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Abstract

We look in detail at the construction of white noise spaces using the Bochner-
Minlos theorem. We then study fractional Brownian motion with an arbitrary
Hurst parameter in the white noise space setting: (i) we demonstrate that time
derivative of fractional Brownian motion exists as Hida distribution; (ii) we
define an integral with respect to fractional Brownian motion as a white noise
integral and (iii) using the S-transform, we prove, under certain conditions,
existence and uniqueness of the solution, in the weak sense, for

dX(t) = b(t,X(t))dt+ σ(t,X(t))dBHt

with any H ∈ (0, 1).
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Chapter 1

Introduction

Fractional Brownian motion is a family of processes BHt , first studied math-
ematically by Mandelbrot and Van Ness in [MN68]. They proposed the term
fractional Brownian motion process for a family of continuous centered Gaussian
processes with covariance function given by

E[BHt B
H
s ] =

1
2
(|t|2H + |s|2H − |t− s|2H), t, s ∈ R, H ∈ (0, 1). (1.1)

One can immediately see that forH = 1/2, this process is just classical Brownian
motion.

Fractional Brownian motion (fBm), has a many interesting features. The
main property is that for H 6= 1/2, the increments of fBm are not independent
random variables, but rather their “span of interdependence” is, in a certain
sense, infinite. From the statistical point of view, fBm seems to be a better model
(than ordinary Brownian motion) for many natural phenomena. Indeed the term
“Hurst parameter” is named after H. E. Hurst who first described observations
of statistical data, which could be modelled well with times series based on
fBm. In his case it the study of successive water flows among reservoirs along
the Nile river. Recently fBm has become very popular in financial modelling.
For example it has been estimated that the S&P 500 stock index has a Hurst
parameter of about 0.6.

We will consider fBm in the white noise space setting and prove some of it’s
main properties in chapter 4. For now we mention that fBm processes are not
(for H 6= 1/2) semi-martingales (see 4.8) and hence the classical Itô stochastic
integration theory cannot be applied.

A different integration theory has to be developed for fractional Brownian
motion. During the last several years, several approaches have been developed.
First come many path-wise integration approaches, but they only apply to fBm
with H > 1/2. Another approach is based on ordinary path-wise product in
defining the integral for simple integrands. This construction leads to an integral
with the properties of Stratonovich integral rather than the Itô integral. A
different approach is based on the Wick product and this has been developed
by [HØ03]. Using this approach, however a different probability spaces have
to be considered for different H and furthermore H is assumed to be greater
than 1/2. There are also approaches based on Malliavin calculus. We follow
an approach, first suggested, as far as the author is aware, by [Ben03].This
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covers all H parameters of fBm and furthermore all processes are defined on the
classical white noise space.

In chapter 2, we will prove the Bochner-Minlos theorem and we will use it to
define the white noise probability space. In chapter 3, the concept of generalized
random variables, the Hida distributions, is introduced. This allows us to talk
rigorously about the time derivatives of fBm. In this chapter, we also introduce
the S-transform and Wick product, which will be the main tools we will use to
establish our result about SDEs driven by fBm. In chapter 4 we define Brownian
motion on the white noise space and use this to construct fBm processes on the
white noise space and prove some of it’s main properties. In chapter 5 we define
the white noise integrals and use this to construct an integral with respect to
fractional Brownian motion.

The last chapter, chapter 6, contains our main result, which is the proof of
existence and uniqueness of a “weak” solution to

dX(t) = b(t,X(t))dt+ σ(t,X(t))dBHt , (1.2)

provided that b and σ satisfy certain conditions. This is, as far as the author is
aware, a new result. The main strength of our result comes from the fact that it
provides a unified treatment for all values of H ∈ (0, 1). The main disadvantage
of our approach arises from the fact, that we use the S-transform as the main
tool in the proof. Because of that, one has to calculate the S-transform of b and
σ, before our result can be applied. We will give some examples of SDEs, where
our theorem can be applied, and examples where we cannot apply it. We also
attempt to explain where do the limitations in our result arise from.



Chapter 2

White noise space

In this chapter, we will construct the white noise probability space and highlight
some of its main properties. Bochner-Minlos theorem will be used as the main
stepping stone of the construction. We will outline the key steps needed to
prove this theorem. A complete proof can be found in [Hid80].

White noise space is crucial for defining stochastic distribution processes, for
example the time derivative of Brownian motion.

2.1 Preliminaries

The Bochner Minlos theorem says that for any characteristic functional and
countably-Hilbert nuclear space, there is a unique probability measure defined
on this space.

So we see that Bochner-Minlos theorem is just a non-trivial extension of
Bochner’s theorem, extending Bochner’s result to (some) infinite dimensional
vector spaces. The proof of Bochner-Minlos theorem is based on Bochner’s
theorem, which we now state without proof. (For proof see [GV64]).

Recall that a function f is called positive-definite if it satisfies: for any n
and α1, . . . , αn ∈ C, and ξ1, . . . , ξn ∈ E, we have∑

j,k

αjαkf(ξj − ξk) ≥ 0; (2.1)

Theorem 2.1.1 (Bochner). If ϕ is positive definite, uniformly continuous func-
tion such that ϕ(0) = 1, then there exists a unique probability measure µ on
(R,B) such that

ϕ(z) =
∫

R
eizxµ(dx) (2.2)

The key assumption of Bochner-Minlos’ theorem is that the Hilbert space
E over which’s dual E∗ we wish to find our unique probability measure is a
countably nuclear Hilbert space1. When talking about countably nuclear Hilbert
spaces, one can think, for example, about the triple

S(R) ⊂ L2(R) ⊂ S ′(R)

1For definition and some properties see appendix A.2



6 White noise space

where we will show that S(R) is a countably nuclear Hilbert space and S ′(R) is
the space on which we wish to define the probability measure. In our project
we will only ever consider E = S(R). To prove Bochner-Minlos’ theorem, will
need the corollary to this result:

Lemma 2.1.2. If E is a countably-Hilbert nuclear space and A ⊂ E is closed
and bounded then A is compact.

Proof: Assume A ⊂ E is closed and bounded. Since E is a countably Hilbert
space we have an increasing sequence of norms on E (‖.‖0 denotes the “usual”
norm on E):

‖.‖0 ≤ ‖.‖1 ≤ . . . ≤ ‖.‖n ≤ . . .

Therefore A is bounded in ‖.‖0 implies that A is bounded in ‖.‖n for any n.
Also, since E is nuclear, the identity operator I : En → Em is of Hilbert-Schmidt
type (see A.2.6) and hence I : En → Em is completely continuous and so A is
also closed w.r.t. the norms ‖.‖n and it’s closure (which thus coincides with A)
is compact.

Now consider a sequence (ξi)i∈N ⊂ A. It has to have a convergent sub-
sequence (ξik)nk∈N w.r.t. all the norms ‖.‖n, because A is compact with respect
to all the norms ‖.‖n. Therefore we have:

ξ1i1 , ξ1i2 , . . . , ξ1ik , . . .
ξ2i1 , ξ2i2 , . . . , ξ2ik , . . .
...

...
. . .

Taking the diagonal elements ξ1i1 , ξ
2
i2
, . . . , ξnin , . . . we get a sub-sequence of (ξi)i∈N

which is convergent w.r.t all the norms ‖.‖n and hence w.r.t. the topology of
the nuclear space E. Thus A is compact in E.

Corollary 2.1.3. If the space E is nuclear, then a closed bounded set A in its
dual space E′ is compact relative to weak and strong convergence.

The last thing to do, before proving the Bochner-Minlos theorem, is to define
what we mean by characteristic functionals over some Hilbert space.

Definition 2.1.4 (Characteristic Functionals). The functional C(ξ), ξ ∈ E, is
called the characteristic functional of a generalised stochastic process X, if it
satisfies the following properties:

1. CX is continuous in ξ ∈ E

2. CX is positive definite, i.e. ∀n and α1, . . . , αn ∈ C and ξ1, . . . , ξn ∈ E, we
have ∑

j,k

αjαkCX(ξj − ξk) ≥ 0; (2.3)

3. CX(0) = 1.
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2.2 Bochner-Minlos Theorem

The first step will be to construct a sigma field over the space E∗. Since this will
be done by considering finite dimensional subspaces of E, the next step will be to
show, that our construction extends consistently, when considering subspaces
of more dimensions. The third step will be to define a finitely additive set
function and the final step will be to show that this function is actually countably
additive, thus defining a probability measure with the desired properties. We
will first state Bochner-Minlos theorem, but then organize the proof into a
sequence of lemmas.

Theorem 2.2.1 (Bochner-Minlos Theorem). If C(ξ) is a characteristic func-
tional on E, then there exists a unique probability measure µ on (E∗,B) such
that

C(ξ) =
∫
E∗
ei〈x,ξ〉dµ(x). (2.4)

Lemma 2.2.2. We can define an algebra and finitely additive set function on
E∗, forming a “finitely additive probability space” (E∗,U ,m).

Proof. The first step. We wish to construct an algebra. To that end, we first
define cylinder sets in E∗

Aξ1,...,ξn = {x ∈ E∗ : (〈x, ξ1〉, . . . , 〈x, ξn〉) ∈ B} (2.5)

where ξ1, . . . , ξn are “points” in E and B is a Borel set in Rn. Now take a
subspace F of E and let UF be the collection of all cylinder sets such that
(ξi)i=1...n ⊂ F .

Next, consider the annihilator F a of F , which is the subspace of E∗ defined
as

F a = {x ∈ E∗ : 〈x, ξ〉 = 0, ∀ξ ∈ F}.

We would like to show that the quotient space E∗�Fa is isomorphic to F ∗. To
this end, we note that

x ∈E
∗
�Fa ⇐⇒ x = {y ∈ E∗ : x− y ∈ F a}

⇐⇒ x = {y ∈ E∗ : 〈x− y, ξ〉 = 0, ∀ξ ∈ F}
⇐⇒ x = {y ∈ E∗ : 〈x, ξ〉 = 〈y, ξ〉, ∀ξ ∈ F}

But if ∀ξ ∈ F we have 〈x, ξ〉 = 〈y, ξ〉 then x ∼= y for y ∈ F ∗. Therefore E∗�Fa is
indeed isomorphic to F ∗.

Now define 〈x, ξ〉F = 〈x, ξ〉. Also, say dimF = n, then also dimF ∗ = n and
F ∼= Rn ∼= F ∗, hence 〈., .〉F defines an inner product in Rn.

We can also restrict C(ξ) to CF (ξ) and by (2.3) we can view it as a charac-
teristic function on Rn. Thus, we can define a σ-algebra on F ∗ by

BF = B(Rn)

and furthermore by Bochner’s theorem 2.1.1 there exists a unique probability
measure µF on F ∗ (and hence on E∗�Fa) satisfying

CF (ξ) =
∫

E∗�F a

ei〈x,ξ〉dµF
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Finally let ρF : E∗ →E∗�Fa be ρ(x) = x. Then

ρ−1
F (BF ) = UF

and hence UF is a σ-algebra. Now let

U =
⋃
F⊂E

UF

where the union taken over all the finite dimensional subspaces F . Such U is
only an algebra and hence we let B be the smallest σ-algebra containing U .
Thus, we have defined a σ-algebra over E∗.

The second step. Assume that F and G are two finite dimensional subspaces
of E such that F ⊂ G. Then

E∗
�Ga ∼= G∗ ⊃ F ∗ ∼=E∗

�Fa

and so we can define a projection map

T :E
∗
�Ga →E∗

�Fa as T (xG) = xF .

So for B ∈ BF , we have µF (B) = µG(T−1B), because CF (ξ) = CG(ξ)|F and by
Bochner’s theorem, µF is unique on F ∗. Thus (G∗,UG, µG) extends uniquely to
(F ∗,UF , µF ).

The third step. Let’s now define finitely additive m on

U =
⋃
F⊂E
F f.d.

UF

as follows: for any cylinder set A ∈ U , there exists a finite dimensional subspace
F such that A ∈ UF , so we define m(A) = µF (A) and by part two, this is
independent of the choice of F .

Consider cylinder sets A1, . . . , An ∈ U which are pairwise disjoint, based on
finite dimensional F1, . . . , Fn respectively. Note that F = Span(F1, . . . , Fn) is
also finite dimensional and Ai ∈ F and hence µFi(Ai) = µF (Ai). Since µF is
σ-additive on UF we have

m

( ⋃
i=1...n

Ai

)
= µF

( ⋃
i=1...n

Ai

)
=

n∑
i=1

µF (Ai) =
n∑
i=1

m(Ai)

Thus, we have proved that (E∗,U ,m) is a finitely additive probability space.

Our aim is now to extend m to measure on the space (E∗,B). We will omit
the proof of the following technical lemma. Proof can be found in [Hid80].

Lemma 2.2.3. Let µ be a probability measure on R and denote by η the
ellipsoid

{z = (z1, . . . , z2) :
n∑
1

a2
i z

2
i ≤ γ2}.

If the characteristic function ϕ(z), z ∈ Rn, of µ satisfies

|ϕ(z)− 1| < ε, z ∈ η,
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then for the ball S(t) in Rn of radius t we have the inequality

µ(S(t)c) < β2

(
ε+

2
γ2t2

n∑
i=1

a2
i

)
,

where β is a positive constant independent of n and t.

A further lemma gives a condition on the space E∗ for a measure µ to
extendable.

Lemma 2.2.4. A finitely additive measure m is extendable to a countably
additive measure on (E∗,B) if and only if the following holds:

∀ε > 0 there exists a natural number n and a ball
Sn = {x ∈ E∗ : ‖x‖−n ≤ γn},

such that for any cylinder set A ∈ U disjoint from Sn we have
µ(A) < ε. (2.6)

Proof. Assume first, that m has a σ-additive extension µ. Choose a sequence
SN of balls with increasing radii γn such that γn →∞. Then⋃

n

Sn = E∗

and so, as µ is σ-additive,
µ(Scn) < ε

must hold for sufficiently large n. Hence for a cylinder set A in Scn we must have

µ(A) < ε.

Now assume that (2.6) holds. We will show that m is extendable to σ-
additive µ by contradiction.

Assume that An is a sequence of pairwise disjoint elements of U such that⋃
nAn = E∗. Since m is finitely additive,

m

(
n⋃
k=1

Ak

)
=

n∑
k=1

m(Ak) ≤ 1

and so
∞∑
k=1

m(Ak) ≤ 1.

Now assume that the above inequality is strict. Then there is ε > 0 such that

∞∑
k=1

m(Ak) = 1− 3ε < 1.

From Lebesgue measure theory we know that for any open set B ∈ B, we can
find an open set B′, such that B ⊂ B′ and λ(B′ \ B) < ε. Hence for each An
we can find an open cylinder set A′n (i.e. the set B′ in (2.5) is open) such that
A′n ⊃ An and

m(A′n \An) <
ε

2n
.
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Since we’re assuming that
⋃
nAn = E∗, it must hold that

⋃
j A

′
j ⊃ Sn. Since

Sn are (weakly) closed and bounded, we have by corollary 2.1.3, that they are
weakly compact. Hence we can choose a finite number A′1, . . . , A

′
k of the A′js

which cover Sn. Let A′ =
⋃n
j=1A

′
j we have A′ ∈ U and

1 = m(A′ +A′c) = m(A′) +m(A′c)

m(A′) ≤
k∑
j=1

m(A′) + ε

also since, µ(Scn) < ε (our hypothesis) and A′c ⊂ Scn we have

m(A′c) < ε

So combining the above three inequalities, we get

1 ≤
k∑
j=1

m(Aj) + ε+ ε ≤ (1− 3ε) + 2ε = 1− ε,

clearly a contradiction. This completes the proof.

Lemma 2.2.5. If C(ξ), ξ ∈ E is a characteristic functional and E is a nu-
clear space, then there exists a unique (countably additive) extension µ of m to
(E∗, B).

Proof. Since C(ξ) is a characteristic functional, it is continuous in the norm ‖.‖p
for some p. Thus for any ε > 0, there exists a ball U in the space2 Ep, such that

|C(ξ)− C(0)| = |C(ξ)− 1| < ε

2β2
, ξ ∈ U,

where β is the constant in lemma 2.2.3.
We note that since E is nuclear, the projection map Inp : En → Ep is of

Hilbert-Schmidt type, for some n > p. Since ‖.‖n ≥ ‖.‖p, there is a neighbour-
hood V of 0 in En such that

Inp V ⊂ U.

We can then show that the ball Sn in E∗n with radius

t =
2β‖ Inp ‖√

γ2ε

corresponds to the ball in lemma (2.2.4). Indeed if A is a cylinder set based
on the finite dimensional subspace F and disjoint from Sn, then there exists an
n-dimensional Borel set B such that A = ρ−1

F (B) and

B ∩ ρf (Sn) = ∅.

Now we note that since V ∩ F is a finite dimensional ellipsoid in the norm
‖.‖n, it can be expressed in Cartesian co-ordinates in the form

∑
i a

2
i z

2
i ≤ γ2.

2The same linear space as for E, but considered with the norm ‖.‖p
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We also note that
∑
i a

2
i ≤ ‖ Inp ‖2. Using lemma 2.2.3, we have

mF (ρF (Scn)) < β2

(
ε

2β2
+

2
γ2
t2

k∑
i=1

a2
i

)

<
1
2
ε+

2β2

γ2t2
‖Inp ‖2 = ε.

This guarantees the existence of an extension to m. Uniqueness comes from
general measure theory, as we’re dealing with probability measures.

Proof of Bochner-Minlos’ theorem: By the lemma 2.2.5, we have that µ is count-
ably additive. Let ωn be some basis of E∗. Let F ∗n = Span(ωn). Then
E∗ =

⋃
n∈N Fn. We have shown that for finite-dimensional subspaces of E∗

we have, by Bochner’s Theorem:∫
F∗

n

e〈x̄,ξ〉dmF (x̄) = CFn(ξ) = C(ξ)
∣∣∣
Fn

(2.7)

And hence by uniqueness and by σ-additivity of µ we have:∫
E∗
e〈x,ξ〉dµ(x) =

∑
n∈N

∫
F∗

n

e〈x̄,ξ〉dmF (x̄) =
∑
n∈N

C(ξ)
∣∣∣
Fn

= C(ξ) (2.8)

We can now apply the Bochner-Minlos theorem, to define the white noise
probability space. We do this by proving that the space of Schwartz test func-
tions is a countably Hilbert nuclear space.

2.3 Example of a nuclear Hilbert space

Lemma 2.3.1. The space of Schwartz test functions

S(R) =
{
ξ : sup

x∈R

∣∣∣∣xn( d
dx

)n
ξ(x)

∣∣∣∣ <∞ ∀n ∈ N
}

(2.9)

is a countably Hilbert nuclear space.

Proof: Let

A = −
(

d
dx

)2

+ x2 + 1.

Let

hn(x) = (−1)nex
2
(

d
dx

)n
e−x

2
,

i.e. hn is the nth Hermite polynomial and define the Hermite functions as:

ek(x) = (π1/2(k − 1)!)−1/2 exp
(
−x

2

2

)
hk(x) (2.10)
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The Hermite functions form an orthonormal basis of L2(R) (see A.3) and also
it is possible to check that the Hermite functions are the eigenvectors of A:

A en = (2n+ 2)en (2.11)

For p ≥ 0 define |ξ|p = |Ap ξ|0 where |.|0 is the L2(R) norm. Define the
spaces

Sp = {ξ ∈ L2(R) : |ξ|p <∞} (2.12)

One can immediately see that the topology of the space
⋂
p≥0 Sp is equivalent to

the usual topology of S(R) and hence the space is topologised by an increasing
sequence of norms and so it is a countably Hilbert space.

To show that it’s a nuclear space, we have to show that the identity operator
I : Sp+1 → Sp is of Hilbert-Schmidt type. To this end we note that (ek)k∈N ⊂ Sp
and that

f
(p)
k = (2k + 2)−pek (2.13)

form an orthonormal basis in each Sp. Also∑
k

| I f (p+1)|2p =
∑
k

(2k + 2)−2 <∞ (2.14)

So by theorem A.2.7 we have that I is of Hilbert-Schmidt type and so the space
S(R) is nuclear.

We also define the norms, for p ≥ 0,

|ξ|2−p = |A−p ξ|20 (2.15)

and the spaces
S−p = {ξ ∈ L2(R) : |ξ|−p <∞} (2.16)

Corollary 2.3.2.

|f |2−p = |A−pf |20 =
∞∑
k=0

(2k + 2)−2p(f, ek)20

To summarize, we have a sequence of norms on S(R):

. . . ≤ |f |2−p ≤ . . . ≤ |f |2−1 ≤ |f |20 ≤ |f |21 ≤ . . . ≤ |f |2p ≤ . . . . (2.17)

Note that the operator A as defined above is linear, but not self-adjoint. To
see that it’s not self-adjoint, consider

(A en, em)L2(R) =
∫

R
(2n+ 2)en(x)em(x)dx 6= (en,A em)L2(R)

2.4 The construction of white noise space

Let Ω = S′(R), the space of all continuous liner functionals on the space of
Schwartz test functions. Then by 2.2.1 we have a σ-algebra B on this space,
and a unique probability measure µ which satisfies

∀φ ∈ S(R)
∫
S′(R)

exp(i〈ω, φ〉)dµ(ω) = exp
(
−1

2
‖φ‖2

)
(2.18)
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Therefore we can define the white noise probability space over S′(R) to be
(S′(R),B, µ). We also note that since S(R) is dense in L2(R), we can extend
the white noise space to contain all g ∈ L2(R). Indeed, for any g ∈ L2(R) there
exist (φn)n∈N ⊂ S(R) such that φn → g in L2(R) as n→∞ and so we define

〈ω, g〉 := lim
n→∞

〈ω, φn〉

Immediately we get these useful corollaries:

Corollary 2.4.1. The random variable 〈., f〉 is normally distributed with mean
0 and variance ‖f‖2L2(R) = |f |20.

Proof. Let F(t) = µ(〈., f〉 ≤ t). Then

F̂ (ξ) =
∫

R
e2πitξF (t)dt =

∫
Ω

ei〈ω,2πξf〉dµ(ω) = e−
1
2 (2π)2ξ2|f |20

and hence

F (t) =
∫

R
e−2πitξe−

1
2 (2π)2ξ2|f |20dξ =

1√
2π|f |0

e
− t2

2|f|2
0

Corollary 2.4.2 (Itô’s isometry).

∀f ∈ L2(R) Eµ
(
〈., f〉2

)
= ‖f‖2L2(R) (2.19)

Proof. This is a direct consequence of the above result.

Corollary 2.4.3.

∀f, g ∈ L2(R) Eµ (〈., f〉〈., g〉) = (f, g)L2(R) (2.20)

Proof: This is a simple consequence of:

(f, g)L2(R) =
1
4

(
‖f + g‖2L2(R) − ‖f − g‖2L2(R)

)
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Chapter 3

Hida distributions and test
functions

3.1 Construction

Now that we have the established some properties of the white noise space we
would like to consider the random variables on this probability space. Define:

(L2) = L2(Ω) = {ϕ : Ω → R : ‖ϕ‖L2(Ω) :=
∫
S′(R)

ϕ2(ω)dµ(ω) <∞} (3.1)

Many properties of fBm (that would hold for arbitrary Hurst parameter)
are difficult or even impossible to prove directly, however it is possible to prove
them for generalized functionals of fBm. For instance fBm with H ∈ (0, 1) is
nowhere differentiable on almost every path (see 4.6), but it is differentiable as
a mapping from I ⊂ R into the space of stochastic generalized functions, the
Hida distributions (see 4.7.6).

To construct the space of Hida test functions and Hida distributions we
follow an approach similar to the one taken in lemma 2.3.1. Of course here,
we’re not trying to reconstruct an already “known” space but rather to define
a new one.

Definition 3.1.1 (Second Quantization operator). The operator Γ(A) is an
operator on L2(Ω) given by: For1 ϕ =

∑∞
n=0 In(fn),

Γ(A)ϕ =
∞∑
n=0

In(A⊗n fn) (3.2)

where A is defined as in (2.3.1), that is A = − d2

dx2 + x2 + 1.

A little comment on the notation (see e.g. [Coo53]): the multiple Wiener
integral operator In is defined as In : L̂2(Rn) → R. The space2 L̂2(Rn) is viewed
as the tensor product of the Hilbert spaces L̂2(R) and since A is densely defined

1This expansion is justified by the Wiener-Itô chaos expansion theorem (see A.1.2)
2The space L̂2(R) is the subspace of L2(R) containing only symmetric functions. See

appendix (A.1).



16 Hida distributions and test functions

linear operator on L̂2(R), A⊗n is also a linear a densely defined operator, but
on the space L̂2(Rn).

Lemma 3.1.2. The Second Quantization Operator Γ(A) is densely defined on
L2(Ω) and the functions ϕα = 1√

(α1!...αn!)
In(e⊗α1

1 ⊗̂ . . . ⊗̂e⊗αn
n ) are the eigenvec-

tors of the operator, with eigenvalues (2α1 . . . (2n + 2)αn) for all multi-indexes
α.

Proof: From the second version of the Wiener-Itô Chaos expansion theorem
(A.1.3), we know that the functions of the form,

ϕα =
1√

(α1! . . . αn!)
In(e⊗α1

1 ⊗̂ . . . ⊗̂e⊗αn
n ) (3.3)

where α is a multi-index, form an orthonormal basis of L2(Ω). We note that
these are Wiener-Itô chaos expansions consisting of a single term and thus we
may apply Γ(A) directly and hence the series defining Γ(A) is clearly convergent.
So Γ(A) is densely defined on L2(Ω).

To see that ϕα are eigenvectors of the operator Γ(A) we consider:

Γ(A)ϕα =
1√

(α1! . . . αn!)
In(A⊗n[e⊗α1

1 ⊗̂ . . . ⊗̂e⊗αn
n ]) (3.4)

=
2α1 . . . (2n+ 2)αn√

(α1! . . . αn!)
In(e⊗α1

1 ⊗̂ . . . ⊗̂e⊗αn
n ) (3.5)

= (2α1 . . . (2n+ 2)αn)ϕα (3.6)

Where the second equality follows from the fact that the Hermite functions are
the eigenvectors of the operator A i.e. A ej = (2j + 2)ej .

Thus we can define, for p ≥ 0 and φ ∈ L2(Ω), the norms

‖φ‖p = ‖Γ(A)p φ‖L2(Ω)

and the spaces

(Sp) = Sp(Ω) = {φ ∈ L2(Ω) : ‖φ‖p <∞}

Finally we define the space of stochastic test functions.

Definition 3.1.3 (Stochastic test functions). The space of stochastic test func-
tions (S) = S(Ω) is defined as

S(Ω) =
⋂
p≥0

Sp(Ω)

The topology on this space is defined to be the projective limit topology, that is
the smallest topology such that for all p ≥ 0, the identity map I : S(Ω) → Sp(Ω)
is continuous.

Corollary 3.1.4. The spaces Sp(Ω) have an orthonormal basis formed by the
functions of the form:

ϕα =
(2α1 . . . (2n+ 2)αn)−p√

(α1! . . . αn!)
In(e⊗α1

1 ⊗̂ . . . ⊗̂e⊗αn
n ) (3.7)
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Proof: From (3.5) we see that ‖ϕα‖p <∞ and since Sp(Ω) ⊂ L2(Ω), the result
follows from the second version of the Wiener-Itô Chaos expansion theorem
(A.1.3).

A more general construction, which provides a construction of test func-
tions and distributions on different infinite dimensional spaces can be found in
([Kuo96]).

3.2 Some properties

The following two lemmas do not actually not use any special properties of
the spaces Sp(Ω). Indeed, in [GV64] the topic is treated in a general setting.
Nevertheless, stating them directly gives more intuitive understanding of the
properties of S(Ω).

Lemma 3.2.1. The topology on S(Ω) as defined above coincides with the
topology given by the metric:

ρ(ϕ,ψ) =
∑
p≥0

2−p
‖ϕ− ψ‖p

1 + ‖ϕ− ψ‖p
(3.8)

Proof: We will show that for all p ≥ 0 the identity map I : S(Ω) → Sp(Ω)
is continuous w.r.t. the metric (3.8). Consider a sequence (ψn)n∈N ⊂ S(Ω)
converging to some ψ in S(Ω). Assume that there is p0 ≥ 0 such that ψn does
not converge to ψ as n→∞ w.r.t. ‖.‖p.

That is assume, ∃ε > 0 such that for all n0 ∈ N there is some n > n0 for
which ‖ψ − ψn‖p0 > ε.

But this would mean that∑
p≥0

2−p
‖ψn − ψ‖p

1 + ‖ψn − ψ‖p
≥ 2−p0

ε

1 + ‖ψn − ψ‖p0
≥ 2−p0

ε

2
(3.9)

since we may, without loss of generality, assume that ‖ψn − ψ‖p0 < 1.
But this would clearly contradict our assumption that (ψn)n∈N ⊂ S(Ω)

converges to some ψ in S(Ω) and hence we conclude that for all p ≥ 0 the
identity map I : S(Ω) → Sp(Ω) is continuous w.r.t. the metric (3.8).

So the topology defined by the metric (3.8) is contained in the projective
limit topology of S(Ω) and since the projective limit topology is defined as the
smallest topology such that I : S(Ω) → Sp(Ω) is continuous for all p ≥ 0 we see
that the two topologies must be equal.

Definition 3.2.2. We define the Hida distributions as the space of all contin-
uous linear functionals on the space of Hida test functions. We denote Hida
distributions by S′(Ω) or (S)∗.

Lemma 3.2.3. The space of all continuous linear functionals on S(Ω), denoted
S′(Ω) (= (S)∗) is equal to the union of the spaces S′p(Ω) (sometimes denoted
(Sp)∗).
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Proof: If there is p ≥ 0 such that F : Sp(Ω) → R, then for U ⊂ R, F−1(U) is
open in S(Ω), since I : S(Ω) → Sp(Ω) is continuous by definition. Therefore⋃
p≥0 S

′
p(Ω) ⊂ S′(Ω).

Now assume that F : S(Ω) → R is continuous, i.e. assume that for any
sequence (ϕn)n∈N convergent to ϕ in the metric ρ. We have to show that there
is p ≥ 0 such that ‖ϕn − ϕ‖p → 0 as n → ∞ implies that |F (ϕn)− F (ϕ)| → 0
in R. We will do this by contradiction.

Assume that ∀p ≥ 0, ‖ϕn − ϕ‖p → 0 but limn→∞ |F (ϕn) − F (ϕ)| 6= 0,
that is ∃ε > 0 such that ∀n0 ∈ R ∃n > n0 so that |F (ϕn) − F (ϕ)| > ε.
This would contradict the assumption that ϕn → ϕ in the metric ρ implies
|F (ϕn)− F (ϕ)| → 0.

Hence there exists p ≥ 0 such that ‖ϕn − ϕ‖p → 0 and hence F is also
continuous as a map from F : Sp(Ω) → R and hence

⋃
p≥0 S

′
p(Ω) = S′(Ω).

As we mentioned above, the proofs do not use any particular properties of
the spaces Sp(Ω). Indeed, exactly the same proof as above would give us this
lemma:

Lemma 3.2.4. The Schwartz distributions S ′(R), that is continuous linear
functionals on S(R), is equal to the union of the spaces S ′p(R).

It can also be shown that the norms on the dual spaces (Sp)∗ of (Sp) are
given, for p > 0, by

‖φ‖−p = ‖Γ(A)−p φ‖0

To summarize, we have a sequence of norms on S(Ω) = (S):

. . . ≤ ‖φ‖2−p ≤ . . . ≤ ‖φ‖2−1 ≤ ‖φ‖20 ≤ ‖φ‖21 ≤ . . . ≤ ‖φ‖2p ≤ . . . . (3.10)

The space (S)∗ is the dual of (S) and it follows (see [GV64]) from the fact
that (S) is a countably Hilbert space. For Φ ∈ (S)∗ and ψ ∈ (S), we write

Φ(ψ) = 〈〈Φ, ψ〉〉

and if Φ ∈ (L2), then

〈〈Φ, ψ〉〉 = E (Φψ) =
∫
S′(R)

Φ(ω)Ψ(ω)dµ(ω),

due to the linearity and continuity of integration.
The concept of stochastic (Hida) test functions and stochastic distributions

may seem rather abstract. The motivation for introducing these spaces, how-
ever, is very similar to that behind using Schwartz test functions and distribu-
tions.

3.3 The S transform and characterization theo-
rems

The analogy with Schwartz distributions can be taken even further, because we
can define the following “integral” transform:
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Definition 3.3.1. For Φ ∈ (S)∗, we define it’s S-transform as

SΦ(ψ) = 〈〈Φ, : e〈.,ψ〉 :〉〉 for ψ ∈ S(R), (3.11)

where : e〈.,ψ〉 : is the Wick exponential and is defined as

: e〈.,ψ〉 :=
∞∑
n=0

1
n!

In(ψ⊗n). (3.12)

We now state some properties of S-transforms. They are absolutely essential
for our main result on stochastic differential equations driven by fBm. The
proofs can be all found in [Kuo96] and most of the white noise distribution
theory rests on these results. Luckily, the results are mostly self-contained and
can be used and understood without detailed understanding of the proofs. The
following two theorems are simply the proposition 5.1. and theorem 8.2. in
[Kuo96] respectively.

Theorem 3.3.2 (S-transform is injective). If Φ,Ψ ∈ (S)∗ and SΦ = SΨ, then
Φ = Ψ.

Theorem 3.3.3. Assume that Φ ∈ (S)∗. Then it’s S-transform F = SΦ
satisfies the following conditions:

1. For any ξ, ν ∈ S(R), the function F (zξ+ν) is an entire (analytic) function
of z ∈ C.

2. There exist non-negative constants K, p such that

|F (ξ)| ≤ K exp
(

1
2
|ξ|2p
)
, ∀ξ ∈ S(R).

Conversely, if a function F defined on S(R) satisfies the above two conditions,
then there exist a unique Φ ∈ (S)∗ such that F = SΦ and for any q satisfying
the condition that

e2‖A−(q−p) ‖2HS < 1, (3.13)

then the following inequality holds:

‖Φ‖−q ≤ K
(
1− e2‖A−(q−p) ‖2HS

)−1/2

.

Assume now that F = SΦ and G = SΨ. Then the product FG clearly
satisfies both the conditions 1. and 2. in the above theorem, for some p. For
large q the condition (3.13) also holds. Hence there is a unique element of (S)∗

such that it’s S-transform is equal to FG. This justifies the following definition.

Definition 3.3.4 (Wick product). The wick product of two Hida distributions
Φ,Ψ ∈ (S)∗, denoted Φ �Ψ is the unique element of (S)∗ such that

S(Φ �Ψ) = (SΦ)(SΨ)

The most important result we are going to need is the theorem about con-
vergence of Hida distributions (theorem 8.6 in [Kuo96]).
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Theorem 3.3.5. Assume that Φn ∈ (S)∗ and let Fn = SΦn. Then Φn con-
verges strongly in (S)∗ if and only if the following holds:

1. limn→∞ Fn(ξ) exists for all ξ ∈ S(R).

2. We can find non-negative constants K, p independent of n, such that

|Fn(ξ)| ≤ K exp
(

1
2
|ξ|2p
)
, ∀n ∈ N ∀ξ ∈ S(R). (3.14)



Chapter 4

Stochastic processes on the
white noise space

We have now a well defined white noise probability space and we have defined
the spaces of Hida test functions and Hida distributions. We will now turn to
the study of some basic properties of fractional Brownian motion.

First we state, without proof, the Kolmogorov-Čenstov theorem. For proof
see: [KS91]. This theorem essentially states that for a certain class of stochastic
processes we can find a modification which is continuous and almost surely equal
to the given process.

Theorem 4.0.6 (Kolmogorov-Čenstov). If the stochastic process Xt, t ∈ [0, t]
satisfies

E|Xt −Xs|α ≤ C|t− s|1+β , 0 ≤ s, t ≤ T, (4.1)

for some positive constants α, β and C, then there exists a continuous modifi-
cation X̃t of X, which is locally Hölder continuous with Hölder exponent γ for
every γ ∈ (0, βα ), i.e.

P

[
ω : sup

0<t−s<h(ω)

|X̃t(ω)− X̃s(ω)|
|t− s|γ

≤ δ

]
= 1 (4.2)

4.1 Classical Brownian motion

We have defined the white noise probability space so that for all f ∈ L2(R) the
map 〈., f〉 : Ω → R is a random variable. We define the indicator function:

1(a, b)(t) =


1, if a ≤ t < b

− 1, if b ≤ t < a

0, otherwise

and we note that for any t ∈ R, the function 1(0, t) is in L2(R) and hence
〈.,1(0, t)〉 is a random variable. Using 2.4.1 we see that it has mean 0 and
variance t.
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Simply define B̃t(ω) = 〈ω,1(0, t)〉. Note that B̃t − B̃s is (using 2.4.1) a
Gaussian random variable and hence we have,

E(|B̃t − B̃s|2n) =
∫

R
x2n 1√

2π|t− s|
exp

(
− x2

2|t− s|2

)
dx

=
1√
π

2nΓ
(
n+

1
2

)
|t− s|n

thus, using Kolmogorov-Čenstov theorem, we know that there exists a γ-Hölder
continuous modification of B̃t, say Bt, which is almost surely equal to B̃t, for
any γ ∈ (0, 1

2 ). Thus the stochastic process Bt is a Brownian motion process.
We can approximate f using step functions to obtain the following expression

for the Wiener integral:

〈., f〉 =
∫

R
f(t)dBt. (4.3)

4.2 Extending the Wiener integral

Consider f ∈ L2(R). Then we can use (4.3) and get

‖〈., f〉‖−p =
∥∥∥∥∫

R
f(t)dBt

∥∥∥∥
−p

= ‖ I1(f)‖−p

now by definition of the ‖.‖−p norm and due to the fact that I1(f) is a chaos
expansion consisting of that single term,

‖〈., f〉‖−p = ‖ I1(A−p f)‖0 = E
[(

I1(A−p)
)2]

= E
[
〈.,A−p f〉2

]
= |A−p f |0 = |f |−p

where we’ve also used (4.3) again and Itô’s isometry (corollary 2.19). Hence we
have, for all positive p ∈ N,

‖〈., f〉‖−p =
∥∥∥∥∫

R
f(t)dBt

∥∥∥∥
−p

= |f |−p. (4.4)

Using this isometry, we can extend the Wiener integral to f ∈ S ′(R). However,
one has to be cautious, because when 〈., f〉 exists only as an element of (S)−p
(and not (L2)), then also

∫
R f(t)dBt is an element of (S)∗ but not (L2) and so

it is a Hida distribution but not (necessarily) a random variable.

4.3 Preliminaries for a definition of fBm

We follow the same approach as in [MN68] in defining the fractional Brownian
motion process, that is a stochastic process which would be almost surely con-
tinuous, Gaussian with mean 0 and have a covariance function given by (1.1).
That is, for H ∈ (0, 1), we define a fractional Brownian motion as the process
given by the following Wiener integral:

BHt =
KH

Γ(H + 1/2)

∫
R
(t− s)H−1/2

+ − (−s)H−1/2
+ dBs, (4.5)
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Figure 4.1: We can roughly see what the integral kernel does, for H = 0.75 on
the left and for H = 0.25 on the right. As in (4.5), t on the “y-axis” corresponds
to t in BHt .

with the normalising constant KH given by:

KH = Γ(H + 1/2)
(∫

R

(
(1 + s)H−1/2 − sH−1/2

)2

ds+
1

2H

)−1/2

. (4.6)

We can use the corollary 2.4.1 and (4.3) to see that BHt are Gaussian random
variables. Verifying that using this definition, we get the desired covariance
function is a straightforward, if a bit tedious, matter. We will use this lemma:

Lemma 4.3.1.
E
[
(BHt+T −BHt )2

]
= T 2H

Proof. Let α = H − 1/2. Using (4.5) and (4.3), we get

E
[
(BHt+T −BHt )2

]
= E

[(
KH

Γ(α+ 1)
〈., (t+ T − s)α+ − (−s)+α〉−

− KH

Γ(α+ 1)
〈., (t− s)α+ − (−s)+α〉

)2
]
.

using Itô’s isometry (2.19), we get

E
[
(BHt+T −BHt )2

]
=
(

KH

Γ(α+ 1)

)2 ∫
R

(
(t+ T − s)α+ − (t− s)α+

)2
ds.

Now we change the integration variable: t− s Tv, to get

E
[
(BHt+T −BHt )2

]
=
(

KH

Γ(α+ 1)

)2

T 2α+1

(∫ 0

−∞
((1− v)α − (−v)α)2dv +

+
∫ 1

0

(1− v)2αdv
)
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Noting that
∫ 1

0
(1− v)2αdv = 1

2H , we finally obtain

E
[
(BHt+T −BHt )2

]
= T 2H

(
KH

Γ(α+ 1)

)2(∫ ∞

0

((1 + s)α − sα)2ds+
1

2H

)
= T 2H ,

where the last equality follows from the definition of KH .

Now we can use the lemma to show that BHt has the desired covariance.
First we note that 2ac = a2 + c2 − (a− c)2 and hence

2E(BHt B
H
s ) = E((BHt )2) + E((BHs )2)− E((BHt −BHs )2)

Then assuming BH0 = 0 µ almost surely and using the above lemma, we see
that

2E(BHt B
H
s ) = |t|2H + |s|2H − |t− s|2H

The above lemma has another useful consequence: we can use it to show
that BHt is self-similar in the following sense:

Definition 4.3.2. A stochastic processXt is said to have self-similar increments
with parameter H ≥ 0 if and only if the random variables

{Xt+T −Xt} and
1
hH

{Xt+hT −Xt} (4.7)

have the same distribution.

Corollary 4.3.3. Fractional Brownian motion processes BHt are self-similar
with the Hurst parameter H.

Proof. Thanks to lemma 2.4.1, we know that that both

{BHt+T −BHt } and
1
hH

{BHt+hT −BHt }

are Gaussian random variables with mean 0. Furthermore the first random
variable has variance T 2H . Using lemma 4.3.1, we see that

E

[(
1
hH

BHt+hT −BHt

)2
]

= h−2H(hT )2H

and hence the second random variable also has variance T 2H and so fBm has
self-similar increments.

All that remains to be done, in order to show that BHt is a fractional Brown-
ian motion process is to use the Kolmogorov-Čenstov theorem, to show that the
process has a continuous modification. It seems that the most straightforward
way of doing this, would be to express BHt as 〈., f(t)〉, for some f ∈ L2(R). That
way we could use a similar approach, to show that the process satisfies the as-
sumptions of Kolmogorov-Čenstov theorem, as we did with ordinary Brownian
motion. We will use fractional integrals and fractional derivatives to do this.
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4.4 Fraction integrals and derivatives

We would like to obtain a representation for BHt , ideally in terms of an indicator
function, in some sense. We will first provide definitions of fractional integrals
and derivatives.

Definition 4.4.1 (Fractional integrals of Weyl’s type). Let α ∈ (0, 1) and for
f such that the following integrals exist for any x ∈ R, define:

(I -
α f)(x) =

1
Γ(α)

∫ ∞

x

f(t)(t− x)α−1dt =
1

Γ(α)

∫ ∞

0

f(x+ t)tα−1dt, (4.8)

(I+α f)(x) =
1

Γ(α)

∫ x

−∞
f(t)(x− t)α−1dt =

1
Γ(α)

∫ ∞

0

f(x− t)tα−1dt, (4.9)

Definition 4.4.2 (Fractional derivative of Marchaud’s type). Let α ∈ (0, 1),
let ε > 0 and for f such that the following integral and limit exist for any x ∈ R,
define:

(D±,ε
α f)(x) =

α

Γ(1− α)

∫ ∞

ε

f(x)− f(x∓ t)
tα+1

dt. (4.10)

Then the fractional derivative of Marchaud’s type is given by

(D±
α f) = lim

ε→0+
(D±,ε

α f) (4.11)

Lemma 4.4.3. For H ∈ ( 1
2 , 1), one has

(I -
H−1/2 1(0, t))(s) =

1
Γ(H + 1/2)

(t− s)H−1/2
+ − (−s)H−1/2

+ (4.12)

Proof. First we note that

1(0, t)(s+ x) =


1, if 0 ≤ s+ x < t

− 1, if t ≤ s+ x < 0
0, otherwise

=


1, if − s ≤ x < t− s

− 1, if t− s ≤ x < −s
0, otherwise

= 1(−s, t− s)(x)

Hence we can write:

(I -
H−1/2 1(0, t))(s) =

1
Γ(H − 1/2)

∫ ∞

0

1(−s, t− s)(x)xH−3/2dx.

We also remark that, in general, Γ(1 + z) = zΓ(z) and hence

Γ(H + 1/2) = Γ(H − 1/2)(H − 1/2).

The remaining part of the proof is tedious rather than enlightening and can be
happily skipped.

Now we will consider several cases. First assume that t > 0 and that s > 0.
Then

(I -
H−1/2 1(0, t))(s) =

1
Γ(H − 1/2)

∫ t−s

0

xH−3/2dx

=
1

Γ(H + 1/2)
(t− s)H−1/2

=
1

Γ(H + 1/2)
(t− s)H−1/2

+ − (−s)H−1/2
+ ,
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where the last equality follows since s > 0 implies (−s)+ = 0 and we can assume
that t > 0, because if it’s not then t − s < 0 and the integral is 0 and hence
t− s = (t− s)+.

The second case is t > 0 but s < 0. Thus t− s ≥ 0 and we get:

(I -
H−1/2 1(0, t))(s) =

1
Γ(H − 1/2)

∫ t−s

−s
xH−3/2dx

=
1

Γ(H + 1/2)
(t− s)H−1/2 − (−s)H−1/2

=
1

Γ(H + 1/2)
(t− s)H−1/2

+ − (−s)H−1/2
+ ,

where the last equality is a consequence of the fact that s < 0 implies −s =
(−s)+ and of the fact that t− s ≥ 0.

The third case is t ≤ 0 and s > 0. Here t− s < t and so t− s < 0, giving us:

(I -
H−1/2 1(0, t))(s) =

1
Γ(H − 1/2)

∫
(0,∞)∩(t−s,−s)

−xH−3/2dx = 0

=
1

Γ(H + 1/2)
(t− s)H−1/2

+ − (−s)H−1/2
+ ,

since if t− s < 0 then (t− s)+ = 0 and also if −s < 0 then (−s)+ = 0.
The fourth and final case is assuming t ≤ 0 and s < 0. We have:

(I -
H−1/2 1(0, t))(s) =

1
Γ(H − 1/2)

∫ −s

0∧t−s
−xH−3/2dx

=
1

Γ(H + 1/2)
[(t− s) ∧ 0]H−1/2 − (−s)H−1/2

+

=
1

Γ(H + 1/2)
(t− s)H−1/2

+ − (−s)H−1/2
+ ,

since −s > 0. We see that the four cases exhaust all the possible combinations
of s and t and thus the proof is complete.

Lemma 4.4.4. For H ∈ (0, 1
2 ), one has

(D-
−(H−1/2) 1(0, t))(s) =

1
Γ(H + 1/2)

(
(t− s)H−1/2

+ − (−s)H−1/2
+

)
(4.13)

Proof. We will use α = H − 1/2. Then,

Γ(1 + α)(D-
−α 1(0, t))(s) = Γ(1 + α) lim

ε→0+
(D-,ε1(0, t))(s)

= −α lim
ε→0+

∫ ∞

ε

1(0, t)(s)− 1(0, t)(s+ v)
v−α+1

dv

As far as integration and taking the limit goes, t and s are fixed. And so we
can consider separate cases, as in the previous proof. First assume that t > 0
and 0 ≤ s < t. Then we have

Γ(1 + α)(D-
−α 1(0, t))(s) = −α lim

ε→0+

∫ ∞

ε

1− 1(−s, t− s)(v)
v−α+1

dv

= −α lim
ε→0+

∫ ∞

ε

−1(−s, t− s)(v)
v−α+1

dv
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We’re assuming, that s, t are fixed such that s < t, hence t − s > 0, we can
assume that ε ∈ (0, t− s). Also s ≥ 0 and hence we see that

Γ(1 + α)(D-
−α 1(0, t))(s) = −α lim

ε→0+

∫ t−s

ε

− 1
v−α+1

dv

= (t− s)α = (t− s)α+ − (−s)α+

Now assume that t is still strictly greater than 0 but s /∈ (0, t). We get:

Γ(1 + α)(D-
−α 1(0, t))(s) = −α lim

ε→0+

∫ ∞

ε

−1(−s, t− s)(v)
v−α+1

dv

If s ≥ 0, then we also have s ≥ t and hence t − s < 0 which implies that
(t − s)+ = 0. s ≥ 0 would also mean that (−s)+ = 0. And s ≥ 0 would also
mean that

(ε,∞) ∩ (−s, t− s) = ∅

and so this case is fine. If on the other hand s < 0, then t − s > 0 and our
integral is:

Γ(1 + α)(D-
−α 1(0, t))(s) = −α lim

ε→0+

∫ t−s

−s
− 1
v−α+1

dv = (t− s)α+ − (−s)α+

We could indeed verify that the lemma holds also for t < 0, but this part we
omit. It’s as straightforward but as tedious as the case t ≥ 0.

4.5 Concluding the construction of fBm

Using the lemmas 4.4.3 and 4.4.4 and using (4.3), we see that for H ∈ ( 1
2 , 1),

BHt = 〈.,KH I -
H−1/2 1(0, t)〉.

For H ∈ (0, 1
2 ),

BHt = 〈.,KH D-
1/2−H 1(0, t)〉

and of course for H = 1
2 , B1/2

t = 〈.,1(0, t)〉. Thus we have a definition of
fractional Brownian motion in terms of an operator and an indicator function.
We can summarise this.

Definition 4.5.1. For H ∈ (0, 1) define the class of operators MH
± by

MH
± f =


KH D±

1/2−H f, H ∈ (0,
1
2
)

f, H =
1
2

KH I±H−1/2 f, H ∈ (
1
2
, 1).

for any function f such that the respective fractional derivatives or integrals
make sense.

We can now show some useful properties of the operators MH
±, before we

show that fBm has a continuous modification.
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Theorem 4.5.2. Assume H ∈ (0, 1) and f ∈ S(R). Then MH
± exists and there

is a constant CH independent of f such that

sup
x∈R

|(MH
± f)(x)| ≤ CH

(
sup
x∈R

|f(x)|+ sup
x∈R

|f ′(x)|+ ‖f‖L1(R)

)
(4.14)

Proof. For H = 1
2 , MH

± is the identity operator and the result is trivial.
Assume H ∈ (0, 1

2 ) and let α = 1/2−H, then α ∈ (0, 1
2 ). We get:

|(MH
± f)(x)| =

∣∣∣∣KH
α

Γ( 1
2 +H)

lim
ε→0+

∫ ∞

ε

f(x)− f(x∓ y)
yα+1

dy

∣∣∣∣
Now we note that

Γ(1− α)
α

|D±f(x)| ≤
∫ 1

0

|f(x)− f(x∓ y)|
y

y−αdy+

+
∫ ∞

1

|f(x)− f(x∓ y)|
yα+1

dy

≤ sup
x∈R

|f ′(x)|
∫ 1

0

y−αdy + 2 sup
x∈R

|f(x)|
∫ ∞

1

y−1−αdy

=
1

1− α
sup
x∈R

|f ′(x)|+ 2
α

sup
x∈R

|f(x)|

(4.15)

and hence for some constant C1
H , independent of f ,

sup
x∈R

|(MH
± f)(x)| ≤ C1

H

(
sup
x∈R

|f ′(x)|+ sup
x∈R

|f(x)|
)

(4.16)

Now assume that H ∈ ( 1
2 , 1) and let α = H − 1

2 . Then

∣∣(MH
± f)(x)

∣∣ = |KH(I±f)(x)| ≤
∣∣∣∣KH

1
Γ(α)

∫ ∞

0

f(x∓ y)yα−1dy

∣∣∣∣
and ∣∣∣∣∫ ∞

0

f(x∓ y)yα−1dy

∣∣∣∣ ≤ ∫ 1

0

|f(x∓ y)yα−1|dy +
∫ ∞

1

|f(x∓ y)yα−1|dy.

Let’s note that α ∈ (−1,−1/2) and 1− α ∈ (1/2, 1). So,∣∣∣∣∫ ∞

0

f(x∓ y)yα−1dy

∣∣∣∣ ≤ ∫
|y−x|<1

|f(t)||y − x|α−1dy+

+
∫
|y−x|≥1

|f(y)||y − x|α−1dy

≤ sup
x∈R

|f(x)|
∫
|y−x|<1

|y − x|α−1dy +
∫
|x−y|≥1

|f(y)|dy

≤ 2
α

sup
x∈R

|f(x)|+ ‖f‖L1(R)

(4.17)
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Thus we get, for some C2
H independent of f ,

sup
x∈R

|(MH
± f)(x)| ≤ C2

H

(
sup
x∈R

|f(x)|+ ‖f‖L1(R)

)
(4.18)

and combining (4.16) and (4.18) completes the proof.

Theorem 4.5.3. 1. Assume that H ∈ ( 1
2 , 1). Assume also that f ∈ Lp(R),

g ∈ Lr(R) and p > 1 and r > 1 and

1
p

+
1
r

=
1
2

+H

then (f,MH
- g)0 = (MH

+ f, g)0.

2. Assume that H ∈ (0, 1
2 ) and also that MH

+
H
f ∈ Lp(R), MH

-
H
g ∈ Lr(R),

f ∈ Ls(R) and g ∈ Lt(R), where p > 1, r > 1 and

1
p

+
1
r

=
3
2
−H and

1
s

=
1
p

+H − 1
2

and
1
t

=
1
r

+H − 1
2
,

Proof. This is a consequence of the fractional integration by parts and differ-
entiation by parts formula, which can be found in [SKM93]. For part one, let
α = H − 1/2, then we can use (5.16) in [SKM93] to see that∫

R
f(x)(I -

α g)(x)dx =
∫

R
g(x)(I+α f)(x)dx

the conditions set out in [SKM93] for (5.16) to hold are exactly as spelled out
in our theorem and hence (f,MH

- g)0 = (MH
+ f, g)0.

For part two, let α = 1/2−H and we will use (5.17) in [SKM93] to see that
(again the conditions for (5.17) to hold are the same as our assumptions).∫

R
f(x)(D-

α g)(x)dx =
∫

R
g(x)(D+

α f)(x)dx

and hence we can again get (f,MH
- g)0 = (MH

+ f, g)0.

A useful consequence of the above theorem (proved in [Ben03]) is:

Corollary 4.5.4. If f ∈ S(R) then, (f,MH
- 1(0, t))0 = (1(0, t),MH

+ f)0.

Of course we have seen that in particular for 1(0, t) the operator is well
defined and we have that BHt = 〈.,MH

- 1(0, t)〉. What still remains to be done
is to show that BHt is path-wise continuous. In fact we’ll use the Kolmogorov-
Čenstov theorem to show that there exists a continuous modification which as
almost surely equal to BHt . Using the same approach as in the proof of lemma
4.3.1, we obtain that for n ∈ N:

E
[
(BHt+T −BHt )2n

]
= CH,nT

2Hn (4.19)

Therefore, using Kolmogorov-Čenstov theorem, we see that for larger n there
is a γ-Hölder continuous modification, with γ ∈

(
0, 2Hn−1

2n

)
for ∀n ∈ N and so

letting n → ∞ we get that γ ∈ (0,H). This shows rather nicely that for small
H fBm has less “continuous” sample paths than for high H.
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4.6 Non-differentiability of fBm

We will show that the sample paths of fBm are almost surely non-differentiable,
in fact we will use the self-similarity property of fBm (corollary4.3.3) to prove
that:

Lemma 4.6.1. If BHt is a fBm process then

µ

{
lim sup
t→t0

∣∣∣∣BHt −BHt0
t− t0

∣∣∣∣ = ∞
}

= 1 (4.20)

The prove presented here is essentially the same as in [MN68].

Proof. Consider T = s − t, so BHt+T = BHs . Let h = (s − t)−1. Using the
self-similarly property1 we see that

BHs −BHt ∼ (s− t)H(BHt+1 −BHt )

and thus
BHt −BHt0 ∼ (t− t0)H−1(BHt0+1 −BHt0 )

and we also note that BH0 = 0 µ almost surely, and we get

BHt −BHt0 ∼ (t− t0)H−1(BH1 ).

Now we take some sequence tn ↓ 0 and consider the events, for some fixed d ∈ R:

At =
{
ω : sup

0≤s≤t

∣∣∣∣BHs (ω)
s

∣∣∣∣ > d

}
and we note that Atn+1 ⊂ Atn . Thus we have

µ
(

lim
n→∞

Atn

)
= lim
n→∞

µ(Atn).

Finally,

µ(Atn) ≥ µ

{ |BHtn |
tn

> d

}
= µ

{
|BH1 |
tH−1
n

> d

}
= µ

{
|BHtn | > t1−Hn d

}
→ 1,

as n→∞, because BH1 is Gaussian and H ∈ (0, 1).

4.7 fBm is differentiable as a stochastic distri-
bution process

The aim now is to show that fBm is differentiable as a stochastic distribution
process. We will first define what we mean by this, but then we will have to find
d
dt MH

- 1(0, t). This in turn depends on some properties of Hermite functions.
Only then will we be able to prove our result.

1with ∼ denoting processes with the same probability distribution
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Definition 4.7.1. Let I ⊂ R be an interval. A mapping X : I → (S)∗ (i.e. a
stochastic distribution process) is said to be differentiable if there exists Ẋ ∈
(S)∗ such that

Xt+h −Xt

h
→ Ẋ as h→ 0, convergence in (S)∗ (4.21)

Recall that convergence in (S)∗ means, that there exists p ∈ N such that we
have convergence with respect to the norm ‖.‖−p.

Lemma 4.7.2. Assume H ∈ (0, 1) and en is the nth Hermite function. Then
there is a positive constant CH such that

sup
x∈R

|(MH
+ en)(x)| ≤ CH(n+ 1)5/12.

Proof. By the theorem 4.5.2,

sup
x∈R

|MH
+ en(x)| ≤ CH

(
sup
x∈R

|en(x)|+ sup
x∈R

|e′n(x)|+ ‖en‖L1(R)

)
.

The result now follows from the identity (A.14) and the estimates (A.13) in
appendix A.3.

Theorem 4.7.3. If H ∈ (0, 1) and f ∈ S(R), then MH
+ f is a continuous real

function.

Proof. This is a consequence of Lebesgue dominated convergence theorem. We
will show that we can apply the dominated convergence theorem. First assume
that H ∈

(
0, 1

2

)
and let α = 1

2 −H. Then

|f(xn)− f(xn − y)|
|y|α+1

≤ g(x) =:


sup
x∈R

|f ′(x)||y|−1−α if |y| ∈ (0, 1)

2 sup
x∈R

|f(x)||y|1+α otherwise

and we can see from (4.15) that g is integrable.
Now let H ∈

(
1
2 , 1
)

and α = H − 1/2. Then, by continuity of f and because
xn → x as n→∞, we can say that for some M > 0

|f(xn − y)||y|α−1 ≤ (|f(x− y)|+M) |y|α−1

and we can see from an estimate similar to (4.17) that this is integrable.

Corollary 4.7.4. If H ∈ (0, 1) and f ∈ S(R), then (f,MH
- 1(0, t))0 is differen-

tiable and
d
dt

(f,MH
- 1(0, t))0 = (MH

+ f)(t) (4.22)

Lemma 4.7.5. If H ∈ (0, 1), then MH
- 1(0, .) : R → S ′(R) is differentiable and

d
dt

MH
- 1(0, t) =

∞∑
k=0

(MH
+ ek)(t)ek, (4.23)

where the limit is in S ′(R).
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We mention that the Hermite functions ek form an orthonormal basis in
L2(R) and hence we can write

MH
- 1(0, t) =

∞∑
k=0

(MH
- 1(0, t), ek)0ek =

∞∑
k=0

(∫ t

0

(MH
+ ek)(s)ds

)
ek, (4.24)

where the last equality is a consequence of corollary 4.5.4.

Proof of lemma 4.7.5. In the view of (4.24), we see that∣∣∣∣∣MH
- 1(0, t+ h)−MH

- 1(0, t)
h

−
∞∑
k=0

(MH
+ ek)(t)ek

∣∣∣∣∣
2

−1

=

=

∣∣∣∣∣ 1h
∞∑
0

(∫ t+h

t

(MH
+ ek)(s)ds

)
ek −

∞∑
k=0

1
h

(MH
+ ek)(t)

(∫ t+h

t

ds

)
ek

∣∣∣∣∣
2

−1

=

=

∣∣∣∣∣ 1h
∞∑
k=0

(∫ t+h

t

(MH
+ ek)(s)− (MH

+ ek)(t)ds

)
ek

∣∣∣∣∣
2

−1

=

=
∞∑
k=0

(2k + 2)−2

(
1
h

∫ t+h

t

(MH
+ ek)(s)ds− (MH

+ ek)(t)

)2

(4.25)

where the last equality followed from corollary 2.3.2, which says that

|f |2−p = |A−pf |20 =
∞∑
k=0

(2k + 2)−2p(f, ek)20

and from the fact that ek are orthonormal and so (ej , ek)0 = 1 if and only if
j = k, which effectively removes the second summation.

From lemma 4.7.2, we see that the right hand side of (4.25) converges uni-
formly in h. Thus we can pass the limit as h→ 0 under the summation. Finally

lim
h→0

(
1
h

∫ t+h

t

(MH
+ ek)(s)ds− (MH

+ ek)(t)

)2

= 0,

because theorem 4.7.3 tells us that MH
+ ek is continuous. So with convergence

in |.|−1,

MH
- 1(0, t) =

∞∑
k=0

(MH
- 1(0, t), ek)0ek =

∞∑
k=0

(∫ t

0

(MH
+ ek)(s)ds

)
ek

and since, by lemma 3.2.4 the union over p of S ′p(R) is equal to S ′(R), we get
the above equality with convergence in S ′(R). This completes the proof.

Now we very nearly have our result. Recall that by (4.4), we can apply the
Itô isometry not only to L2(R) functions but also to tempered distributions.
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Henceforth, if we assume that F : I → S ′(R) is differentiable, then we see that:

lim
h→0

∥∥∥∥〈., h−1 (Ft+h − Ft)−
d
dt
Ft

〉∥∥∥∥
−p

=

= lim
h→0

∣∣∣∣h−1 (F (t+ h)− F (t))− d
dt
F (t)

∣∣∣∣
−p

= 0,

(4.26)

by our assumption. This implies that 〈., F (t)〉 is differentiable as a stochastic
distribution process. Hence by lemma 4.7.5, we see that BH is differentiable as
a stochastic distribution process and furthermore

d
dt
BHt =

〈
.,

∞∑
k=0

(MH
+ ek)(t)ek

〉
. (4.27)

We can find even a simpler expression for d
dt B

H
t , though. Consider∣∣∣∣∣

∞∑
k=0

(MH
+ ek)(t)ek − δt ◦MH

+

∣∣∣∣∣
2

−1

=

=
∞∑
n=0

(2n+ 2)−2

〈 ∞∑
k=0

(MH
+ ek)(t)ek − δt ◦MH

+, en

〉2

=

=
∞∑
n=0

(2n+ 2)−2

( ∞∑
k=0

(MH
+ ek)(t)(ek, en)0 − (MH

+ en)(t)

)2

= 0.

Thus we have proved the following corollary.

Corollary 4.7.6. BHt is differentiable as a stochastic distribution process and

d
dt
BHt = 〈., δt ◦MH

+〉 (4.28)

and we can define the fractional white noise to be

WH
t = 〈., δt ◦MH

+〉. (4.29)

Theorem 4.7.7. Let H ∈ (0, 1). Then ∀ξ ∈ S(R),

SWH
t (ξ) = (MH

+ ξ)(t).

Proof. Follows from the fact that if a stochastic distribution process Xt is dif-
ferentiable, then

S

(
d
dt
Xt

)
(ν) =

d
dt

(SXt(ν)) , ∀ν ∈ S(R), (4.30)

which in turn follows straight from the definitions and theorem 3.3.5.
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4.8 fBm is not a martingale

We conclude this chapter by quickly showing that fBm process is not a martin-
gale. This has an unfortunate consequence. We can’t apply the well established
martingale approach to stochastic integration (see e.g. [KS91].

Lemma 4.8.1. For H 6= 1/2, fBm is not a martingale.

Proof: BHt would be a martingale if and only if

∀s < t E(BHt |Fs) = BHs (4.31)

which is equivalent to

∀s < t E(BHt −BHs |Fs) = 0 (4.32)

Now one notes that∫
R
(t− u)α+ − (s− u)α+dBu =

∫
{s≥u}

(t− u)α+ − (s− u)α+dBu (4.33)

and hence that

E(BHt −BHs |Fs) =
KH

Γ(α)
E

(∫
{s≥u}

(t− u)α+ − (s− u)α+dBu|Fs

)
(4.34)

=
KH

Γ(α)

∫
{s≥u}

(t− u)α+ − (s− u)α+dBu (4.35)

since
∫
{s≥u}(t − u)α+ − (s − u)α+dBu is Fs measurable. Thus for α 6= 0 i.e.

H 6= 1/2 BHt is not a martingale.



Chapter 5

Stochastic integral with
respect to fBm

We have shown in 4.8 that a fBm process is not a martingale and hence the
classical integration theory does not apply.

An alternative approach to stochastic integration is to use the white noise
distribution theory. This has some disadvantages as we’ll demonstrate later.

5.1 White noise integrals

If X : I → (S)∗ is a stochastic distribution process, then the integrability of X
can be defined in terms of the S-transform:

Definition 5.1.1. A stochastic distribution process X : I → (S)∗ is integrable
in the white noise (Pettis) sense, if:

1. SX(η) is measurable for all η ∈ S(R) and SX(η) ∈ L1(I) for all η ∈ S(R)

2. there exists Φ ∈ (S)∗ such that
∫
I
SX(t)(η)dt = SΦ

The we define
∫
I
X(t)dt = Φ.

However this is just a definition; it does not tell us anything about the
conditions that must be satisfied for the integral to exists or what properties
can we expect. The following theorems are therefore useful (a more general
proof can be found in [Kuo96], chapter 13).

Theorem 5.1.2. Assume that Φ : I → (S)∗ satisfies:

1. SΦ(.)(ξ) is measurable for all ξ ∈ S(R)

2. There exist positive constants K, a and p such that∫
I

|SΦ(t)(ξ)|dt ≤ K exp[a|ξ|2p] (5.1)

Then Φ is Pettis integrable and for any E ∈ B(I),

S

(∫
E

Φ(t)dt
)

(ξ) =
∫
E

SΦ(t)(ξ)dt (5.2)
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Proof. The first assumption implies that SΦ(.)(ξ) ∈ L1(I) for all ξ ∈ S(R).
Now for any E ∈ B(I), define F (ξ) =

∫
E
SΦ(t)(ξ)dt and note that we could

use Morera’s theorem to check that for all ξ, ν ∈ S(R the function F (zξ + ν) is
entire as a function of z ∈ C.

Moreover we have, by the second assumption:

|F (ξ)| ≤
∫
E

|SΦ(t)(ξ)|dt ≤
∫
I

|SΦ(t)(ξ)|dt ≤ K exp[a|ξ|2p] (5.3)

Thus, by theorem 3.3.3 we know that there exists a unique Ψ ∈ (S)∗ such that:

SΨ(ξ) = F (ξ) =
∫
E

SΦ(t)(ξ)dt (5.4)

and so by definition Ψ is the Pettis integral of
∫
E

Φ(t)dt and we have

S

(∫
E

Φ(t)dt
)

(ξ) = SΨ(ξ) =
∫
E

Sφ(t)(ξ)dt (5.5)

Example 5.1.3. We let H = 1/2 and so Wt = d
dt Bt in the distributional sense.

We show that ∫ T

0

e−(−T−t)Wt(ω)dt = 〈ω,1(0,T )e
−(−T−ω)〉 (5.6)

First note that
S(e−(−T−t)Wt) = e−(−T−t)ξ(t) (5.7)

and that

S〈.,1(0,T )e
−(−T−.)〉(ξ) =

∫ T

0

e−(−T−t)ξ(t)dt (5.8)

So if combine (5.7) with (5.8) and the definition (5.1.1), we get (5.6). We could
have also applied the above theorem to obtain the fact, that the integral exists,
indeed we have the following estimate∫ T

0

|e−(−T−t)ξ(t)|dt ≤ CT exp(|ξ|20) (5.9)

and hence the above theorem applies. Nonetheless, we note that

1(0,T )e
−(−T−t) ∈ L2(R).

So (5.6) implies that the integral is a Gaussian random variable in (L2) with
mean 0 and variance 1

2 (1 − e−2T ). The shortcoming of the above theorem is
that it only tells us that the integral exists as an element of (S∗).

This illustrates a more general problem, one encounters, when trying to work
with white noise integrals. In general we could prove a theorem similar to (5.1.2)
with the second condition being that: There exist positive constants K, a and
p such that ∫

I

|SΦ(t)(ξ)|dt ≤ K exp[a|ξ|2−p] (5.10)
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Then the white noise integral would again exist and furthermore for q ∈ [0, p)
we would have (under some further assumption), that the integral is an element
of (Sq). In particular, one might be tempted to think that it could be used that
the integral is in (S0) = (L2). This is indeed true, however even for

∫ T
0
Btdt,

one would have to be able to show that |SBt(ξ)| ≤ K exp[a|ξ|2−1], which is
impossible.

In [Ben03] it is shown, in theorem 4.4, that for certain integrands the inte-
grals are elements of (L2). It is however done indirectly, not using the charac-
terization theorems of S-transforms.

Example 5.1.4.
∫ T
0
WH
t dt exists in the white noise sense. Recall that WH

t

was defined as the distributional derivative of BHt . We would like to apply the
above theorem and therefore we need to estimate |SWH

t (ξ)|.
In general, we have, by definition of the S-transform and the ‖.‖−p norm,

for p ≥ 1:
|SΦ(ξ)|2 = |〈〈Φ, : e〈.,ξ〉 :〉〉|2 ≤ ‖Φ‖2−p‖ : e〈.,ξ〉 : ‖2p (5.11)

We also have, by corollary 4.7.6 and the second equality by the extended Itô
isometry (4.4), that

‖WH
t ‖2−p = ‖〈.,

∞∑
k=0

(MH
+ ek)(t)ek〉‖2−p (5.12)

= |A−p
∞∑
k=0

(MH
+ ek)(t)ek|20 (5.13)

= |
∞∑
m=0

(2m+ 2)−2p(
∞∑
k=0

(MH
+ ek)(t)ek, em)0em|20 (5.14)

= |
∞∑
m=0

(2m+ 2)−2p(MH
+ em)(t)em|20 (5.15)

Now we use the fact that supt |(MH
+ em)(t)| ≤ CH(m + 1)

5
12 and that em are

orthonormal in L2(R) and thus we get:

‖WH
t ‖2−p ≤

∞∑
m=0

(2m+ 2)−2pCH(m+ 1)
5
12 (5.16)

For p ≥ 1 the series is convergent and thus have

|SWH
t (ξ)|2 ≤

( ∞∑
m=0

(2m+ 2)−2pCH(m+ 1)
5
12

)
︸ ︷︷ ︸

=:(C̃H)2

‖ : e〈.,ξ〉 : ‖2p (5.17)

Finally we note that ‖ : e〈.,ξ〉 : ‖2p = exp
(

1
2 |ξ|

2
p

)
:∫ T

0

|SWH
t (ξ)|2 ≤ TC̃H exp

(
1
2
|ξ|2p
)

(5.18)

This implies, by the above theorem, that
∫ T
0
WH
t dt exists.
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Example 5.1.5. Similarly, since we can estimate∫ T

0

|S(BHt ♦W
H
t )(ξ)|dt ≤ TC̃HKH exp(|ξ|2p) (5.19)

we get that
∫ T
0
BHt ♦W

H
t dt exists.

5.2 Fractional “Itô” integrals

The previous two examples provide motivation for the following definition.

Definition 5.2.1 (fractional Itô integral). A stochastic (distribution) process
Φ : [0, T ] → (S)∗ is fractional Itô integrable provided that Φ♦WH is white noise
(Pettis) integrable and we write:∫ T

0

Φ(t)dBHt :=
∫ T

0

Φ(t)♦WH
t dt (5.20)

Theorem 5.2.2. A fractional Itô integral of Φ : [0, T ] → (S)∗ exists, provided
that:

1. SΦ(.)(ξ) is measurable for all ξ ∈ S(R).

2. There exist positive constants K, a and p̂ such that∫ T

0

|SΦ(t)(ξ)|dt ≤ K exp[a|ξ|2p̂] (5.21)

Proof. SWH
t (ξ) = MH

+ ξ(t), it is measurable and so S(Φ(t)♦WH
t )(ξ) is also

measurable by the first assumption and because

S(Φ(t)♦WH
t )(ξ) = SΦ(t)(ξ)SWH

t (ξ)

Now we use the same estimate for |SWH
t (ξ)| as in example 5.1.4, that is

(5.17) and our second assumption to get∫ T

0

|SΦ(t)(ξ)SWH
t (ξ)|dt ≤ C̃H exp

(
1
2
|ξ|2p
)∫ T

0

|SΦ(t)(ξ)|dt

≤ C̃H exp
(

1
2
|ξ|2p
)
K exp(a|ξ|2p̂)

(5.22)

In general, it holds that for q ≥ p that |.|q ≥ |.|p, henceforth we get that∫ T

0

|SΦ(t)(ξ)SWH
t (ξ)|dt ≤ C̃HK exp

((
1
2

+ a

)
|ξ|2p∨p̂

)
(5.23)

So by theorem 5.1.2 the integral
∫ T
0

Φ(t)dBHt exists.

So why do we call this construction a fractional Itô integral? Firstly, [Ben03]
has shown that the integral is well defined for any functional of fractional Brow-
nian motion, that is

∫ T
0
F (t, BHt )dBHt exists for any F (t, .) ∈ S(R). Also, for

H = 1/2 ∫ T

0

Φ(t)dBt =
∫ T

0

Φ(t)♦Wtdt =
∫ T

0

Φ(t)δBt (5.24)



Fractional “Itô” integrals 39

Where the last integral is the Skorokhod integral. See [HØUZ96] for proof. It
is well known that for an Ft adapted process, the Skorokhod integral coincides
with the Itô integral. Furthermore, if define fBm on the White noise probability
space, the way it is done here, then F (t, BHt ) is Ft adapted (see [Rog97] for
proof). Hence for H = 1/2 integral constructed using white noise distribution
theory coincides with the classical Itô integral.
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Chapter 6

Stochastic differential
equations driven by fBm

6.1 Preliminary deliberations

Finally, we would like to apply the white noise distribution theory to the study
of stochastic differential equations driven by fractional Brownian motion. In
the classical Itô theory of SDEs, one proves the existence and uniqueness of the
solution to the following SDE:

X(t) = X(0) +
∫ t

0

b(s,X(s))ds+
∫ t

0

σ(s,X(s))dBs

Here, b and σ are functions from [0, T ]× R to R.
It would seem natural, therefore, to strive to find the solution, in some yet

to be defined sense, of the following SDE, driven by an fBm process, where the
integrals are defined as white noise integrals:

X(t) = X(0) +
∫ t

0

b(s,X(s))ds+
∫ t

0

σ(s,X(s))dBHs (6.1)

Since we have defined the integral with respect to fractional Brownian motion
as a white noise integral, the solution X(t) to the SDE (if it exists) will only
make sense as Hida distributions.

Now imagine, that b(t, x) = x2 and that WH
t = d

dt B
H
t solves the SDE.

However WH
t only exists as an element of (S)∗ and (WH

t )2 is not really defined.
Thus we have to have b and σ defined as functions from [0, T ]× (S)∗ to (S)∗.

The obvious question is, what does the fact that we have a solution in (S)∗

actually mean? We quote [HØUZ96] on that matter:

We emphasize that although the space (S)∗ of stochastic (Hida)
distributions may seem abstract, it does allow a relatively concrete
interpretation. Indeed, (S)∗ is analogous to the classical space S′ of
tempered distributions. the difference being that the test function
space for (S)∗ is a space of “smooth” random variables (denoted
by (S)). Thus, if we interpret the random element ω as a specific
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“experiment” or “realization” of our system, then generic elements
F ∈ (S)∗ do not have point values F (ω) for each ω, but only average
values F (η) with respect to smooth random variables η = η(ω).
In other words, knowing the solution Xt of SDE does not tell us
what the outcome of a specific realization ω would be, but rather
what the average over a set of realizations would be. This seems to
be appropriate for most applications, because (in most cases) each
specific singleton ω has probability zero anyway.

Having said this we specify what we mean by a weak solution. The first
two conditions are natural. Since the S-transform is injective, the last condition
implies that if X is a weak solution to (6.1), then both sides of the equation
(6.1) are equal as elements of (S)∗.

Definition 6.1.1 (Weak solution). The mapping X : [0, T ] → (S)∗ is called
the weak solution of (6.1) on [0, T ] if it satisfies:

1. X is weakly measurable.

2. b(s,X(s)) is integrable with respect to ds in the white noise sense and
σ(s,X(s)) is integrable with respect to dBHs , in the white noise sense.

3. for all ξ ∈ S(R) and for almost all t ∈ [0, T ] the following holds:

SX(t)(ξ) = SX(0)(ξ) +
∫ t

0

Sb(s,X(S))(ξ)ds+
∫ t

0

Sσ(s,X(s))♦WH
t (ξ)ds

6.2 Existence and uniqueness of a weak solution

We now state and prove our main result, that is existence and uniqueness for
certain SDEs driven by fBm. The “inspiration” for the following theorem is
taken from [Kuo96], theorem 13.43, where an existence and uniqueness of a
weak solution to a general white noise integral equation is proved.

Our theorem, however, is rather different, because of the particular nature of
fractional Brownian motion. In particular we need stronger assumption about
σ. The method of the proof of existence will be similar to the one in [Kuo96],
but it is still substantially different, because we have two functions b and σ.
The reason for this is that we need rather strict conditions on σ, as it is being
integrated with respect a fractional Brownian motion process. That way, we
don’t have to restrict b.

Theorem 6.2.1 (Existence and uniquencess of solution). Assume that b and
σ defined from [0, T ]× (S)∗ → (S)∗ and satisfy the following conditions:

1. Measurability : b(t,X(t)) and σ(t,X(t)) are weakly measurable for any
weakly measurable stochastic distribution process X : [0, T ] → (S)∗.

2. Lipshitz conditions: For almost all t ∈ [0, T ] and for Φ,Ψ ∈ (S)∗, b must
satisfy:

|Sb(t,Ψ)(ξ)− Sb(t,Φ)(ξ)| ≤ Lb(t, ξ)|SΨ(ξ)− SΦ(ξ)|, ∀ξ ∈ S(R)
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where b ≥ 0 and ∫ T

0

Lb(t, ξ) ≤ K(1 + |ξ|20).

And similarly σ must satisfy:

|Sσ(t,Ψ)(ξ)− Sσ(t,Φ)(ξ)| ≤ Lσ(t, ξ)|SΨ(ξ)− SΦ(ξ)|, ∀ξ ∈ S(R)

where σ ≥ 0 and
sup

0<t<T
Lσ(t, ξ) ≤ K(1 + |ξ|0).

3. Growth condition: For almost all t ∈ [0, T ] and for Φ ∈ (S)∗,

|Sb(t,Φ)(ξ)|+ |Sσ(t,Φ)(ξ) ≤ ρ(t, ξ)(1 + |SΦ(ξ)|), ∀ξ ∈ S(R)

where ρ ≥ 0 and ∫ T

0

ρ(t, ξ)dt ≤ K exp[c|ξ|20]

for some positive constants K, p, c.

Then for any X(0) ∈ (S)∗, the equation (6.1) has a unique weak solution X
such that

ess-sup
0≤t≤T

|SX(t)(ξ)| <∞, ∀ξ ∈ S(R)

We will first present a proof of existence. Uniqueness of the result will be
proved separately. Before we embark on the proof of existence, we first state
and prove a few auxiliary lemma’s that will be used in the proof.

Lemma 6.2.2. If ξ ∈ S(R) then∫ T

0

|SWH
t (ξ)|dt ≤ TH |ξ|0

This result might look suspicious at first, because on the right hand side
of the inequality we have |ξ|0, which would generally, on the intuitive level, be
“adequate” for an element of (L2). However WH

t does not belong to (L2). Of
course, we’re looking at the integral of the S-transform of WH

t , on the left hand
side. Hence there is no contradiction to our intuition.

Proof of lemma 6.2.2. By theorem 4.7.7 and corollary 4.5.4 we have∫ T

0

SWH
t (ξ)dt =

∫ T

0

MH
+ ξ(t)dt = (ξ,MH

- 1(0, T ))0

In general
∫
fdµ =

∫
gdµ implies that

∫
|f |dµ =

∫
|g|dµ and hence∫ T

0

|SWH
t (ξ)|dt =

∫ T

0

|ξ(x)||MH
- 1(0, T )(x)|dx

and by Cauchy-Schwartz inequality∫ T

0

|WH
t (ξ)|dt ≤ |ξ|0|MH

- 1(0, T )|0

to complete the proof, note that |MH
- 1(0, T )|0 = TH .
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Lemma 6.2.3. Assume that b : [0, t]× (S)∗ → (S)∗ and σ : [0, t]× (S)∗ → (S)∗

are functions satisfying the measurability and Lipschitz conditions above. As-
sume further, that X is some weakly measurable stochastic distribution process
and that there exist non-negative constants K1, c1 and p1 such that

ess-sup
0≤t≤T

|SX(t)(ξ)| ≤ K1 exp[c1|ξ|2p1 ], ∀ξ ∈ S(R) (6.2)

Then the function b(t,X(t))+σ(t,X(t))♦WH
t , t ∈ [0, T ] is white noise integrable

and with K2 = K(CH +K1 +K1CH), c2 = c1 + 3
2 and p2 = p ∨ p1, one has∫ T

0

|Sb(t,X(t)) + Sσ(t,X(t))SWH
t |dt ≤ K2 exp[c2|ξ|2p2 ], ∀ξ ∈ S(R) (6.3)

Proof of lemma 6.2.3. We show that the conditions in theorem 5.1.2 are satis-
fied for b(t,X(t))+σ(t,X(t))♦WH

t . The first condition is immediately satisfied
by our measurability assumption.

By the assumption on X(t) and the second assumption, we have∫ T

0

|Sb(t,X(t))(ξ) + σ(t,X(t))(ξ)SWH
t (ξ)|dt ≤

≤
∫ T

0

|Sb(t,X(t))(ξ)|dt+ CH exp[
1
2
|ξ|2p]

∫ T

0

|σ(t,X(t))(ξ)|dt ≤

≤
(

1 + CH exp[
1
2
|ξ|2p]

)∫ T

0

ρ(t, ξ)(1 +K1 exp[c1|ξ|2p1 ])dt ≤

≤
(

1 + CH exp[
1
2
|ξ|2p]

)
K exp[c|ξ|2p](1 +K1 exp[c1|ξ|2p1 ]) ≤

≤ K(CH +K1 +K1CH) exp
[(
c1 +

3
2

)
|ξ|2p1∨p

]
Thus the condition (5.1) of theorem 5.1.2 is satisfied and hence

b(t,X(t)) + σ(t,X(t))♦WH
t

is white noise integrable.

Proof of existence of weak solution. We will use a standard iteration argument,
to prove the existence. The main constraint arises from the fact the we need
to have the S-transforms of the iterations in a “nice” enough shape as to be
able to apply theorem 3.3.5. This in turn dictates the strictness of the Lipschitz
condition.

Let G = SX(0), define X0(t) = X(0). Clearly X0 : [0, T ] → (S)∗ is weakly
measurable and also

ess-sup
0≤t≤T

|SX0(t)(ξ)| = |G(ξ)| ≤ K0 exp[c0|ξ|2p0 ] (6.4)

where K0, c0 and p0 are positive constants associated with SX(0) by theorem
3.3.3.

Therefore by lemma 6.2.3 b(t,X0(t)) + σ(t,X0(t))♦WH
t is white noise inte-

grable and there are non-negative constants K ′
0, c

′
0, p

′
0 such that∫ T

0

|Sb(t,X0(t))(ξ) + Sσ(t,X0(t))(ξ)SWH
t (ξ)|dt ≤ K ′

0 exp[c′0|ξ|2p′0 ] (6.5)
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So we can safely define X1(t) as

X1(t) = X(0) +
∫ t

0

b(s,X0(s))ds+
∫ t

0

σ(s,X0(s))dBHs

ThenX1 is weakly measurable and by (6.4) and (6.5) there are positive constants
K1, c1, p1 such that

ess-sup |SX1(t)(ξ)| ≤ K1 exp[c1|ξ|2p1 ] (6.6)

Therefore by lemma 6.2.3 b(t,X1(t)) + σ(t,X1(t))♦WH
t is white noise inte-

grable and there are non-negative constants K ′
1, c

′
1, p

′
1 such that∫ T

0

|Sb(t,X1(t))(ξ) + Sσ(t,X1(t))(ξ)SWH
t (ξ)|dt ≤ K ′

1 exp[c′1|ξ|2p′1 ]

So, similarly as before, we can safely define X2 as

X2(t) = X(0) +
∫ t

0

b(s,X1(s))ds+
∫ t

0

σ(s,X1(s))dBHs

Inductively repeating this argument, we can define a sequence of weakly mea-
surable functions Xn : [0, T ] → (S)∗ as

Xn(t) = X(0) +
∫ t

0

b(s,Xn−1(s))ds+
∫ t

0

σ(s,Xn−1(s))dBHs (6.7)

Now define Fn(t) = SXn(t) for n > 0 and F0(t) = G. Using the growth
condition and the estimate (5.17) obtained in example (5.1.4), we get

|F1(t)(ξ)−G(ξ)| ≤

≤
∫ t

0

|Sb(s,X(0))(ξ) + Sσ(s,X(0))(ξ)SWH
t (ξ)|dt

≤
∫ t

0

|Sb(s,X(0))(ξ)|dt+ CH exp
[
1
2
|ξ|2p
] ∫ t

0

|Sσ(s,X(0))(ξ)SWH
t (ξ)|dt

≤
(

1 + CH exp
[
1
2
|ξ|2p
])∫ t

0

ρ(t, ξ)(1 + |G(ξ)|)dt

≤ (K + CHK)(1 + |G(ξ)|) exp
[
3
2
|ξ|2p
]

=: H(ξ)

Our aim is to find a good enough estimate for |Fn(t)(ξ) − Fn−1(t)(ξ)|. We
apply the Lipschitz condition:

|F2(t)(ξ)− F1(t)(ξ)| ≤
∫ t

0

|Sb(s,X1(s))(ξ)− Sb(s,X(0))(ξ)|+

|SWH
s (ξ)| |Sσ(s,X1(s))(ξ)− Sσ(s,X(0))(ξ)|ds

≤
∫ t

0

H(ξ)Lb(s, ξ) + |SWH
s (ξ)|H(ξ)Lσ(s, ξ)ds

≤ H(ξ)
∫ t

0

Lb(s, ξ) + |SWH
s (ξ)|Lσ(s, ξ)ds
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and again, substituting for |F2(t)(ξ)− F1(t)(ξ)|:

|F3(t)(ξ)− F2(t)(ξ)| ≤
∫ t

0

Lb(s, ξ)|F2(s)(ξ)− F1(s)(ξ)|+

+ |SWH
s (ξ)|Lσ(s, ξ)|F2(s)(ξ)− F1(s)(ξ)ds

≤ H(ξ)
∫ t

0

(Lb(s, ξ) + |SWH
s (ξ)|Lσ(s, ξ))×

×
∫ s

0

Lb(s1, ξ) + |SWH
s1 (ξ)|Lσ(s1, ξ)ds1ds

We can repeat this argument, substituting for |Fi(t)(ξ)−Fi−1(t)(ξ)|, repeatedly,
to get

|Fn(t)(ξ)− Fn−1(t)(ξ)| ≤

≤ H(ξ)
∫ t

0

∫ sn−1

0

. . .

∫ s2

0

(
Lb(s1, ξ) + |SWH

s1 (ξ)|Lσ(s1, ξ)
)
. . .

. . .
(
Lb(sn−1, ξ) + |SWH

sn−1
(ξ)|Lσ(sn−1, ξ)

)
ds1 . . . dsn−1

≤ H(ξ)
1

(n− 1)!

(∫ T

0

Lb(s, ξ) + |SWH
s (ξ)|Lσ(s, ξ)ds

)n−1

Using our assumptions about Lb and Lσ and also lemma (6.2.2), we get the
following estimate

|Fn(t)(ξ)− Fn−1(t)(ξ)| ≤

≤ H(ξ)
1

(n− 1)!

(
K(1 + |ξ|20) +K(1 + |ξ|0)

∫ T

0

|SWH
s (ξ)|ds

)n−1

≤ H(ξ)
1

(n− 1)!
(
K(1 + |ξ|20) + TH+1|ξ|0K(1 + |ξ|0)

)n−1

Noting that, if |ξ|0 < 1 then K(|ξ|0 + |ξ|20) ≤ K(1 + |ξ|20) and that if |ξ|0 ≥ 1
then K(|ξ|0 + |ξ|20) ≤ 2K|ξ|20, we see that in general

|ξ|0K(1 + |ξ|0) ≤ 2K(1 + |ξ|20)

Finally we have the following estimate

|Fn(t)(ξ)− Fn−1(t)(ξ)| ≤ H(ξ)
1

(n− 1)!
(
K(1 + 2TH+1)(1 + |ξ|20)

)n−1
(6.8)

So from (6.8) we can see that the series

G(ξ) +
∞∑
n=1

|Fn(t)(ξ)− Fn−1(t)(ξ)|

converges absolutely, uniformly for s ∈ [0, T ]. Henceforth Fn(t)(ξ), being a
partial sum of the series, converges uniformly for s ∈ [0, T ]. From (6.8) we also
see that

|Fn(t)(ξ)| ≤ |G(ξ)|+
∞∑
n=1

|Fn(t)(ξ)− Fn−1(t)(ξ)|

≤ |G(ξ)|+H(ξ) exp
[
K(1 + 2TH+1)(1 + |ξ|20)

]
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Recall that we had

G(ξ) = SX(0)(ξ) ≤ K0 exp[c0|ξ|2p0 ]

H(ξ) = (K + CHK)(1 + |G(ξ)|) exp
[
3
2
|ξ|2p
]

and so there exist non-negative constants K ′, c′, p′ such that

|Fn(t)(ξ)| ≤ K ′ exp[c′|ξ|2p′ ] (6.9)

Now one can define
F (t)(ξ) = lim

n→∞
Fn(t)(ξ)

And from (6.9) we see that for all s ∈ [0, T ] and for all ξ ∈ S(R) we have

|F (t)(ξ)| ≤ K ′ exp[c′|ξ|2p′ ] (6.10)

Therefore by theorem 3.3.5 there exist X(t) ∈ (S)∗ such that SX(t) = F (t).
The final step is to show that this S is indeed a weak solution to (6.1) according
to our definition of a weak solution (6.1.1).

SX(.)(ξ) is measurable since it is a limit of measurable functions Fn(.)(ξ).
So 〈〈X(.), ϕ〉〉 is measurable for all ϕ ∈ (S)∗ and hence X is weakly measurable
and the first condition (for a weak solution) is satisfied.

Now if we look at (6.9) and use lemma 6.2.3 we see that

b(t,X(t)) + σ(t,X(t))♦WH
t

is white noise integrable, thus satisfying the second condition (for a weak solu-
tion).

Finally we wish to verify the third condition (for a weak solution). To that
end, take the S-transform of (6.7), to get

Fn(t)(ξ) = G(ξ) +
∫ t

0

Sb(s,Xn−1(s))(ξ)ds+
∫ t

0

Sσ(s,Xn−1(s))(ξ)SWH
s (ξ)ds

(6.11)
Also, for all ξ ∈ S(R) and by the Lipschitz condition,∫ T

0

|Sb(s,Xn(s))(ξ)− Sb(s,X(x))(ξ)+

+ (Sσ(s,Xn(s))(ξ)− Sσ(s,X(s))(ξ))WH
s (ξ)|ds ≤

≤
∫ T

0

Lb(s, ξ)|Fn(s)(ξ)− F (s)(ξ)|ds+

+
∫ T

0

Lσ(s, ξ)TH |ξ|0|Fn(s)(ξ)− F (s)(ξ)|ds ≤

≤ sup
0≤s≤T

|Fn(s)(ξ)− F (s)(ξ)|
∫ T

0

Lb(s, ξ) + Lσ(s, ξ)TH |ξ|0ds→ 0

as n→∞

since Fn(s)(ξ) converges uniformly in s ∈ [0, T ]. Thus we can let n → ∞ in
(6.11) and we obtain:

F (t)(ξ) = G(ξ) +
∫ t

0

Sb(s,X(s))(ξ)ds+
∫ t

0

Sσ(s,X(s))(ξ)SWH
s (ξ)ds
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Thus the S-transform of the left hand side is equal to the S-transform of the
right hand side, satisfying the third condition (for a weak solution).

To prove the uniqueness we will use a variation on the Gromwall lemma,
taken from [FR75], page 198. We will first state and prove the lemma, then
proceed to the proof of uniqueness.

Lemma 6.2.4. Assume that f ∈ L∞([0, T ]) and f ≥ 0 almost everywhere.
Further assume, that f satisfies the condition

f(t) ≤ ρ(t) +
∫ t

0

θ(s)f(s)ds, a.e. on [0, T ]

where ρ ∈ L∞([0, T ]) and θ ∈ L1([0, T ), θ ≥ 0 almost everywhere. Then

f(t) ≤ ρ(t) +
∫ t

0

ρ(s)θ(s) exp
(∫ t

s

θ(u)du
)
ds, a.e. on [0, T ]

We just remark that ρ here is different to the ρ specifying the growth con-
dition in our theorem.

Proof. Let g(t) =
∫ t
0
θ(s)f(s)ds. Then we have f(t) ≤ ρ(t) + g(t). The function

g is absolutely continuous and g′(t) = θ(t)f(t) almost everywhere. Hence for
almost all t ∈ [0, T ],

g′(t)− θ(t)g(t) = θ(t)(f(t)− g(t)) ≤ ρ(t)θ(t).

Multiplying both sides by the integrating factor exp
(
−
∫ t
0
θ(u)du

)
, we get

d

dt

(
g(t) exp

(
−
∫ t

0

θ(u)du
))

≤ ρ(t)θ(t) exp
(
−
∫ t

0

θ(u)du
)
.

Which implies that

g(t) exp
(
−
∫ t

0

θ(u)du
)
≤
∫
ρ(s)θ(s) exp

(
−
∫ s

0

θ(u)du
)
ds.

Hence we obtain

g(t) ≤
∫ t

0

ρ(s)θ(s) exp
(∫ t

s

θ(u)du
)
ds.

Finally,

f(t) ≤ ρ(t) + g(t) ≤ ρ(t) +
∫ t

0

ρ(s)θ(s) exp
(∫ t

s

θ(u)du
)
ds.

Proof of uniqueness of solution. Assume X(t) and Y (t) are both weak solutions
to (6.1), as defined above. Define F (t) = SX(t) and G(t) = SY (t). Then for a
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fixed ξ ∈ S(R), we have

|F (t)(ξ)−G(t)(ξ)| ≤

≤
∫ t

0

|Sb(s,X(s))(ξ)− Sb(s, Y (s))(ξ)|+

+ |SWH
s (ξ)| |Sσ(s,X(s))− Sσ(s, Y (s))(ξ)|ds

≤
∫ t

0

(
Lb(s, ξ) + |SWH

s (ξ)|Lσ(s, ξ)
)
|F (s)(ξ)−G(s)(ξ)|ds

where we have used the Lipschitz condition to get the last inequality. We also
have that ∫ T

0

Lb(s, ξ)ds ≤ K(1 + |ξ|20)∫ T

0

Lσ(s, ξ)|SWH
s (ξ)|ds ≤ THK(1 + |ξ|0)|ξ|0

and hence θ(t) := Lb(s, ξ) + Lσ(s, ξ)|SWH
s (ξ)| ∈ L1([0, T ]). Now define f(t) =

|F (t)(ξ)−G(t)(ξ)| and note that f ∈ L∞([0, T ]) and hence the assumptions of
above lemma are satisfied with ρ ≡ 0. Therefore F (t)(ξ) = G(t)(ξ) for almost
all t ∈ [0, T ].

Now we have to overcome a slight technical difficulty, namely that the null
set Aξ = {F (t)(ξ) 6= G(t)(ξ)} could be different for each ξ in S(R) and together
they might have non-zero Lebesgue measure.

However, since S(R) is separable, there is a countable dense subset of S(R),
say {ξn, n ≥ 1}. Let

A0 =
⋃
n≥1

Aξn .

Then A0 is a null subset of [0, T ]. Hence if t ∈ Ac0 then, F (t)(ξ) = G(t)(ξ), for
all ξ ∈ S(R). Since the S-transform is injective, X = Y .

6.3 Examples and comments

Our theorem is very similar to theorem 13.43 [Kuo96]. However here the stochas-
tic differential equation is of the form

X(t) = X(0) +
∫ t

0

f(s,X(s))ds.

The Lipschitz condition is then similar as with our result, except that in [Kuo96]
it is required that ∫ T

0

L(t, ξ)dt ≤ K(1 + |ξ|2p)

We can’t achieve that with fractional white noise (time derivative of fBm). We
only have (or rather, here we only proved) the estimate given by lemma 6.2.2:∫ T

0

|SWH
t (ξ)|dt ≤ TH |ξ|0,
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which won’t satisfy the above condition for ξ such that |ξ|0 < 1. The method of
proof used above is similar to the one given in [Kuo96], but the technical details
(especially the estimates) are different.

It is appropriate now to comment on the usefulness (or lack of it) of our
result. Quite clearly, the most difficult conditions to check for any SDE will be
the growth and Lipshitz conditions. We now give several examples of SDEs that
our theorem applies to (and some where it does not apply). We begin with a
trivial one.

Example 6.3.1. Consider the following SDE, popular in particular in mathe-
matical finance:

S(t) = S(0) +
∫ t

0

rS(s)ds+
∫ t

0

σS(s)dBHs

Here, the coefficients are constant and hence the growth and Lipschitz conditions
are trivially satisfied. We can use the Itô formula in [Ben03], to check that the
solution is given by

S(t) = exp
(
(r − σ2Ht2H−1)t+ σBHt

)
(6.12)

Our theorem tells us, that this solution is unique in (S)∗. Furthermore, we can
see, that the right hand side of (6.12) is in (L2) and hence the solution is unique
as an element of (L2).

Example 6.3.2.

X(t) = X(0) +
∫ t

0

BHs ♦X(s)dBHs

Here, we have b ≡ 0 and σ(s,Φ) = BHs ♦Φ. We see that

|Sσ(s,Φ)(ξ)− Sσ(s,Ψ)(ξ)| ≤ |SBHs (ξ)|︸ ︷︷ ︸
=:L(s,ξ)

|SΦ(ξ)− SΨ(ξ)|

We need to check whether L(s, ξ) is “nice enough”. We know that

|SBHs (ξ)| = |
(
ξ,MH

- 1(0, s)
)
0
| ≤ |ξ|0|MH

- 1(0, t)| ≤ sH |ξ|0 ≤ TH |ξ|0

The last inequality follows since s ∈ [0, T ]. Hence L(s, ξ) ≤ TH(1 + |ξ|0) and
so the Lipschitz condition is satisfied. Trivially, the growth condition is also
satisfied. Therefore the SDE has a unique solution in (S)∗.

Next we look at an example of an SDE, where our theorem tells us nothing
about the solution.

Example 6.3.3.

X(t) = X(0) +
∫ t

0

BHs ♦B
H
s ♦X(s)dBHs

We proceed similarly as in the previous example, only to obtain

L(s, ξ) =
(
SBHs (ξ)

)2
.
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If we then used the same method as above, then the best we get is:

L(s, ξ) =
(
SBHs (ξ)

)2 ≤ T 2H |ξ|20

Hence we can’t claim that the Lipschitz condition is satisfied and thus our
theorem does not apply.

Perhaps we could have found a better estimate for L(s, ξ) above. The general
point is, though, as the example shows, that it is quite difficult to apply the
theorem, because we have to calculate some S-transform, which is usually more
difficult that in the case of (BHt )♦2. Then one has to try to find a very strict
estimate of L(s, ξ), which can prove to be rather difficult.

As mentioned above the strictness of the Lipschitz condition arises from the
fact that we need to apply the convergence theorem 3.3.5. It does not seem
likely, that there is a straightforward way, in which we could find a convergence
theorem more suitable for our purpose.
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Appendix A

A.1 Iterated Itô Integral and Wiener-Itô Chaos
Expansion

A very clear exposition of the general topic of Wiener-Itô chaos expansion the-
orems (certainly a lot clearer than this appendix) can be found in [Nua95]. We
assume that W (t) = W (t, ω) is a Wiener process on some probability space
(Ω,F , P ) and Ft is the σ-algebra generated the Wiener process.

First we define symmetric functions. A function g : [0, T ]n → R is called
symmetric if and only if

g (xσ1 , . . . , xσn) = g(x1, . . . , xn),

for all permutations σ of (1, . . . , n). If g also belongs to L2(R), then we write
g ∈ L̂2(R).

Now note that if we let

Sn = {(x1, . . . , xn) ∈ [0, T ]n : 0 ≤ x1 ≤ . . . ≤ xn ≤ T},

then
‖g‖2L2([0,t]n) = n!

∫
Sn

g2(x1, . . . , xn)dx1 . . . dxn = n!‖g‖2L2(Sn).

If f is deterministic and f ∈ L2(Sn) then we can form the iterated Itô
integral :

Jn(f) =
∫ T

0

∫ tn

0

. . .

∫ t3

0

∫ t2

0

f(t1, . . . , tn)dW (t1)dW (t2) . . . dW (tn−1)dW (tn),

because for each Itô integral with respect to dW (ti) the integrand is Ft adapted
and square integrable with respect to dP× dti. We remark that

1. E
(
Jn

2(h)
)

= ‖h‖L2(Sn), which follows from the definition and Itô’s isom-
etry.

2.

E (Jm(g) Jn(g)) =

{
0 if n 6= m

(g, h)L2(Sn) if n = m

3. For a symmetric function g define In(g) = n!Jn(g).
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Theorem A.1.1. If en are the Hermite functions in L2(R) and hn the hermite
polyonomials, then In satisfies:

In(e⊗α1
1 ⊗̂ . . . ⊗̂e⊗αn

n ) =
n∏
j=1

hαj
(〈., ej〉), for any multi-index α.

Theorem A.1.2 (Wiener-Itô Chaos Expansion). Assume that ϕ is an Ft mea-
surable random variable and ϕ belongs to L2(Ω). Then there exists a unique
sequence (fn)∞n=0 of functions fn ∈ L̂2(Rn) such that

ϕ =
∞∑
n=0

In(fn) (A.1)

where the series is understood to converge in L2(Ω). Furthermore we have

‖ϕ‖2L2(Ω) =
∞∑
n=0

n!‖fn‖2L2(Rn) (A.2)

Theorem A.1.3 (Wiener-Itô Chaos Expansion II). Assume that X ∈ L2(Ω).
Then there exist unique cα ∈ R such that

X =
∑
α

cα In(e⊗α1
1 ⊗̂ . . . ⊗̂e⊗αn

n ) and ‖X‖2L2(Ω) =
∑
α

α!c2α,

where ek are the Hermite functions.
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A.2 Nuclear Hilbert Spaces

We briefly review some functional analytic results, mainly without proofs. See
[GV64] for proofs.

Definition A.2.1 (Countably Hilbert Space). Consider some Hilbert space H
with an inner product (., .)0. Assume that there exists a countable collection
of compatible inner products (., .)n, compatible in the sense that if a sequence
in H converges w.r.t. (., .)n and is Cauchy w.r.t. (., .)m, then it also converges
w.r.t. (., .)m.

We then say that H is a countably Hilbert space, if it is complete w.r.t. the
metric:

ρ(ϕ,ψ) =
∞∑
n=1

2−n
‖ϕ− ψ‖n

1 + ‖ϕ− ψ‖n
(A.3)

It follows immediately from the definition that if H is a countably Hilbert
space, then H =

⋂
n≥1Hn and conversly if the topology in a linear space is

defined by a countable collection of inner products, then H =
⋂
n≥1Hn.

Definition A.2.2 (Degenerate operators). And operator is said to be degen-
erate if it maps an entire space onto a finite dimensional subspace.

Definition A.2.3 (Completely continuos operators). A ∈ L (H1,H2) is called
completely continuous if it maps any bounded set into a set whose closure is
compact. In other words: If U ⊂ H1 is bounded then A(U) ⊂ H2 is compact.

The following result is crucial property of completely continuous linear op-
erators.

Theorem A.2.4. If A : H1 → H2 is completely continuous, then ∃ a positive
definite T : H1 → H1 and an isometric operator U : Im T → H2 s.t. A = UT .

Any completely continuous operator can be approximated as follows:

Af =
∞∑
n=1

λn (f, en)hn (A.4)

where λn are the eigenvalues of the operator T in A = UT and (en)n∈N and
(hn)n∈N are orthonormal bases of H1 and H2 respectively. Thus, we can define
degenerate operators Pk : H1 → H2 by

Pk :=
k∑

n=1

λn (f, en)hn (A.5)

Clearly =Pk is finitie dimensional and also A = limk→∞ Pk. Therofor one can
see that the space of completely continous linear operators coincides with the
completion of the space of degenerate operators.

Definition A.2.5 (Hilbert-Schmidt operators). A completely continuous op-
erator A = UT is of the Hilbert-Schmidt type iff

∑
n∈N λ

2
n < ∞, where λn are

the eigenvalues of T .
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Clearly for any operator A which is of Hilbert-Schmidt type, we get the
approximation (A.4). The following two results provide equivalent definitions
of Hilbert-Schmidt operators.

Theorem A.2.6. A is of Hilbert-Schmidt type iff ∃ an orhtonormal basis
(fn)n∈N of H1 such that: ∑

n∈N
‖Afn‖2 <∞

Theorem A.2.7. A : H1 → H2 is of Hilbert-Schmidt type iff

Af =
∞∑
n=1

λn (f, en)hn (A.6)

for some (en)n∈N and (hn)n∈N orthonormal bases of H1 and H2 respectively and
a sequence (λn ≥ 0)n∈N satisfying

∑
λ2
n <∞.

Definition A.2.8 (Nuclear operators). A completely continous operator is
called nuclear iff

∑
n∈N λ

2
n <∞, where λn are the eigenvalues of T in A = UT .

From the definition it follows that any nuclear operator is also of the Hilbert-
Schmidt type. Nuclear operators are sometimes reffered to as trace operators.

Lemma A.2.9. If T is a completely continuous positive definite operator, then
T is nuclear iff T has a finite trace, i.e.∑

n∈N
(Ten, en) <∞

for any orthonormal basis.

Theorem A.2.10. A product of any two Hilbert-Schmidt type operators is
a nuclear operator and conversly for any nuclear operator U there are Hilber-
Schmidt operators A,B, such that U = AB.
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A.3 Hermite polynomials

Definition A.3.1. For n ∈ N, define the nth Hermite polynomial as

hn(x) = (−1)nex
2
(

d
dx

)n
e−x

2
(A.7)

Theorem A.3.2. We have the following identities:

hn+1(x) = 2xhn(x) + 2nhn−1(x) (A.8)

h′n(x) = 2nhn−1(x) (A.9)

h′′n(x)− 2xh′n(x) + 2nhn(x) = 0 (A.10)

Theorem A.3.3. The Hermite functions

en(x) = (π1/2(n− 1)!)−1/2 exp
(
−x

2

2

)
hn(x) (A.11)

constiute an orthonormal basis of L2(R).

Theorem A.3.4. Hermite functions have the following properties:(
−
(

d
dx

)2

+ x2 + 1

)
en = (2n+ 2)en (A.12)

There is a constant K ≥ 0 such that for n ≥ 1

sup
x∈R

|en(x)| ≤ Kn−1/12 and ‖en‖L1(R) ≤ Kn1/4. (A.13)

Also,

e′n(x) =
√
n

2
en−1(x)−

√
n+ 1

2
en+1(x) (A.14)

xen(x) =
√
n

2
en−1(x) +

√
n+ 1

2
en+1(x) (A.15)
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