Q << P with

dQ = ΛdP.

Let G be a sub-σ-algebra of F . Then Q almost surely E[Λ|G] > 0. Moreover for any
F-random variable X we have

EQ[X|G] = E[XΛ|G]
E[Λ|G] . (A.13)

Proof. Let S := {ω : E[Λ|G](ω) = 0}. Then S ∈ G and so by definition of conditional
expectation

Q(S) =

󰁝

S
dQ =

󰁝

S
ΛdP =

󰁝

S
E[Λ|G]dP =

󰁝

S
0 dP = 0.

Thus Q-a.s. we have E[Λ|G](ω) > 0.

To prove the second claim assume first that X ≥ 0. We note that by definition of
conditional expectation, for all G ∈ G:

󰁝

G
E[XΛ|G]dP =

󰁝

G
XΛdP =

󰁝

G
XdQ =

󰁝

G
EQ[X|G]dQ =

󰁝

G
EQ[X|G]ΛdP.

Now we use the definition of conditional expectation to take another conditional ex-
pectation with respect to G. Since G ∈ G:

󰁝

G
EQ[X|G]ΛdP =

󰁝

G
E
󰁫
EQ[X|G]Λ|G

󰁬
dP.

But EQ[X|G] is G-measurable and so
󰁝

G
E
󰁫
EQ[X|G]Λ|G

󰁬
dP =

󰁝

G
EQ[X|G]E [Λ|G] dP.

Thus, since in particular Ω ∈ G, we get
󰁝

Ω
E[XΛ|G]dP =

󰁝

Ω
EQ[X|G]E [Λ|G] dP.

Since X ≥ 0 (and Λ ≥ 0) this means that P-a.s. and hence Q-a.s. we have (A.13).

E[XΛ|G] = EQ[X|G]E [Λ|G] .
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For a general X write X = X+ − X−, where X+ = 1{X≥0}X ≥ 0 and X− =
−1{X<0}X ≥ 0. Then

EQ[X+ −X−|G] = E[X+Λ|G]
E[Λ|G] − E[X−Λ|G]

E[Λ|G] =
E[X+ −X−Λ|G]

E[Λ|G] .

A.3.4 Multivariate normal distribution

There are a number of ways how to define a multivariate normal distribution. See
e.g. [7, Chapter 5] for a more definite treatment. We will define a multivariate normal
distribution as follows. Let µ ∈ Rd be given and let Σ be a given symmetric, invertible,
positive definite d×dmatrix (it is also possible to consider positive semi-definite matrix
Σ but for simplicity we ignore that situation here).

A matrix is positive definite if, for any x ∈ Rd such that x ∕= 0, the inequality
xTΣx > 0 holds. From linear algebra we know that this is equivalent to:

1. The eigenvalues of the matrix Σ are all positive.

2. There is a unique (up to multiplication by −1) matrix B such that BBT = Σ.

Let B be a d× k matrix such that BBT = Σ.

Let (Xi)
d
i=1 be independent random variables with N(0, 1) distribution. Let X =

(X1, . . . , Xd)
T and Z := µ+BX. We then say Z ∼ N(µ,Σ) and call Σ the covariance

matrix of Z.

Exercise A.50. Show that Cov(Zi, Zj) = E((Zi − EZi)(Zj − EZj)) = Σij . This
justifies the name “covariance matrix” for Σ.

It is possible to show that the density function of N(µ,Σ) is

f(x) =
1

(2π)d/2
󰁳

det(Σ)
exp

󰀕
−1

2
((x− µ)TΣ−1(x− µ))

󰀖
. (A.14)

Note that if Σ is symmetric and invertible then Σ−1 is also symmetric.

Exercise A.51. You will show that Z = BX defined above has the density f given
by (A.14) if µ = 0.

i) Show that the characteristic function of Y ∼ N(0, 1) is t 󰀁→ exp(−t2/2). In other
words, show that E(eitY ) = exp(−t2/2). Hint. complete the squares.

ii) Show that the characteristic function of a random variable Y with density f given
by (A.14) is

E
󰀓
ei(Σ

−1ξ)TY
󰀔
= exp

󰀕
−1

2
ξTΣ−1ξ

󰀖
.

By taking y = Σ−1ξ conclude that

E
󰀓
eiy

TY
󰀔
= exp

󰀕
−1

2
yTΣ−1y

󰀖
.

Hint. use a similar trick to completing squares. You can use the fact that since
Σ−1 is symmetric ξTΣ−1x = (Σ−1ξ)Tx.
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iii) Recall that two distributions are identiacal if and only if their characteristic func-

tions are identical. Compute E
󰀓
eiy

TZ
󰀔
for Z = BX and X = (X1, . . . , Xd)

T with

(Xi)
d
i=1 independent random variables such that Xi ∼ N(0, 1). Hence conclude

that Z has density given by (A.14) with µ = 0.

You can now also try to show that all this works with µ ∕= 0.

A.3.5 Stochastic Analysis Details

The aim of this section is to collect technical details in stochastic analysis needed to
make the main part of the notes correct but perhaps too technical to be of interest to
many readers.

Definition A.52. We say that a process X is called progressively measurable if the
function (ω, t) 󰀁→ X(ω, t) is measurable with respect to Ft ⊗ B([0, t]) for all t ∈ [0, T ].

We will use ProgT to denote the σ-algebra generated by all the progressively measur-
able processes on Ω× [0, T ].

If X is progressively measurable then the processes
󰀓󰁕 t

0 X(s)ds
󰀔

t∈[0,T ]
and (X(t ∧

τ))t∈[0,T ] are adapted (provided the paths of X are Lebesgue integrable and provided
τ is a stopping time). The important thing for us is that any left (or right) continuous
adapted process is progressively measurable.

A.3.6 More Exercises

Exercise A.53. Say g : R → R is bounded, measurable with compact support and
W = (Wt)t∈[0,T ] is a Wiener process.

i) Show that if X,Y ∈ H then

E
󰁝 T

0
XsYs ds = E

󰀗󰀕󰁝 T

0
Xs dWs

󰀖󰀕󰁝 T

0
Ys dWs

󰀖󰀘
.

ii) Assume that u ∈ C1,2
b ([0, T )×R), so u, ∂tu, ∂xu, ∆u are continuous and bounded,

satisfies

∂tu+
1

2
∆u = 0 on [0, T )× R

u(T, ·) = g on R .

Show that

∂xu(t, x) = E
󰀗
g(x+WT−t)

T − t

󰁝 T

t
dWs

󰀘
.

iii) Hence calculate
E [g(WT )WT ] .
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A.4 Solutions to the exercises

Solution (to Exercise A.53). i) Due to Itô’s isometry we have

E
󰀗 󰁝 T

0

X2
s ds+ 2

󰁝 T

0

XsYs ds+

󰁝 T

0

Y 2
s ds

󰀘
= E

󰀗 󰁝 T

0

(Xs + Ys)
2 ds

󰀘

= E
󰀗󰀕󰁝 T

0

(Xs + Ys) dWs

󰀖2󰀘

= E
󰀗󰀕󰁝 T

0

Xs dWs

󰀖2

+ 2

󰀕󰁝 T

0

Xs dWs

󰀖󰀕󰁝 T

0

Ys dWs

󰀖
+

󰀕󰁝 T

0

Ys dWs

󰀖2󰀘
.

Due to Itô’s isometry again we have E
󰀅󰀃 󰁕 T

0
Xs dWs

󰀄2󰀆
= E

󰀅 󰁕 T

0
X2

s ds
󰀆
and similar identity with

Y . Hence, cancelling equal terms above, we get

E
󰀗
2

󰁝 T

0

XsYs ds

󰀘
= E

󰀗
2

󰀕󰁝 T

0

Xs dWs

󰀖󰀕󰁝 T

0

Ys dWs

󰀖󰀘
.

ii) Due to Itô’s formula applied to u and the process Xt,x
s = x +Ws−t we have for any t ≤ t′ ≤ T

that

u(T,Xt,x
T ) = u(t′, Xt,x

t′ ) +

󰁝 T

t′

󰁫
∂tu+

1

2
∆u

󰁬
(s,Xt,x

s ) ds+

󰁝 T

t′
∂xu(s,X

t,x
s ) dWs

= u(t′, Xt,x
t′ ) +

󰁝 T

t′
∂xu(s,X

t,x
s ) dWs .

(A.15)

Since the derivative is bounded the stochastic integral is a martingale and so

Eu(T,Xt,x
T ) = Eu(t′, xt,x

t′ ) , t ≤ t′ ≤ T .

Hence u(t, x) = E[g(Xt,x
T )] and moreover

∂xu(t, x) = ∂xEu(T,Xt,x
T ) = ∂xEu(t′, Xt,x

t′ ) , t ≤ t′ ≤ T .

So ∂xEu(t′, Xt,x
t′ ) is constant in t′ ∈ [t, T ]. Hence (assuming we can interchage derivative and

expectation) we have

∇xu(t, x) =
1

T − t

󰁝 T

t

E
󰁫
(∂xu)(t

′, Xt,x
t′ )∂xX

t,x
t′

󰁬
dt′ .

But here ∂xX
t,x
t′ = ∂x

󰀅
x+Wt−s

󰀆
= 1. Then, due to part i), we get

∇xu(t, x) =
1

T − t
E
󰀗󰀕󰁝 T

t

(∂xu)(t
′, Xt,x

t′ ) dWt′

󰀖󰀕󰁝 T

t

1 dWt′

󰀖󰀘
.

From (A.15) we then get

∇xu(t, x) =
1

T − t
E
󰀗󰀃

u(T,Xt,x
T )− u(t, x)

󰀄󰀕󰁝 T

t

1 dWt′

󰀖󰀘

= E
󰀗
u(T,Xt,x

T )

T − t
(WT −Wt)

󰀘
.

iii) We see that

E
󰁫
g(WT )WT

󰁬
= T∂xu(0, 0)

and that u(0, x) = E
󰁫
g(x+WT )

󰁬
. We know that x+WT ∼ N(x, T ) and so

u(0, x) =

󰁝

R
g(y)

1√
2πT

e
− |x−y|2

2
√

T dy .

Differentiating we get

∂xu(0, x) = −
󰁝

R
g(y)

x√
T

1√
2πT

e
− |x−y|2

2
√

T dy = − x√
T
u(0, x) .

So finally

E
󰁫
g(WT )WT

󰁬
= T∂xu(0, 0) = 0 .
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