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1 Introduction

We are interested in Monte Carlo methods as a general simulation technique. However
many (most) of our examples will come from financial mathematics.

1.1 Numerical integration

We start with examples that are not directly related to derivative pricing. This is to let
us understand the main idea behind Monte Carlo methods without getting confused
by general derivate pricing issues.

Example 1.1 (Numerical integration in one dimension). Let f : [a, b] → R be given
and say that we want to approximate

I =

∫ b

a
f(x)dx.

Assume that f ≥ 0 on [a, b] and that f is bounded on the interval [a, b] and let
M := supx∈[a,b] f(x). Assume that we know how to generate samples from U(0, 1)
(that is the uniform distribution on the interval 0 to 1).

Let (ui)
N
i=1 and (vi)

N
i=1 be two collections of N samples each from U(0, 1). Let xi :=

a+ (b− a)ui and yi := Mvi. Let 1A be equal to 1 if A is true and 0 otherwise. Then
we can approximate I with

IN := (b− a)M
1

N

N∑
i=1

1{f(xi)≥yi}.

That is, we count the number of times when yi is equal to or less than f(xi) and then
we divide by N . Finally, we scale this by the area of the rectangle inside which we are
sampling our random points. One would hope that IN converges to I, in some sense,
as N →∞.
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Example 1.2 (Multidimensional numerical integration). Let Ω ⊂ Rd be bounded
inside the hypercube

[a1, b1]× [a2, b2]× · · · × [ad, bd].

Let f : Ω→ R+ be measurable, integrable and bounded. We wish to approximate

I =

∫
Ω
f(x)dx.

Let
M := sup

x∈Ω
f(x).

For j = 1, . . . , d+ 1 and i = 1, . . . , N sample uij independently from U(0, 1). Let

xi1 := a1 + (b1 − a1)ui1,

xi2 := a2 + (b2 − a2)ui2,

...

xid := ad + (bd − ad)uid,
yi := m+ (M −m)ui(d+1).

Let xi := (xi1, xi2, . . . , xid)
T . First we approximate the volume of Ω, denoted by V .

Let VN denote the approximation of the volume.

VN := (b1 − a1)(b2 − a2) · · · (bd − ad)
1

N

N∑
i=1

1{xi∈Ω}.

We can now approximate I with

IN := VNM
1

Ñ

N∑
i=1

1{xi∈Ω}1{f(xi)≥yi}, Ñ =
N∑
i=1

1{xi∈Ω}.

That is, we first calculate Ñ , that is the number of xi that lie inside Ω. Then we count
the number of times yi is equal to or less than f(xi) and we divide by Ñ . Finally we
scale by the volume of Ω × [0,M ]. Again we hope that IN converges to I, in some
sense, as N →∞.

1.2 Derivative pricing

We now give some examples of pricing derivatives with Monte Carlo methods. Let
(Ω,F ,P) be a probability space and (Ft)t∈[0,T ] a given filtration to which the traded
assets are adapted. It can shown that for any option whose payoff is given by a
FT -measurable random variable h has the value at time t < T given by

Vt = EQ (D(t, T )h|Ft) ,

where D(t, T ) is the “discounting factor” for the time period t to T , which in the
simplest case can be D(t, T ) = exp(−r(T − t)) for some risk free rate r ≥ 0 and where
EQ denotes the expectation under the risk neutral measure Q. This is the measure
under which the discounted traded assets are martingales.

3



We have shown that in the particular case of European call and put options in the
Black–Scholes framework we have

v(t, S) = EQ(e−r(T−t)g(ST )|St = S),

where g is the function giving the option payoff at exercise time T . Of course in this
case we have the well known Black–Scholes formula giving the option price.

Example 1.3 (Classical Black–Scholes). Say that we have derived the Black–Scholes
formula ourselves but we are not sure whether we have performed all the calcula-
tions correctly. One way for us to check would be to use Monte Carlo methods to
approximate the option payoff by simulating the behaviour of the risky asset.

Recall that the model for the risky asset in the real-world measure P is

dSt = µStdt+ σStdWt,

where (Wt)t∈[0,T ] is a P-Wiener process with respect to (Ft)t∈[0,T ], µ ∈ R and σ > 0.
Say that g(S) := [S −K]+, that is, the option is an European call option.

We have shown that in the risk-neutral measure Q the evolution of the risky asset is
given by

dSt = rStdt+ σStdW̃t, (1)

where (W̃t)t∈[0,T ] is a Q-Wiener process with respect to (Ft)t∈[0,T ]. We further know
that

ST = St exp

((
r − 1

2
σ2

)
(T − t) + σ

(
W̃T − W̃t

))
.

The option price is thus given by

v(t, S) = EQ
(
e−r(T−t)

[
S exp

((
r − 1

2
σ2

)
(T − t) + σ

(
W̃T − W̃t

))
−K

]
+

)
.

By definition W̃T − W̃t is normally distributed with mean 0 and variance T − t. If
Z ∼ N(0, 1) then

√
T − tZ has the same distribution as W̃T − W̃t. So

v(t, S) = EQ
(
e−r(T−t)

[
S exp

((
r − 1

2
σ2

)
(T − t) + σ

√
T − tZ

)
−K

]
+

)
. (2)

Now we will use a Monte Carlo method to evaluate (2). Assume for now that we know
how to draw samples from standard normal distribution. Let us take N independent
samples (zi)

N
i=1 from N(0, 1). The approximation is given by

vN (t, S) :=
1

N

N∑
i=1

e−r(T−t)
[
S exp

((
r − 1

2
σ2

)
(T − t) + σ

√
T − tzi

)
−K

]
+

.

We would hope that for fixed t and S we can say that vN (t, S) converges in some sense
to v(t, S) as N →∞.

Now we can compare vN (t, S) to the option price given by the Black–Scholes formula.
If the numbers are close (and on average decreasing as N increases) then we would
have every reason to believe we are using the correct Black–Scholes formula.
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1.3 Some useful identities

Let X,Y be random variables and recall that

Var[X] := E
[

(X − E[X])2
]

= E
[
X2
]
− (E[X])2 ,

Cov[X,Y ] := E
[

(X − E[X]) (Y − E[Y ])
]

= E[XY ]− E[X]E[Y ] .

If λ, µ are constants, then

E[µ+X] = E[X] + µ ,

Var[µ+X] = Var[X] ,

E[λX] = λ E[X] ,

Var[λX] = λ2 Var[X] ,

E[X + Y ] = E[X] + E[Y ] ,

Var[X + Y ] = Var[X] + Var[Y ] + 2 Cov[X,Y ] .
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2 Convergence

So far we have not discussed the convergence of Monte Carlo algorithms. It is clear
that the “usual” notions of convergence are insufficient when analysing Monte Carlo
methods. No matter how large sample we take, we can always be extremely “unlucky”,
draw a “unrepresentative” sample and get a bad estimate for the true solution of our
problem. In this section we introduce the appropriate notion of convergence, law of
large numbers and the central limit theorem, which provides the convergence of Monte
Carlo algorithms.

2.1 Random variables, their distribution, density and characteristic
functions

Let (Ω,F ,P) be a probability space. If X is an Rd-valued random variable then its
distribution function (sometimes called the cumulative distribution function or CDF)
is F : Rd → [0, 1] given for Rd 3 x = (x1, . . . , xn) by

F (x) = F (x1, . . . , xn) = P(X1 ≤ x1, . . . , Xd ≤ xd).

We recall that if for some g : Rd → Cd′ we have E|g(X)| <∞ then

E[g(X)] =

∫
Rd

g(y) dF (y).

In particular taking g(y) = 1B(y) for some B ∈ B(Rd) leads to

P(X ∈ B) = E[1B(X)] = E[g(X)] =

∫
B
dF (y).

We say that the distribution function F has density f if f : Rd → [0,∞) is such that∫
Rd f(y)dy = 1 and

F (x) = F (x1, . . . , xd) =

∫ x1

−∞
· · ·
∫ xd

−∞
f(y1, . . . , yd) dyd · · · dy1.

If X is a random variable with a distribution that has a density then we call X
continuous1. Recall that for a continuous random variable X with density f we have

Eg(X) =

∫
Rd

g(y)f(y) dy

whenever E|g(X)| <∞.

The characteristic function ϕ of a distribution F (or a random variable with distribu-
tion F ) is defined by

ϕ(z) :=

∫
Rd

eizx dF (x) , z ∈ Rd.

Here zx :=
∑d

i=1 zixi is the inner (dot) product. We see that if X has the distribution
F then its characteristic function is ϕ(z) = E[eizX ].

Let (Xk)k∈N be independent random variables and let Sn = X1 + · · ·+Xn. Then

ϕSn(t) = E

[
n∏
k=1

eitXk

]
=

n∏
k=1

E
[
eitXk

]
=

n∏
k=1

ϕXk
(t) . (3)

1This is a completely different concept to continuity of functions!
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Theorem 2.1. Let X be an R-valued random variable with distribution F and char-
acteristic function ϕ(z) = E[eizX ]. Then ϕ satisfies the following:

1. |ϕ(t)| ≤ ϕ(0) = 1.

2. t 7→ ϕ(t) is uniformly continuous.

3. ϕ(t) equals the complex conjugate of ϕ(−t).

4. ϕ(t) is real-valued if and only if F is symmetric in the sense that P(B) = P(−B),
where −B := {x : −x ∈ B}.

5. If E|X|n <∞ for some n ≥ 1 then

dr

dtr
ϕ(t) = ϕ(r)(t) =

∫
R

(ix)reitx dF (x)

exists for all r ≤ n and E[Xr] = i−rϕ(r)(0). Moreover

ϕ(t) =
n∑
r=0

(it)r

r!
E[Xr] +

(it)n

n!
En(t), (4)

with |En(t)| ≤ 3E|X|n and En(t)→ 0 as t→ 0.

Compare the expansion in (4) to the Taylor expansion:

ϕ(t) = 1 + tϕ′(0) +
t2

2!
ϕii(0) + · · ·+ tn

n!
ϕ(n)(0) +

(it)n

n!
En(t).

2.2 Convergence modes

We now look at various types of convergence. Let (Xn)n∈N be a sequence of random
variables.

Definition 2.2 (Pointwise Convergence). We say that the random variables converge
pointwise to X if for all ω ∈ Ω we have Xn(ω)→ X(ω) as n→∞.

We say that an event E occurs almost surely (or a.s. for short) if P(Ω\E) = P(Ec) = 0.
From this follows the definition of almost sure convergence.

Definition 2.3 (Almost sure Convergence). We say that the random variables con-
verge almost surely to X if there is an event E with P(Ec) = 0 such that for all ω ∈ E
we have Xn(ω)→ X(ω) as n→∞.

We can immediately see that pointwise convergence implies almost sure convergence.

Definition 2.4 (Lp Convergence). Let p > 0. We say that the random variables
converge in Lp to X if E[|Xn −X|p]→ 0 as n→∞.

Definition 2.5 (Convergence in probability). We say that the random variables con-
verge in probability to random variable X if for all ε > 0 we have

P [|Xn −X| ≥ ε]→ 0 as n→∞.
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Definition 2.6 (Convergence in Distribution). Let (Xn)n∈N be random variables with
distributions (Fn)n∈N. We say that the random variables converge in distribution to
a random variable X with distribution F if Fn(x) → F (x) as n → ∞ for all real
numbers x at which F is continuous.

We make the following remarks.

1. We will sometimes use the notation Xn
d→ X to denote that (Xn)n∈N converges

to X is distribution as n→∞.

2. The random variables need not be defined on the same probability space when
one considers convergence in distribution. Indeed the statement only involves
the distribution functions.

The following two theorems give the relations between different types of convergence.

Theorem 2.7. We have:

i) Almost sure convergence implies convergence in probability.

ii) Lp convergence implies convergence in probability.

iii) Convergence in probability implies convergence in distribution.

For proof see Shiryaev [7, Ch. II, 10, Theorem 2]. The following theorem says that
there are (at least) three equivalent ways to see convergence in distribution.

Theorem 2.8. Let ϕXn and ϕX be the characteristic functions of Xn and X respect-
ively. Then the following are equivalent:

i) Xn → X as n→∞ in distribution.

ii) E(f(Xn))→ E(f(X)) as n→∞ for all bounded and continuous functions f .

iii) ϕXn(t)→ ϕX(t) as n→∞ for all t ∈ R.

For proofs (of a more general result) and further reading see Shiryaev [7, Ch. III, 1,
Theorem 1 and Ch. III, 3, Theorem 1].

2.3 Law of large numbers and Central limit theorem

We now have all the tools we will need to prove the Law of large numbers and the
Central Limit Theorem. The proofs are those given in Shiryaev [7, Ch. 3].

Theorem 2.9 (Law of large numbers). Let (Xk)k∈N be a sequence of independent and
identically distributed random variables such that E|X1| = m <∞. Let

Sn = X1 + · · ·+Xn.

Then Sn
n → m in probability.
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Proof. Let ϕ and ϕSn/n be the distribution functions of the random variables X1 and
Sn/n respectively. That is

ϕ(t) = E[eitX1 ] , ϕSn/n(t) = E
[
eit

Sn
n

]
.

Then, since Xi are independent, with same calculation as for (3), we have

ϕSn/n(t) =

(
ϕ

(
t

n

))n
.

From (4) we know that we can write ϕ as

ϕ

(
t

n

)
= 1 +

itm

n
+
it

n
E1

(
t

n

)
.

From Theorem 2.1 we know that E1

(
t
n

)
→ 0 as n → ∞ for each fixed t. So we can

write2

ϕ

(
t

n

)
= 1 +

itm

n
+ o

(
1

n

)
and so

ϕSn/n(t) =

[
1 +

itm

n
+ o

(
1

n

)]n
→ eitm for all n > N .

The function t 7→ eitm is the characteristic function of a random variable Z = m almost
surely. From Theorem 2.8 we know that convergence of characteristic functions is
equivalent to convergence in distribution. In general convergence in distribution does
not imply convergence in probability. However, in the special case when Sn/n→ Z =
m as n → ∞ in distribution, we can conclude that the convergence is in probability
too.

Theorem 2.10 (Central limit theorem). Let (Xk)k∈N be independent and identically
distributed with E(Xk) = µ and Var(Xk) = σ2. Then

X̄n :=
Sn
n

:=
1

n

n∑
k=1

Xk

satisfies

ξn :=

√
n(X̄n − µ)

σ

d→ Z as n→∞, (5)

where Z ∼ N(0, 1).

Proof. Let ϕ be the the characteristic function of X1−µ i.e. ϕ(t) = E
[
eit(X1−µ)

]
and

let ϕn be the the characteristic function of ξn. Observe that

ξn =

√
n(X̄n − µ)

σ
=
n
(
Sn
n − E

(
Sn
n

))
σ
√
n

.

2 We say that f(n) = o(g(n)) if for any ε > 0 there is N such that

|f(n)| ≤ ε|g(n)| for all n > N .
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Hence, due to the same independence type calculation as in (3), we get

ϕn(t) := E [exp (itξn)] = E
[
exp

(
it

∑n
k=1(Xk − µ)

σ
√
n

)]
=

n∏
k=1

E
[
exp

(
it

(Xk − µ)

σ
√
n

)]
=

[
ϕ

(
t

σ
√
n

)]n
.

From Theorem 2.1 and (4) we get

ϕ(t) = 1− σ2t2

2
− t2

2
E2(t).

Hence

ϕn(t) =

[
1− σ2t2

2σ2n
− t2

2σ2n
E2(t)

]n
=

[
1− t2

2n
+ o

(
1

n

)]n
→ e−

t2

2 as n→∞.

The function t 7→ e−
t2

2 is the characteristic function of a N(0, 1) random variable
and Theorem 2.8 tells us that convergence of characteristic functions is equivalent to
convergence in distributions.

The proof can also be found in Grimmett and Stirzaker [3, Chapter 5, Section 10].

Proposition 2.11. Let us take (Xn)n∈N and X̄n as in the Central limit theorem. Let
Φ denote the distribution of a standard normal random variable. Then for any δ > 0
we have

P
(
X̄n − zδ/2

σ√
n
≤ µ ≤ X̄n + zδ/2

σ√
n

)
→ 1− δ as n→∞,

where zδ/2 is a number such that 1− Φ(zδ/2) = δ/2.

Proof. Since

Φ(x) =

∫ x

−∞
φ(z)dz =

∫ x

−∞

1√
2π
e−z

2/2dz

we see that Φ is continuous. Hence, due to (5) and the definition of convergence in
distributions, we know that for all x ∈ R

P
(√

n(X̄n − µ)

σ
≤ x

)
→ Φ(x) as n→∞.

Thus, taking x equal to ϕ and to −ψ above, with 0 ≤ ϕ,ψ <∞, we get

P
(√

n(X̄n − µ)

σ
≤ ϕ

)
→ Φ(ϕ) and P

(√
n(X̄n − µ)

σ
< −ψ

)
→ Φ(−ψ) as n→∞.

Therefore

P
(
X̄n − ϕ

σ√
n
≤ µ ≤ X̄n + ψ

σ√
n

)
= P

(
−ψ ≤

√
n(X̄n − µ)

σ
≤ ϕ

)
= P

(√
n(X̄n − µ)

σ
≤ ϕ

)
− P

(√
n(X̄n − µ)

σ
≤ −ψ

)
→ Φ(ϕ)− Φ(−ψ) as n→∞.
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For any δ > 0 we can choose ϕ and ψ such that Φ(ϕ)−Φ(−ψ) = 1− δ. In particular
letting zδ/2 be a number such that 1− Φ(zδ/2) = δ/2 we see that

Φ(zδ/2)− Φ(−zδ/2) = 1− δ

2
− δ

2
= 1− δ.

Hence

P
(
X̄n − zδ/2

σ√
n
≤ µ ≤ X̄n + zδ/2

σ√
n

)
→ 1− δ as n→∞.

Roughly speaking this means that the estimator X̄n is a correct estimate for µ up
to an error of zδ/2

σ√
n

, with probability 1 − δ. That is, with n sufficiently large, we

can halve the error by quadrupling the number n. Another way of looking at this
is that to be able to say that X̄n is correct up to an error of ε > 0 we need to take
n > z2

δ/2σ
2ε−2.

Of course σ would typically be unknown in Monte-Carlo simulations and so this does
not give us a usable error estimate. Nevertheless it is a constant and so we can still
say that the Monte-Carlo method would converge with order 1/2 (we halve the error
by quadrupling N).

Definition 2.12 (Estimator for EX). Let us take (Xn)n∈N and X̄n. We will call X̄n

the estimator for EXn = µ.

Note that

E
(
X̄n

)
=

1

n

n∑
k=1

E(Xk) =
1

n

n∑
k=1

E(X) = E(X).

An estimator with the property that the expectation of the estimator (recall it is a
random variable) is equal to the parameter we are estimating is called unbiased. An
estimator that does not have this property is called biased.

Example 2.13. Let us now return to the setting of Example 1.3. At time t, when
the risky asset is worth S, we have the option price v(t, S) given by (2).

As before, we take N independent samples (zi)
N
i=1 from N(0, 1). The Monte Carlo

approximation is given by

vN (t, S) :=
1

N

N∑
i=1

e−r(T−t)
[
S exp

((
r − 1

2
σ2

)
(T − t) + σ

√
T − tzi

)
−K

]
+

.

To use the central limit theorem let us take

Xi := e−r(T−t)
[
S exp

((
r − 1

2
σ2

)
(T − t) + σ

√
T − tZi

)
−K

]
+

where (Zi)
N
i=1 are independent and identically distributed standard normal variables.

Of course in the actual Monte Carlo experiment we will have (zi)
N
i=1 samples from

the standard normal distribution. But to do the mathematical analysis we have to
replace those by random variables. The the expectation of Xi does not depend on i
and the same for the variance and we have µ = v(t, S) = E(Xi) and σvN = Var(Xi).
Clearly both these quantities are unknown (unless we calculate µ = v(t, S) using the
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Black–Scholes formula; but that is not the point here). Using central limit theorem
we get that √

N(vN (t, S)− µ)

σ

d→ Z as n→∞.

In particular we have the same asymptotic estimate as above. That is, for large N we
know that v(t, S) ∈ (vN (t, S)− zδ/2σvNN−1/2, vN (t, S) + zδ/2σvNN

−1/2).

As we said before σvN is an unknown number but it is a constant.

The central limit theorem gives us the order of convergence of a Monte Carlo algorithm.
Reducing the variance will reduce the error in the approximation for a fixed number
of samples. Hence finding ways that reduce the variance of Monte Carlo simulations
is an area of active research interest.
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3 Generating random samples

To use Monte Carlo methods we need to generate random samples from various distri-
butions. Of course a computer algorithm will never generate truly random numbers,
but there are ways of generating sequences of numbers that “look” random, unless we
actually know the algorithm that generated them. We will say that such sequences
are pseudorandom.

From those we can easily get samples from U(0, 1), the uniform distribution on the
interval 0 to 1. Now we would like to be able to generate random samples from
any distribution efficiently. We will present several methods: inversion, acceptance-
rejection method and the Box–Muller method for generating normally distributed
random samples.

3.1 Linear congruential pseudorandom number generators and gen-
erating uniformly distributed random samples

One of the most commonly used methods for generating pseudorandom numbers is
the linear congruentiual pseudorandom number generator. Given a random “seed” x0

we generate pseudorandom numbers x1, x2, . . . using the recurrence relation

xi+1 = (axi + c) mod m, i = 0, 1, . . .

with a a given multiplier, c a given increment and m a given modulus.

The period of the generator is the smallest p ∈ N such that xi = xi+p for any i =
0, 1, . . .. The period of the generator will never exceed m (i.e. p ≤ m). See Knuth [4,
Section 3.2.1]. Clearly the smallest value xi can have is 0 and the maximum is m− 1.

Example 3.1. Take xi+1 = (7xi + 8) mod 15.

With seed x0 = 1 we get x1 = 15 mod 15 = 0, x2 = 8 mod 15 = 8 etc. The period
is p = 12 because x12 = 1 = x0 and for all i = 1, 2, . . . , 11 we have xi 6= x0.

With seed x0 = 3 we get x1 = 29 mod 15 = 14, since 1 · 15 + 14 = 29.

If we use linear congruential pseudorandom number generator then we can generate a
sequence (ui)i=1,...,m of samples from U(0, 1) by taking ui = xi/(m− 1), where xi are
the numbers produced by the generator with maximum period m.

3.2 Inversion method

From now onwards we will assume that we can generate not just pseudorandom but
truly random samples from the uniform distribution.

The inversion method is a method for generating samples from distributions of ran-
dom variables that take values in R. Say we want to generate samples following the
distribution F : R→ [0, 1]. Assume that the inverse F−1 of F exists.

Recall that we say that the random variable X : Ω → R has the distribution F if
P (X ≤ x) = F (x) for any x ∈ R. If F is continuous and strictly increasing then for
each u ∈ (0, 1) there is F−1(u), given by the usual inverse of the strictly increasing
continuous function F . If F is a general distribution function then we define

F−1(u) := inf{x : F (x) ≥ u} for 0 < u < 1.
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Let U ∼ U(0, 1). Consider X := F−1(U). Then

P(X ≤ x) = P(F−1(U) ≤ x) = P(F (F−1(U)) ≤ F (x)) = P(U ≤ F (x)).

But U has got uniform distribution and so P(U ≤ u) = u for any u ∈ R. Hence

P(X ≤ x) = F (x).

Thus X has the distribution F .

This means that if (ui)i∈N are samples from U(0, 1) then (xi)i∈N given by xi = F−1(ui)
are samples from the distribution F .

Example 3.2. Say that we would like to generate N random samples from the expo-
nential distribution with parameter λ > 0. First we would like to invert F . To that
end we solve y = 1− e−λx for x:

x =
− ln(1− y)

λ

and hence

F−1(y) =
− ln(1− y)

λ
.

So we can generate N samples from U(0, 1), denote them by (ui)
N
i=1 and get

xi := F−1(ui) =
− ln(1− ui)

λ
.

Of course if U ∼ U(0, 1) then 1− U ∼ U(0, 1) and so we can equally well take

xi := F−1(1− ui) =
− ln(ui)

λ
.

Exercise 3.3. We would like to sample from the double exponential distribution, also
known as the Laplace distribution, which has the density given by

f(x) =
exp(−|x|)

2
.

a) Show that the distribution given by the above density is

F (x) =

{
1
2e
x if x ≤ 0,

1− 1
2e
−x if x > 0.

b) Show that the inverse of F is given by

F−1(x) =

{
ln(2x) if x ≤ 1

2 ,
− ln(−2x+ 2) if x > 1

2 .

c) Say we have generated N random samples (ui)
N
i=1 distributed uniformly in [0, 1].

How to generate (xi)
N
i=1 samples from the distribution given by the Laplace density?

14



Very often we would like to generate random samples from the normal distribution. We
know that for normally distributed random variables we can write their distribution
in terms of the density

P (X ≤ x) = F (x) =

∫ x

−∞
φ(y)dy =

1√
2π

∫ x

−∞
exp

(
−y

2

2

)
dy.

Since φ(x) is strictly positive for all x ∈ R we see that F is a strictly increasing
function of x and hence its inverse F−1 : (0, 1) → R exists. Nevertheless there is no
“closed form” formula for F−1. This would suggest that one can not use the inversion
method for generating normally distributed random numbers. This is not the case.
We can either approximate F−1 or we can use Newton’s method to find the inverse
of F numerically.

3.3 Acceptance rejection method

This is a method for generating random samples from a continuous distribution with
density f . To use it we have to assume that we can sample from U(0, 1) and also from
another distribution with a density g. Finally, we have assume that there is c > 0
such that

f(x) ≤ cg(x) ∀x ∈ R. (6)

To generate a sample from the distribution with density g we can use the following
algorithm:

1. Generate a sample u from U(0, 1).

2. Generate a sample y from distribution with density g.

3. If u ≤ f(y)
cg(y) then x = y is a random sample from a distribution with

density f and we stop. Otherwise go to step 1.

Exercise 3.4. We know how to generate samples from a Laplace (or double expo-
nential) distribution

g(x) =
exp(−|x|)

2
, (7)

see Exercise 3.3. We wish to use this to generate random variables with normal
distribution, that is with density

φ(x) =
1√
2π

exp

(
−y

2

2

)
. (8)

To that end we would first have to find c > 0 such that φ(x) ≤ cg(x) for all x ∈ R.
Only if such c exists can we use the acceptance-rejection algorithm.

a) Show that the function ξ : R → R given by ξ(x) = f(x)/g(x) is symmetric about
x = 0.

b) Show that ξ has a maximum at x = 1.

c) Hence show that the inequality (6) is satisfied with

c =

√
2e

π
. (9)
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From Exercise 3.4 we know that the condition (6) is satisfied for the normal density and
double exponential density with c given by (9). To understand what the acceptance
rejection algorithm actually does, let us look at Figure 1. In steps one and two we
sample u from the uniform distribution and x from the “proposal distribution” (that
is, the distribution we already know how to sample from), in this case the double
exponential distribution. The value of x gives us the x-coordinate of each point in the
plot. To get the the y-coordinate of each point we take u and scale it by cg(x) Here
g is the known density given by (7). Now we check whether y = cug(x) is smaller or
larger than φ(x), which is given by (8). If y lies on or under φ(x) it is accepted, while
if it lies above φ(x) it is rejected.

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

 

 
Normal dens.
Scaled double exp. dens.
Accepted
Rejected

Figure 1: Acceptance-rejection used to generate samples from normal density

Looking at the algorithm we see that unless the generated u and x satisfy u ≤ f(x)
cg(x)

we will be repeating steps one to three forever. So a natural question is what is the
probability that the algorithm terminates at step three?

Proposition 3.5. Assume that U ∼ U(0, 1) and that Y : Ω→ Rd is a random variable
with density g. Let f be a density function. Let there be c > 0 such that (6) holds.
Then

P
(
U ≤ f(Y )

cg(Y )

)
=

1

c
.

Proof. As U, Y are independent with known densities, we have their joint density:

P
(
U ≤ f(Y )

cg(Y )

)
=

∫ ∫
{(u,y)∈(0,1)×R:u≤f(y)/cg(y)}

g(y) du dy

=

∫
R

∫ f(y)/cg(y)

0
g(y) du dy =

∫
R

1

c
f(y) dy .

Thus the sample generated in step two is accepted with probability 1/c. So the
algorithm will need to generate random samples u and x exactly K times with the
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probability

P (K = k) =

(
1− 1

c

)k−1 1

c
, k ∈ N.

Clearly the algorithm will be the most efficient if c is very close to 1.

So far we have only given an algorithm without justifying why the generated random
sample has the desired distribution.

Proposition 3.6. Assume that U ∼ U(0, 1) and that Y : Ω→ Rd is a random variable
with density g. Let f be a density function. Let there be c > 0 such that (6) holds. Let
X be the random variable with distribution given by the distribution of Y conditional
on U ≤ f(Y )(cg(Y ))−1. That is, for A ⊂ Rd,

P(X ∈ A) := P
(
Y ∈ A

∣∣∣∣U ≤ f(Y )

cg(Y )

)
.

Then X has the density f .

Proof. Let A be a measurable subset of Rd. To prove the proposition we need to show
that

P
(
Y ∈ A

∣∣∣∣U ≤ f(Y )

cg(Y )

)
=

∫
A
f(y)dy . (10)

First we note that

P
(
Y ∈ A

∣∣∣∣U ≤ f(Y )

cg(Y )

)
=

P
(
{Y ∈ A} ∩

{
U ≤ f(Y )

cg(Y )

})
P
(
U ≤ f(Y )

cg(Y )

) .

This means that, due to Proposition 3.5,

P
(
Y ∈ A

∣∣∣∣U ≤ f(Y )

cg(Y )

)
= cP

(
{Y ∈ A} ∩

{
U ≤ f(Y )

cg(Y )

})
= c

∫
A

∫ f(y)/cg(y)

0
g(y) du dy =

∫
A
f(y) dy.

But this is exactly (10), which concludes the proof.

3.4 Box–Muller method for generating normally distributed samples

Very often we need to sample from the standard normal distribution. We have seen
that we can use the acceptance-rejection method to that end or even the inversion
method if we either approximate the normal density or use a numerical method for
finding the inverse of the distribution function.

The Box–Muller method is a method designed to produce samples from standard
normal distribution efficiently. It is based on the following observation.

Proposition 3.7. The random variables X and Y are normally distributed and in-
dependent with mean 0 and variance 1 if and only if the random variables

R :=
√
X2 + Y 2 and Θ := arctan

(
Y

X

)
(11)
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are such that R2 is exponentially distributed with parameter 1/2 and Θ is uniformly
distributed over the interval [0, 2π] and R and Θ are independent.

Proof. Assume that X and Y are independent standard normal random variables.
The joint density of the random variables X and Y is then given by

fX,Y (x, y) :=
1

2π
exp

(
−x

2 + y2

2

)
,

since for independent continuous random variables their joint density is just the
product of densities. We wish to calculate in the joint density of R and Θ. Re-
call that those are given by (11). We will now carry out essentially just the change of
integration variables from cartesian to polar. Notice that with

g(x, y) :=
√
x2 + y2 and h(x, y) = arctan

(y
x

)
we have R = g(X,Y ) and Θ = h(X,Y ). Furthermore, letting J denote the Jacobian
of the transformation,

det J = det

(
∂g
∂x

∂g
∂y

∂h
∂x

∂h
∂y

)
=
∂g

∂x

∂h

∂y
− ∂g

∂y

∂h

∂x
.

Now
∂g

∂x
=

x√
x2 + y2

and
∂g

∂y
=

y√
x2 + y2

.

Recall that d
dx arctan(x) = (1 + x2)−1. Hence

∂h

∂x
= − y

x2

1

1 + y2

x2

=
−y

x2 + y2
and

∂h

∂y
=

1

x

1

1 + y2

x2

=
x

x2 + y2
.

Altogether, letting r = g(x, y),

det J =
x

r

x

r2
− y

r

(−y)

r2
=

1

r
.

Then, letting θ = h(x, y), the joint density of R and Θ is

fR,Θ(r, θ) = fX,Y (x, y)(det J)−1 =
1

2π
exp

(
−r

2

2

)
r.

Note that this is a standard calculation for the joint density of a pair of random
variables that are given as functions of another pair of random variables. See e.g.
Ross [6, Chapter 6, Section 7]. Let fR(r) := re−r

2/2 and fΘ(θ) = (2π)−1. We see that

fR,Θ(r, θ) = fR(r)fΘ(θ).

Hence the random variables are independent. The random variable Θ already has the
required distribution. The random variable R has the Raleigh distribution but we are
more interested in the distribution of R2. We see that for x ≤ 0 we immediately have
P(R2 ≤ x) = 0. For x > 0:

P(R2 ≤ x) = P(R ≤
√
x) =

∫ √x
0

re−
1
2
r2dr = 1− e−

1
2
x.

Thus R2 has exponential density with parameter 1/2.

To prove the implication in the other direction we could start with the joint density
fR,Θ(r, θ), carry out a change of variables, and derive the joint density fX,Y .
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Armed with this knowledge we can give the Box–Muller algorithm for generating a pair
of independent samples from the joint density of two independent standard normal
random variables X and Y .

1. Sample d from the exponential distribution 1− e−x/2.

2. Sample θ from the uniform distribution on (0, 2π).

3. Let r =
√
d and x = r cos θ and y = r sin θ.

Then x and y are the required samples. Note that we can use the inversion method
to sample from the exponential distribution.

3.5 Generating correlated normally distributed samples

We will define a multivariate normal distribution as follows. Let µ ∈ Rd be given and
let Σ be a given symmetric, invertible, positive definite d×d matrix (it is also possible
to consider positive semi-definite matrix Σ but for simplicity we ignore that situation
here).

A matrix is positive definite if, for any x ∈ Rd such that x 6= 0, the inequality
xTΣx > 0 holds (and positive semi-definite if we only have xTΣx ≥ 0). From linear
algebra we know that this is equivalent to:

1. There are d eigenvalues of a positive definite matrix Σ are all strictly positive
(for positive semi-definite matrix they are non-negative) and the d corresponding
eigenvectors are orthonormal.

2. There is a unique (up to multiplication by −1) lower-triangular matrix B such
that BBT = Σ. This is given by Cholesky decomposition.

For our purposes the matrix B s.t. BBT = Σ doesn’t need to be lower triangular
and we can use another method3 to find it: let (u(i), λi)

d
i=1 be the eigenvectors and

eigenvalues of Σ. Let Λ := diag(λ1, . . . , λd) and U be the matrix of the eigenvectors
i.e. U := (u(1), . . . , u(n)). Since the eigenvectors are orthonormal UUT = I. Moreover,
we have ΣU = UΛ. Hence Σ = UΛUT . Define Λ1/2 := diag(

√
λ1, . . . ,

√
λd). Then

Σ = UΛ1/2(Λ1/2U)T = BBT with B = UΛ1/2.

Let B be a d× d matrix such that BBT = Σ.

Let (Xi)
d
i=1 be independent random variables with N(0, 1) distribution. Let X =

(X1, . . . , Xd)
T and Z := µ+BX. We then say Z ∼ N(µ,Σ) and call Σ the covariance

matrix of Z.

Exercise 3.8. Show that Cov(Zi, Zj) = E((Zi−EZi)(Zj−EZj)) = Σij . This justifies
the name “covariance matrix” for Σ.

It is possible to show that the density function of N(µ,Σ) is

f(x) =
1

(2π)d/2
√

det(Σ)
exp

(
−1

2
((x− µ)TΣ−1(x− µ))

)
. (12)

Note that if Σ is symmetric and invertible then Σ−1 is also symmetric.

3 This is sometimes referred to as Principal Component Analysis (PCA).
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Exercise 3.9. You will show that Z = BX defined above has the density f given
by (12) if µ = 0.

i) Show that the characteristic function of Y ∼ N(0, 1) is t 7→ exp(−t2/2). In other
words, show that E(eitY ) = exp(−t2/2). Hint. complete the squares.

ii) Show that the characteristic function of a random variable Y with density f given
by (12) is

E
(
ei(Σ

−1ξ)TY
)

= exp

(
−1

2
ξTΣ−1ξ

)
.

By taking y = Σ−1ξ conclude that

E
(
eiy

TY
)

= exp

(
−1

2
yTΣy

)
.

Hint. use a similar trick to completing squares. You can use the fact that since
Σ−1 is symmetric ξTΣ−1x = (Σ−1ξ)Tx.

iii) Recall that two distributions are identiacal if and only if their characteristic func-

tions are identical. Compute E
(
eiy

TZ
)

for Z = BX and X = (X1, . . . , Xd)
T with

(Xi)
d
i=1 independent random variables such that Xi ∼ N(0, 1). Hence conclude

that Z has density given by (12) with µ = 0.

You can now also try to show that all this works with µ 6= 0.

To generate N independent samples from N(µ,Σ) (with µ ∈ Rd and Σ a d×d matrix)
we propose the following algorithm:

1. Use PCA or Cholesky decomposition to find B such that Σ = BBT.

2. Generate N×d samples from N(0, 1) and collect them in N vectors each

with d components, labelled
(
x(i)
)N
i=1

, with x(i) ∈ Rd for each i = 1, . . . , N.

3. For each i = 1, . . . , N let z(i) := µ+Bx(i). Now
(
z(i)
)N
i=1

are independent

samples from N(µ,Σ).

3.6 Summary

• We have seen that linear congruential generators can be used to give sequences
of pseudorandom natural numbers.

• These can be used to generate samples from the uniform distribution.

• We can then use the inversion method or the acceptance-rejection method to
generate samples from other distributions.

• For generating samples from the normal density the Box–Muller algorithm is
generally sufficiently efficient.

• The Ziggurat algorithm which is based on acceptance rejection method optim-
ized for efficient implementation is what is used by state of the art numerical
libraries (and Matlab).
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4 Variance reduction

We will discuss variance reduction techniques in this section. These are techniques
which allow us to get a better estimate, on average, without increasing the sample
size.

4.1 Antithetic variates

The idea is to reduce variance by introducing negative dependence in pairs of replic-
ations. Intuitively, an extremely large draw from a distribution can be compensated
by an extremely low one and so the variance of the average will be reduced.

Example 4.1. We can use antithetic variates when sampling from the following dis-
tributions:

a) If U ∼ U(0, 1) then 1− U ∼ U(0, 1).

b) If Z ∼ N(0, 1) then −Z ∼ N(0, 1).

c) If U ∼ U(0, 1) then F−1(U) and F−1(1− U) both have distribution F .

The method then consists of considering N pairs (X1, X̃1), . . . , (XN , X̃N ) that are
independent and identically distributed but such that for each i the random variables
Xi and X̃i are identically distributed but not independent. Assume that there are
random variables X and X̃ with the same distribution as Xi and as X̃i respectively and
such that E(Xi) = E(X) and Var(Xi) = Var(X) and E(X̃i) = E(X̃) and Var(X̃i) =
Var(X̃) for i = 1, . . . , N .

Definition 4.2 (Antithetic variates estimator for EX). Let

X̄AV
N :=

1

2

(
1

N

N∑
i=1

Xi +
1

N

N∑
i=1

X̃i

)

be the antithetic variates estimator for E(X).

It is easy to check that this estimator is unbiased.

We would like to apply central limit theorem to XAV
N . Of course we can not use the se-

quence X1, X̃1, X2, X̃2, . . . , XN , X̃N since those random variables are not independent.
But the random variables

X1 + X̃1

2
,
X2 + X̃2

2
, . . . ,

XN + X̃N

2

are independent and

X̄AV
N =

1

2

(
1

N

N∑
i=1

Xi +
1

N

N∑
i=1

X̃i

)
=

1

N

N∑
i=1

Xi + X̃i

2
.

Hence due to central limit theorem

√
N
(
XAV
N − E

(
X+X̃

2

))
σAV

d→ N(0, 1) as N →∞.
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Of course X and X̃ are identically distributed and so E
(
X+X̃

2

)
= E(X). Here

σAV =

√√√√Var

(
X + X̃

2

)
.

Now we calculate σAV. The question of course is how it compares to Var(X). First

Var(X + X̃) = VarX + VarX̃ + 2Cov(X, X̃) = 2VarX + 2Cov(X, X̃).

Thus

σ2
AV =

1

2

(
Var(X) + Cov(X, X̃)

)
.

So the method will decrease variance provided that Cov(X, X̃) < 0.

The problem is that, typically, E(X) is unknown and so Var(X) is unknown and also
Cov(X, X̃) is unknown. One way to overcome this is to test experimentally, that is
estimate Cov(X, X̃) itself using Monte Carlo.

There is also a theoretical result that may help in some situations. Say that for
example (Zi)

d
i=1 are independent and distributed according to N(0, 1). Let X :=

f(Z1, Z2, . . . , Z
d) for some increasing f which is an increasing function of all its ar-

guments. Then with X̃ := f(−Z1,−Z2, . . . ,−Zd) we have E(XX̃) ≤ E(X)E(X̃) and
hence Cov(X, X̃) ≤ 0. The same is also true if we replace Zi with Ui and Zi with
1− Ui.

Example 4.3. We will employ antithetic variates in a simple situation. Imagine that
we would like to use Monte Carlo method to estimate v(t, S) given by (2). We would
then use

Xi := e−r(T−t)
[
S exp

((
r − 1

2
σ2

)
(T − t) + σ

√
T − tZi

)
−K

]
+

where (Zi)
N
i=1 are independent and identically distributed standard normal variables

together with

X̃i := e−r(T−t)
[
S exp

((
r − 1

2
σ2

)
(T − t)− σ

√
T − tZi

)
−K

]
+

.

An estimator for v(t, S) is then

vN (t, S) :=
1

N

N∑
i=1

(
Xi + X̃i

2

)
.

4.2 Control variates

This is another variance reduction technique. Recall that our aim is to reduce the
variance of our Monte Carlo estimate (and thus the improve the estimate), while
keeping the number of samples fixed. The number of random samples used by a Monte
Carlo method is a good proxy for the computational effort required. Thus improving
accuracy while keeping the number of samples fixed mean we are improving accuracy
while keeping the computational effort fixed.
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The main idea behind control variates is to use a random variable with a known
expectation that is highly correlated with the random variable whose expectation we
seek to correct our estimate. For example while E(e−rT [ST −K]+) is unknown (unless
we use the Black–Scholes formula) the quantity E(e−rTST ) = S, since the evolution
of the discounted risky asset is a Martingale.

In what follows we will use X to denote the random variable whose expectation is
known. We will use Y to denote the random variable whose expectation we wish to
estimate.

Assume we have (Xi, Yi)
N
i=1 independent and identically distributed with the same

distribution as (X,Y ). As always, these will be used in the analysis instead of specific
samples (xi)

N
i=1 and (yi)

N
i=1.

Definition 4.4 (Control variates estimator with parameter b ∈ R for EY ). Let
Yi(b) := Yi − b(Xi − EX) and let

ȲN (b) :=
1

N

N∑
i=1

Yi(b)

be the control variate estimator with parameter b for E(Y ).

Let ȲN and X̄N be the estimators for E(Y ) and E(X) respectively. Recall that EX is
assumed to be known. Note that

E
(
ȲN (b)

)
= E

(
ȲN − b(X̄N − E(X))

)
= ȲN = E(Y )

and so the control variates estimator with parameter b is (for b ∈ R) is unbiased.

Let σb :=
√

Var(Yi(b)). From the central limit theorem we know that

√
N
(
ȲN (b)− E

(
ȲN (b)

))
σb

d→ N(0, 1) as N →∞.

Of course, as E
(
ȲN (b)

)
= EY we get the same asymptotic error bounds as for the

ordinary estimator, see Proposition 2.11 but with σ replaced by σb.

Proposition 4.5. Let σY :=
√

Var(Y ) and σX :=
√

Var(X). Let

ρXY :=
Cov(X,Y )

σXσY
.

Then there is b∗ ∈ R such that σ2
b∗ = σ2

Y (1− ρ2
XY ).

Before we proceed to prove this result let us make some observations about what this
implies.

Remark 4.6. We can conclude the following.

a) The higher the correlation between X and Y the higher variance reduction can be
achieved.

b) The sign of the correlation is not important.
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c) With an ordinary estimator we would need

N

1− ρ2
XY

samples to achieve the same asymptotic error bound (i.e. accuracy) as the control
variates estimator.

This means that if we can get Xi without increasing the computational effort then
control variate estimator always performs better than ordinary estimator. In prac-
tice producing Xi and the slightly more complicated calculation costs something
in terms of computing time and so one would not use control variates unless ρXY
is “reasonably high”. What this means must almost always be determined experi-
mentally.

d) If we assume that we get Xi for “free” then a correlation of 0.95 produces a speedup
of factor 10 (we can use ten times smaller sample size while maintaining accuracy).
Correlation of 2−1/2 ≈ 0.7 produces only a speedup of factor 2.

Proof of Proposition 4.5. Recall that, for a general random variable Z we have

Var(Z) = E
(
(Z − EZ)2

)
= E(Z2)− E(Z)2.

Further recall that
Cov(X,Y ) = E ((X − EX)(Y − EY )) .

Hence

σXσY ρXY =
√

Var(X)Var(Y )
Cov(X,Y )√

Var(X)Var(Y )
= E ((X − EX)(Y − EY ))

= E(XY )− E(X)E(Y ).

Now recall that Yi(b) = Yi − b(Xi − EX) and so EYi(b) = EYi as EXi = EX. So, if
we use the fact that Xi and Yi have the same distribution as X and Y respectively
we obtain

Var(Yi(b)) = E
(
Yi(b)

2
)
− E(Yi)

2 = E
(
Y 2
i − 2bYi(Xi − EX) + b2(Xi − EX)2

)
− E(Yi)

2

= E(Y 2)− 2bE(Y X) + 2bE(Y )E(X) + b2E
(
(X − EX)2

)
− E(Y )2

= Var(Y )− 2bCov(X,Y ) + b2Var(X) = σ2
Y − 2bσXσY ρXY + b2σ2

X .

Our aim is to minimise the variance. So we must choose b that minimises the above
expression. Hence we seek b∗ such that

0 =
d

db

(
σ2
Y − 2bσXσY ρXY + b2σ2

X

)
= −2σXσY ρXY + 2bσ2

X .

So b∗ = σY ρXY σ
−1
X . Then

σ2
b∗ = Var(Yi(b

∗)) = σ2
Y − σ2

Y ρ
2
XY .
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There is one “small” problem remaining. Remember that we are trying to estimate
EY . But if we do not know this then it is rather unlikely that we will actually know
σY = Var(Y ) and Cov(X,Y ) and hence ρXY . So while the above result of variance
reduction of the control variates method is correct it is not usually usable in practice.
What one can do though, is to take an estimate for b∗, using the samples generated
during the Monte Carlo method and use

b̂∗N :=

∑N
i=1(xi − x̄N )(yi − ȳN )∑N

i=1(xi − x̄N )2
. (13)

Let B̂∗N denote the random variable we obtain if in the above equation we use Xi and
Yi in place of xi and yi and X̄N and ȲN in place of x̄N and ȳN . Then

E(ȲN (B̂∗N ) = E
(
ȲN − B̂∗N

(
X̄N − EX

))
= EY − E

(
B̂∗NX̄

)
+ E

(
B̂∗N

)
E(X)

= EY +
(
E
(
B̂∗N

)
E(X)− E

(
B̂∗NX̄

))
.

We see that E(ȲN (B̂∗N ) is no longer an unbiased estimator for EY . We have bias equal

to E
(
B̂∗N

)
E(X) − E

(
B̂∗NX̄

)
. It can be shown, though we do not do it here, that

the bias is of order 1/N . Since for a Monte Carlo method the error is of order 1/
√
N

we can say that for large N this is not significant. Hence in practice one would use
control variates with the estimate given by (13).

Example 4.7. We consider a call option price in the Black–Scholes framework (so we
know the exact price as it is given by the Black–Scholes formula). In the risk neutral
measure the evolution of the risky asset is given by

dSu = rSudu+ σSudWu, St = S.

Here (Wt)t∈[0,T ] is a Wiener process in the risk neutral measure.

We have shown before that in the risk neutral measure the process (e−r(T−u)Su)u∈[t,T ]

is a martingale and hence E
(
e−r(T−t)ST )

)
= St = S. Now we would like to use control

variates to estimate
v(t, S) = E

(
e−r(T−t)[ST −K]+

)
.

We take Y = e−r(T−t)[ST−K]+ and so we are estimating EY . We takeX = e−r(T−t)ST
as our control since we know that EX = St = S.

Now we generate N samples from standard normal distribution and denote them by
(zi)

N
i=1. We then get an estimate

x̄N =
1

N

N∑
i=1

e−r(T−t)S exp

((
r − 1

2
σ2

)
(T − t) + σ

√
T − tzi

)
for EX = Ee−r(T−t)ST . We also calculate

ȳN =
1

N

N∑
i=1

e−r(T−t)
[
S exp

((
r − 1

2
σ2

)
(T − t) + σ

√
T − tzi

)
−K

]
+

.

This is, by itself, an estimate for EY . But we would like to use control variates and
so we use (13) as an estimate for b̂∗N . Then our control variates estimate for EY is
given by

ȳ(b̂∗N ) = ȳN − b̂∗N (x̄N − S).
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This is a number we know how to calculate.

Notice that we did not have to generate another set of random samples to use control
variates in this case. This means that whatever reduction in variance we are achieving,
it is achieved at the cost of evaluating exp and few additions N times.

4.3 Multiple control variates

It is also possible to generalize the control variate method to multiple controls. Imagine
you have a random variable Y and you wish to estimate EY . Assume that you have
X(k) with EX(k) known for k = 1, . . . ,m. Let ΣX be the m×m covariance matrix for
X, and let ΣXY be the m× 1 covariance matrix for (X(k), Y ), i.e.

(ΣX)jk := Cov(X(j), X(k)), (ΣXY )j1 := Cov(X(j), Y )

and as before σ2
Y = Var(Y ) is a scalar. Hence we have the correlation matrix(

ΣX ΣXY

ΣT
XY σ2

Y

)
for the Rm+1 valued r.v. (X(1), . . . , X(m), Y ). Define, for b ∈ Rm,

Y (b) := Y − bT (X − EX).

Proposition 4.8. For b ∈ Rm we have

Var(Y (b)) = σ2
Y − 2bTΣXY + bTΣXb.

The b∗ ∈ Rm which minimizes Var[Y (b)] is given by

b∗ = Σ−1
X ΣXY .

4.4 Summary

• We have shown that the appropriate convergence concept for Monte Carlo meth-
ods is convergence in distributions.

• We have used central limit theorem to derive an asymptotic error bound for a
Monte Carlo approximation in terms of number of samples and variance.

• We have seen that convergence is always of order 1/2.

• We have seen that reducing variance improves the estimate.

• We have discussed two techniques for variance reduction: antithetic variates and
control variates.

• We have seen that both provide a tangible improvement only in specific situation
and hence one must analyse the problem before deciding whether to use a specific
variance reduction technique.

• There are other variance reduction techniques that we have not discussed.
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4.5 Further reading

This material is based in particular on Glasserman [1]. See in particular Chapter 2
and Chapter 4, Section 1 and 2.

For more details on variance reduction techniques and various applications see again
Glasserman [1].
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5 Some applications

5.1 Asian options

Asian options differ sligtly from the European options: the payoff is not based only
on the price of the risky asset at the exercise date T but on the average price of the
risky asset over several dates before the exercise date.

5.1.1 Geometric Asian option

Let (St)t∈[0,T ] denote the price of the risky asset at time t. Let

S̄G :=

(
n∏
i=1

S(Ti)

)1/n

,

where (Ti)
N
i=1 are some dates that are fixed in the option contract and are such that

t < T1 < T2 < . . . < TN = T.

The option contract also specifies the strike K > 0. The option payoff at the expiry
time T is given by [S̄G−K]+. Assume we work in the Black–Scholes framework. Then
the price, denoted by vAA

, is given by

vAG
(t, S) = E

(
e−r(T−t)[S̄G −K]+

)
,

where the expectation is, as always, in the risk neutral measure.

Exercise 5.1. Show that the Black–Scholes formula can be used with expiry time
T̄ − t, where, T̄ := n−1

∑n
i=1 Ti, risk free rate r, strike K, volatility σ̄ given by

σ̄ =
1√
T̄ − t

σ

n

√√√√ n∑
i=1

(2i− 1)(Tn+1−i − t).

and spot price SeγT̄−t, where γ := (1/2)(σ̄2 − σ2).

5.1.2 Arithmetic average option

Let (St)t∈[0,T ] denote the price of the risky asset at time t.

Let

S̄A :=
1

n

(
n∑
i=1

S(Ti)

)
,

where (Ti)
N
i=1 are some dates that are fixed in the option contract and are such that

t < T1 < T2 < . . . < TN = T.

The option contract also specifies the strike K > 0. The option payoff at the expiry
time T is given by [S̄A−K]+. Assume we work in the Black–Scholes framework. Then
the price, in the risk neutral measure, denoted by vAA

is given by

vAA
(t, S) = E

(
e−r(T−t)[S̄A −K]+

)
.

28



There is no known formula that would tell us the price of this option.

We can use Monte Carlo to estimate the value of the option. In order to do that we
need to simulate the prices of the risky asset at times Ti with i = 1, . . . , n. Since we
are working in the Black–Scholes framework we know that if St = S then

S(u) = S exp

((
r − 1

2
σ2

)
(u− t) + σ(Wu −Wt)

)
∀u ∈ [t, T ].

Hence for any Ti we know that

S(u) = STi exp

((
r − 1

2
σ2

)
(u− Ti) + σ(Wu −WTi)

)
∀u ∈ [Ti, T ].

So, setting T0 := t, we get

S(Ti) = STi−1 exp

((
r − 1

2
σ2

)
(Ti − Ti−1) + σ(WTi −WTi−1)

)
d
= STi−1 exp

((
r − 1

2
σ2

)
(Ti − Ti−1) + σ

√
Ti − Ti−1Z

i

)
, i = 1, . . . , N.

(14)

where Zi ∼ N(0, 1) are independent standard normal random variables and where
d
=

is used to denote that two random variables have the same distribution.

For each i = 1, 2, . . . n we can take N samples from N(0, 1) (and thus in total we
have n ·N samples) and denote them zij , i = 1, . . . , n and j = 1, . . . , N . Let us define
sj(T0) := S and define, for j = 1, . . . , N ,

sj(Ti) := sj(Ti−1) exp

((
r − 1

2
σ2

)
(Ti − Ti−1) + σ

√
Ti − Ti−1z

i
j

)
, i = 1, . . . , N.

Let

xj := e−r(T−t)

[
1

n

n∑
i=1

sj(Ti)−K

]
+

.

Our Monte Carlo approximation is then

vAA,N (t, S) =
1

N

N∑
j=1

xj .

If we wanted an approximation for the error we would need to use Proposition 2.11.
To that end let for each i = 1, . . . , n let there be N independent standard normal
random variables denoted (Zij)

N
j=1. Let Sj(T0) := S and

Sj(Ti) := Sj(Ti−1) exp

((
r − 1

2
σ2

)
(Ti − Ti−1) + σ

√
Ti − Ti−1Z

i
j

)
, i = 1, . . . , N.

Let

Xj = e−r(T−t)

[
1

n

n∑
i=1

Sj(Ti)−K

]
+

.

Note that EXj = vAA
(t, S) is the quantity we wish to estimate. Let us use σv :=

Var(Xj). Then

X̄N :=
1

N

N∑
j=1

Xj
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is an unbiased estimator for vAA
(t, S) and ∀δ > 0

P
(
X̄N − zδ/2

σv√
N
≤ vAA

(t, S) ≤ X̄N + zδ/2
σv√
N

)
→ 1− δ as N →∞.

Remark 5.2. Note that in Section 5.1.2 the option price depends on the path of the
of the process used to model the risky asset at times T1, T2, . . . , Tn and not just T .
Since we know the solution to the equation

dSu = µSudu+ σSudWu, St = S,

we know exactly the distributions the random variables S(T1), S(T2), . . . , S(Tn) have.
It is given by (14).

If we use a general stochastic differential equation to model the risky asset we have

dXu = b(u,Xu)du+ σ(u,Xu)dWu, Xt = x.

Under appropriate assumptions on b and σ we would know that a solution of such
equation exists but we would not necessarily know what it is. In this case we could
approximate X(T1) ≈ X1, X(T2) ≈ X2, . . . , X(Tn) ≈ Xn using, for example the
Explicit Euler scheme

Xi = Xi−1 + b(Ti−1, X
i−1)(Ti − Ti−1) + σ(Ti−1, X

i−1)(WTi −WTi−1).

If we now proceed as before there would be two sources of error in our approxima-
tion. One would arise, as always, from the use of a Monte Carlo method and can
be estimated using the Central limit theorem. The other error would arise from the
approximation of (Xu)u∈[t,T ] by (Xi)ni=1 and is a type of discretization error. In prac-
tice one would subdivide [t, T ] into more subintervals than just those required for the
arithmetic average option in order to decrease the discretization error.

Example 5.3 (Control variates for arithmetic average option). We can use the price
of the geometric average option as a control variate in a Monte Carlo method when
estimating the arithmetic average option price. Of course we could also use the dis-
counted evolution of the risky asset as in Example 4.7 but it can be shown (at least
experimentally) the the correlation between the payoff of the geometric average option
and the payoff of the arithmetic average option are higher.

This method is very useful because it works in many situations where a simple model
leads to a price given by a formula that we can then use to improve our Monte Carlo
method in a more realistic model. Other examples of use are e.g. option pricing with
stochastic volatility (with the price given by Black–Scholes formula given as a control).
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5.2 Options on several risky assets

We can use Monte Carlo methods to price options on more than one risky asset. In
order to do that we need some models for the evolution of the risky assets. The basic
one extends the idea of Geometric brownian motion to several dimensions using a
d-dimensional Wiener process.

5.2.1 Wiener process in Rd

It will occasionally be more convenient to write X(t) instead of Xt for some stochastic
process {Xt}t≥0 = {X(t)}t≥0. This is just a matter of notation.

A process {W (t)}t≥0 is a Wiener process on Rd if W (0) = 0 almost surely, it has
independent increments, the function t 7→W (t) is almost surely continuous and

W (t)−W (s) ∼ N(0, (t− s)I),

where I is a d× d identity matrix.

Note that if {W1(t)}t≥0, {W2(t)}t≥0, . . . , (Wd(t))t≥0 are independent, 1-dimensional
Wiener processes, then the process given by W (t) = (W1(t),W2(t), . . . ,Wd(t))

T satis-
fies the above definition and so is a Wiener process on Rd.

5.2.2 Multi-dimensional geometric Brownian motion

Let {W (t)}t≥0 be a Wiener process on Rk. Then

X(t) := BW (t),

is a process with covariance Σ. In fact

X(t)−X(s) ∼ N (0, (t− s)Σ) .

If, for a vector z we write z = (z1, z2, . . . , zd)
T then then

Xi(t) = Bi1W1(t) +Bi2W2(t) + · · ·+BikWk(t), i = 1, 2, . . . d. (15)

Let µ, σ ∈ Rd. We can model d correlated risky assets using

dS(u) = diag(S(u)) (µdu+ diag(σ)dX(u)) , S(t) = S.

Here diag(z) denotes a d× d matrix with the diagonal equal to z and all off-diagonal
elements equal to zero. The above equation is equivalent to

dSi(u) = Si(u) (µidu+ σidXi(u)) , Si(t) = S, i = 1, 2, . . . , d.

which is in turn

dSi(u) = Si(u)

µidu+ σi

k∑
j=1

BijdWj(u)

 , Si(t) = S, i = 1, 2, . . . , d.

We would like to obtain an explicit solution to the stochastic differential equaiton just
like in the 1-dimensional case. For this we need the multi-dimensionla Itô formula,
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see Section A.1. In fact we only need the following: if {Wi(t)} and {Wj(t)} are
independent Wiener processes on R whenever i 6= j then

〈dWi(t), dWj(t)〉 = δijdt =

{
dt if i = j
0 otherwise.

Let Yi(t) = lnSi(t). Then using the Itô formula we get

dYi(u) = µidu+ σidX(u)− 1

2
σ2
i 〈dXi(u), dXi(u)〉.

Using (15) we obtain

〈dXi(u), dXi(u)〉 = B2
i1du+B2

i2du+ · · ·+B2
iddu.

Hence

dYi(u) =

µi − 1

2
σ2
i

d∑
j=1

B2
ij

 du+ σi

d∑
j=1

BijdWj(u).

Thus

Si(u) = Si exp

µi − 1

2
σ2
i

d∑
j=1

B2
ij

 (u− t) + σi

d∑
j=1

Bij(Wj(u)−Wj(t))

 .

Let the matrix C be such that Cij = B2
ij and let the vector ν be such that νi = σ2

i .
Then, in a matrix form the above equation reads,

S(u) = diag(S) exp

(
(u− t)

(
µ− 1

2
diag(ν)C1d

)
+ diag(σ)B(W (u)−W (t))

)
,

where 1d := (1, . . . , 1)T ∈ Rd.

5.2.3 European style options

Let T > 0 be fixed. Let a function g : Rd → R be given. This specifies the option
payoff: the holder has gets g(ST ) at time T , where ST ∈ Rd is the price of the risky
asset at time T . Assume that B such that BBT = Σ is a d×d matrix. Then, as in the
one dimensional case (though we do not show this), it is possible to find a measure Q
which is equivalent to P such that {e−rtS(t)}t∈[0,T ] is a Q-Martingale with evolution
given by

dSi(u) = Si(u)
(
rdu+ σidX̄i(u)

)
, Si(t) = S, i = 1, 2, . . . , d. (16)

Here {X̄(t)}t∈[0,T ] is given by X̄(t) = BW̄t, where {W̄ (t)}t∈[0,T ] is a d-dimensional
Q-Wiener process.

Furthemore it can be shown that the option price is, at time t with spot asset price
S ∈ Rd,

v(t, S) = e−r(T−t)EQ(g(S(T ))|S(t) = S).

We apply the calculation from Section 5.2.2 to (16) to see that

v(t, S) = e−r(T−t)EQ

[
g

(
diag(S) exp

(
(T − t)

(
r − 1

2
diag(ν)C1d

)

+diag(σ)B(W (T )−W (t))

))]
.
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In order apply Monte Carlo methods it is useful to note that if Z ∼ N(0, (T − t)I)
then

v(t, S) = e−r(T−t)E

[
g

(
diag(S) exp

(
(T − t)

(
r − 1

2
diag(ν)C1d

)

+
√
T − tdiag(σ)BZ

))]
.

(17)

Remark 5.4. If d = 1 then the most efficient method of evaluating the above expres-
sion numerically is most likely some form of numerical integration (e.g. trapezium
rule) using the normal density. However for d > 3 such numerical method will suffer
from the “curse of dimensionality”. This means that where for example the trapezium
rule needs to evaluate the integrand at 21 = 2 points, if d = 1, it will need 22 = 4
points if d = 2 and 23 = 8 points if d = 3. The consequence of this that while the nu-
merical integration method may have higher order of convergence than a Monte-Carlo
method this advantage gets lost quickly as d grows.

What are the possible payoffs of options that are traded? We give two examples.

Basket option Let a vector of “weights” be given and let

g(S) =

[
d∑
i=1

wiSi −K

]
+

.

Outperformance option Let a vector of “weights” be given. The payoff is

g(S) =

[
max
i=1,...,d

(wiSi)−K
]

+

.

See Glasserman [1, Chapter 3, Section 2.3] for more examples.

Example 5.5. Assume we wish to use Monte Carlo methods to price a basket option.
Assume that there are d risky assets, we wish to use Geometric brownian motion as a
model. We are give a vector σ for the volatilities of the assets and matrix Σ, which is
positive definite, for their correlations.

To use N samples in our Monte-Carlo method we would need N samples from N(0, I),
where I is the d×d identity matrix. This is because we have d risky assets. Call them
(zi)Ni=1 (each zi = (zi1, . . . , z

i
d)
T ∈ Rd). Then we can approximate (17) by

e−r(T−t)
1

N

N∑
i=1

[
g

(
diag(S) exp

(
(T − t)

(
r − 1

2
diag(ν)C1d

)

+
√
T − t diag(σ)Bzi

))]
.
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6 Approximating sensitivity on parameters

6.1 Background

The price of an option (or indeed any derivative), given by any model, depends on
market data and the model parameters. The difference between market data and
model parameters is important. All market participants will use the same market
data (we are assuming such information is available to all). They will not all use the
same model parameters. Different market participants will have different models and
different models rely on different parameters. Even if two different market participants
use the same model they may use different model parameters because they use different
calibration procedure! If market data or a model parameter changes, so does the price
of the derivative calculated by the model (and one would hope that so does the market
price of the derivative. This is of course by no means guaranteed. Very often the
derivatives are illiquid which means that their prices cannot be observed very often).

Mathematically the sensitivities are just partial derivatives of the option price with
respect to market data or a model parameter.

Example 6.1. Consider a call option modelled in the Black–Scholes framework. The
option price depends on S, the spot price of the risky asset. This is market data. It
also depends on T the maturity and K the option strike. These do not change during
the life of an option. Finally σ the volatility parameter and r the risk free interest rate
are model parameters. We can estimate σ from historical data, but we can choose to
go back 1 month, or 6 months or 1 year in time, or indeed any other period in time.
Or we can choose this to match observed option prices in the market. It is easy to see
that different market participants will not necessarily agree on this.

Denoting the option price by v we can list the sensitivities:

∆ :=
∂v

∂S
, θ := −∂v

∂t
, ν :=

∂v

∂σ
, ρ :=

∂v

∂r
.

These are sometimes referred to as the greeks and they tell us how to hedge various
risks of a portfolio. For example, we have seen, when deriving the Black–Scholes
partial differential equation, that by holding ∆ units of the risky asset the risk coming
from the fluctuations of the risky asset are completely eliminated. An option market
making desk in a bank will try to have all the sensitivities across their portfolio close
to 0 at all time by matching couterparties who want various options on the same
asset. This ensures that if σ changes from one day to the next then the value of their
portfolio remains roughly unchanged. Of course this never works exactly but if the
model used is a good approximation of reality then it should be mostly the case.

It is important to remember that the sensitivities are model dependent. That is,
taking a different model will result in different set of sensitivities. Even if one has
e.g. a volatility parameter in two different models then the sensitivity to volatility is
different across the two models.

A “good” numerical method in mathematical finance will provide the sensitivities
(greeks) with little extra computation required. Of course it is not always possible
to design such a method but calculation of greeks should be taken into account when
choosing a numerical method.
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6.2 General Setting

In general we have the following situation. We consider a random variable X which
depends on some parameter θ ∈ O ⊆ R. So now X : Ω × O → Rd and we assume it
is measurable with respect to F ⊗ B(O). We will write X = X(θ) when we wish to
emphasise this dependence.

We are interested in finding not only an estimate for

v(θ) = E[f(X(θ))] (18)

(where f is some measurable function such that E[|f(X)|] < ∞)) but we are also
interested in estimating

∂v

∂θ
=

∂

∂θ
E[f(X(θ))]

whenever the partial derivative exists.

6.3 Finite Difference Approach

This is conceptually the easiest approach. We just replace the partial derivatives with
their corresponding finite difference approximations. Let (Xk(θ))

N
k=1 be iid with the

same distribution as X(θ) for all θ ∈ O. Let

vN (θ) :=
1

N

N∑
k=1

f(Xk(θ)).

We will consider the forward finite difference: given h > 0,

∂v

∂θ
≈ vN (θ + h)− vN (θ)

h
=: ∆F

N and
∂v

∂θ
≈ vN (θ + h)− vN (θ − h)

2h
=: ∆C

N .

Note the two sources of error in the approximation: one arises from taking finitely
many samples N , the other from approximating the partial derivative with h > 0.

We note that both estimators are biased even though the estimator vN (θ) is unbiased.
Indeed

E[∆F
N ] = E

[
vN (θ + h)− vN (θ)

h

]
=

E[vN (θ + h)]− E[vN (θ)]

h
6= E

[
∂

∂θ
f(X(θ))

]
and similarly for ∆C

N . To better analyse the bias assume that v = v(θ) given by (18)
is n+ 1 times continuously differentiable on [θ, θ+ h]. Then Taylor’s theorem tells us
that for some ξ ∈ [θ, θ + h]

v(θ + h) = v(θ) + h∂θv(θ) +
h2

2!
∂2
θv(θ) + · · ·+ hn

n!
∂nθ v(θ) +

hn+1

(n+ 1)!
∂n+1
θ v(ξ).

This means that for some ξ ∈ [θ, θ + h]

∂θv(θ) =
v(θ + h)− v(θ)

h
− h

2
∂2
θv(ξ)

and for some ξ ∈ [θ − h, θ + h]

∂θv(θ) =
v(θ + h)− v(θ − h)

2h
− h2

3
∂3
θv(ξ).
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In other words the forward difference ∆F has bias of o(h) while ∆C has bias of o(h2)
provided that v = v(θ) is smooth enough. Note that ∆C is “more expensive” in the
sense that we would typically need to calculate be calculating vN (θ) anyway, but the
central difference doesn’t use this information.

So it appears that taking h > 0 as small as possible (within machine precision of our
computer) is optimal. But what about variance?

Var[∆F
N ] =

1

h2
Var[vN (θ + h)− v(θ)].

How to choose N and h optimally? For simplicity write Y := ∂θf(X(θ)) and Ȳ := ∆F
N .

E
[
(Ȳ − E[Y ])2

]
= E

[
(Ȳ − E[Ȳ ] + E[Ȳ ]− E[Y ])2

]
= E

[
(Ȳ − E[Ȳ ])2 + 2(E[Ȳ ]− E[Y ])(E[Ȳ − E[Ȳ ]]) + (E[Ȳ ]− E[Y ])2

]
= E

[
(Ȳ − E[Ȳ ])2

]
+ (E[Ȳ ]− E[Y ])2

= Var[Ȳ ] + (Bias)2.

Fully independent samples: If we have Xk(θ) and Xk(θ + h) independent then

Var[∆F
N ] =

1

h2
(Var[vN (θ + h)] + Var[vN (θ)]) ≤ 1

h2N
sup
ξ

Var[f(X(ξ))].

Recall Y := ∂θf(X(θ)) and Ȳ := ∆F
N .

E
[
(Ȳ − E[Y ])2

]
= Var[Ȳ ] + (Bias)2 ≤ 1

h2N
sup
ξ

Var[f(X(ξ))] + Ch2,

where C depends on v = v(θ).

Dependent samples and smooth uniform dependence: If f(X(θ)) = g(θ, X̃)
for some function g and random variable X̃ then we can consider (X̃)Nk=1 and take

f(Xk(θ)) = g(θ, X̃k) and f(Xk(θ + h)) = g(θ + h, X̃k).

So now we are using the “same source of randomness” for both Xk(θ) and Xk(θ+ h).
If g is sufficiently smooth as a function on θ, uniformly in the second parameter, then

g(θ + h, ·) = g(θ, ·) + h∂θg(θ, ·) + o(h2)

then

Var[∆F
N ] = Var

[
1

h

(
1

N

N∑
k=1

f(Xk(θ + h))− 1

N

N∑
k=1

f(Xk(θ))

)]

= Var

[
1

N

N∑
k=1

(∂θf(Xk(θ)) + o(h2))

]

=
1

N
Var [∂θf(Xk(θ))] .

So

E
[
(Ȳ − E[Y ])2

]
= Var[Ȳ ] + (Bias)2 ≤ 1

N
Var [∂θf(Xk(θ))] + Ch2,

where C depends on v = v(θ).
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Example 6.2. Let us consider the situation of Example 1.3. We wish to use Monte
Carlo to approximate the European call option price, this time together with the
Greeks “delta” and ”vega” (i.e. ∂Sv and ∂σv).4

We have

vN (S, σ) :=
1

N

N∑
i=1

e−rT
[
S exp

((
r − 1

2
σ2

)
T + σ

√
TZi

)
−K

]
+

,

where (Zi)
N
i=1 are N independent samples from N(0, 1). Let h > 0 be a small number.

Then

∂vN
∂S
≈ vN (S + δ, σ)− vN (S, σ)

h
and

∂vN
∂σ
≈ vN (S, σ + h)− vN (S, σ)

h
.

Similarly, we can approximate the other sensitivities (Greeks).

Notice that x 7→ [x]+ is not differentiable at x = 0. Nevertheless we have a

P
(
S exp

((
r − 1

2
σ2

)
T + σ

√
TZi

)
= K

)
= 0

and so one may hope that the mean square error is of order 1/N + h2 in this case.

6.4 Calculating Sensitivities Pointwise in Ω

Recall that we wish to approximate

∂θv = ∂θE[f(X(θ))]

whenever the partial derivative exists. Imagine for a moment that

∂θE[f(X(θ))] = E [∂θf(X(θ))] . (19)

If this is the case then the unbiased estimator of ∂θv is simply

1

N

N∑
k=1

∂θf(Xk(θ))

where (Xk(θ))
N
k=1 are iid with the same distribution as X(θ) for all θ ∈ O. Its variance

is then calculated as usual. Note that this approach is sometimes referred to pathwise
calculation of sensitivities. This is because to evaluate

E [∂θf(X(θ))] =

∫
Ω
∂θf(X(ω, θ)) dP(ω)

we need to calculate ∂θf(X(ω, θ)) for (almost all) ω ∈ Ω. When working with
stochastic processes fixing ω fixes the path of the process and hence the term pathwise.

The question now is: when does (19) hold? We know that by definition (19) is
equivalent to

lim
h→0

E
[
f(X(θ + h))− f(X(θ))

h

]
= E

[
lim
h→0

f(X(θ + h))− f(X(θ))

h

]
. (20)

We will be allowed to claim that (20) holds if we check that we can apply Lebesgue’s
theorem on dominated convergence and if the limit inside the expectation on the right-
hand side of (20) exists almost surely. Note that we are already assuming that the
limit on the left exists since otherwise the partial derivative is not defined.

4 Of course, since we have the Black–Scholes formula we do not need to use Monte Carlo methods
to get the Greeks but this is an illustrative example.
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A1: The limit

lim
h→0

X(ω, θ + h)−X(ω, θ)

h

exists for almost all ω ∈ Ω.

A2: Let
Df := {x : ∂xif(x) exists for all i = 1, . . . , d}

be in B(Rd) and such that P(X(θ) ∈ Df ) = 1 for all θ.

A3: The function f = f(x) is Lipschitz continuous5 if x i.e. there exists L > 0 such
that

|f(x)− f(y)| ≤ L|x− y| ∀x, y ∈ Rd.

A4: There is a random variable M ≥ 0 s.t. E[M ] <∞ and

|X(θ)−X(θ′)| ≤M |θ − θ′| ∀θ, θ′ ∈ O.

Proposition 6.3. Assume A1-4. Then (19) holds.

Proof. Conditions A1 and A2 ensure that limh→0
f(X(θ+h))−f(X(θ))

h = ∂θf(X(θ)) ex-
ists with probability 1. Moreover, due to A3 and A4 we have that

|Yh| :=
∣∣∣∣f(X(θ + h))− f(X(θ))

h

∣∣∣∣ ≤ L

h
|X(θ + h)−X(θ)| ≤ L

h
Mh = LM

and E[LM ] = LE[M ] < ∞. So we can apply Lebesgue’s theorem on dominated
convergence to conclude that

lim
h→0

E[Yh] = E
[

lim
h→0

Yh

]
or in other words that (19) holds.

Example 6.4. Our aim is the same as in Example 6.2.We wish to use Monte Carlo to
approximate the European call option price, this time together with “delta” i.e. ∂Sv.

We have

vN (S, σ) :=
1

N

N∑
i=1

e−rT
[
S exp

((
r − 1

2
σ2

)
T + σ

√
TZi

)
−K

]
+

.

First of all our f : R→ R is f(x) = e−rT [x−K]+ and so Df = R \ {K}. Our

X(S, σ) = S exp

((
r − 1

2
σ2

)
T + σ

√
TZ

)
with Z ∼ N(0, 1) and

∂SX(S, σ) = exp

((
r − 1

2
σ2

)
T + σ

√
TZ

)
=
X(S, σ)

S
,

5 Note that this condition implies that f is differentiable almost everywhere in Rd due to
Rademacher’s theorem. But this does not, in general, imply A2.
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exists for all ω ∈ Ω. We also note that P(X(S, σ) = K) = 0 and so A1 and A2 above
hold. We can check that |f(x)− f(y)| ≤ e−rT and that

|X(S, σ)−X(S′, σ)| = X(S, σ)

S
|S − S′|

and so A3 and A4 hold. Thus

∂Sv(S, σ) = ∂SE [f(X(S, σ)] = E [∂Sf(X(S, σ))] = E
[
f ′(X(S, σ))∂SX(S, σ)

]
= E

[
e−rT1{X(S,σ)>K}

X(S, σ)

S

]
= E

[
e−rT1{ST>K}

ST
S

]
.

Note that if we wanted to do obtain “vega” then we can start by noting that

∂σX(S, σ) = (−σT +
√
TZ)S exp

((
r − 1

2
σ2

)
T + σ

√
TZ

)
= (−σT +

√
TZ)X(S, σ)

exists for all ω ∈ Ω. If we can then also verify A4 then we would have

∂σv(S, σ) = ∂σE [f(X(S, σ)] = E [∂σf(X(S, σ))] = E
[
f ′(X(S, σ))∂σX(S, σ)

]
= E

[
e−rT1{X(S,σ)>K}(−σT +

√
TZ)X(S, σ)

]
= E

[
e−rT1{ST>K}(−σT +WT )ST

]
.

More examples are found in Glasserman [1, Ch. 7, Sec. 2]

6.5 The Log-likelihood Method

Recall that we wish to approximate

∂θv = ∂θE[f(X(θ))]

whenever the partial derivative exists. Assume that X(θ) has density g(·; θ) and that
∂θg(·; θ) exists for any θ ∈ O Then

E[f(X(θ))] =

∫
Rd

f(x)g(x; θ) dx

and, assuming that we can exchange the integral and the derivative, we have

∂θE[f(X(θ))] = ∂θ

∫
Rd

f(x)g(x; θ) dx =

∫
Rd

f(x)∂θg(x; θ) dx

=

∫
Rd

f(x)
∂θg(x; θ)

g(x; θ)
g(x; θ) dx .

We define the “log-likelihood” or “score” function

L(x; θ) :=
∂θg(x; θ)

g(x; θ)
= ∂θ [ln g(x; θ)] .

Then

∂θE[f(X(θ))] =

∫
Rd

f(x)L(x; θ)g(x; θ) dx = E [f(X(θ))L(X(θ); θ)] .
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7 Solutions to some exercises

Solution (to Exercise 3.3). a) Assume first x ≤ 0. Then

G(x) =

∫ x

−∞
g(y)dy =

1

2

∫ x

−∞
e−|y|dy =

1

2

∫ x

−∞
eydy =

1

2
ex.

On the other hand, if x > 0 then, using also the above calculation for G(0) we get,

G(x) =

∫ x

−∞
g(y)dy =

∫ 0

−∞
g(y)dy +

∫ x

0
g(y)dy = G(0) +

1

2

∫ x

0
e−|y|dy

=
1

2
+

1

2

∫ x

−∞
e−ydy =

1

2
− 1

2
e−x +

1

2
= 1− 1

2
e−x.

b) Assume first x ≤ 0. If we solve y = G(x) we get x = ln(2y) but only for y such
that x ≤ 0. That is, only for y such that ln(2y) ≤ 0. This means y ≤ 1/2.

Now consider x > 0. If we solve y = G(x) we get x = − ln(2− 2y) for x such that
x > 0. This means that this is only valid for y such that ln(2 − 2y) < 0 which is
exactly y > 1/2.

c) We can generate samples from Laplace density using xi = G−1(ui).

N = 5*10^7;

u = unifrnd(0,1,N,1);

% we must identify those smaller or equal to 1/2 and those bigger 1/2

smaller = logical(u<= 1/2);

bigger = logical(u > 1/2);

x = zeros(N,1);

% now we can apply the inverse

x(smaller) = log(2*u(smaller));

x(bigger) = -log(2-2*u(bigger));

plotLen=8;

step=0.4;

bins = -plotLen:step:plotLen;

Nbins = length(bins);

counts = histc(x,bins);

hold on;

plot(bins+step/2,(Nbins/(2*plotLen))*counts./N,’xr’);

plot(bins,0.5*exp(-abs(bins)));

hold off;

legend(’Samples’,’Laplace density’);
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Samples

Laplace density

Solution (to Exercise 3.4). For all x ∈ R we have f(−x) = (2π)−1/2e−x
2

= f(x) and
that g(−x) = (1/2) exp(−|x|) = g(x). Hence also ξ(−x) = ξ(x).
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To find the maximum of ξ it is thus sufficient to consider x ≥ 0. Then

ξ(x) =
2√
2π
e−

x2

2
+x and so ξ′(x) =

2√
2π

(1− x)e−
x2

2
+x.

This means the maximum is achieved at x = 1 (and by symmetry also at x = −1).
Now ξ(1) =

√
(2e)/π. Hence f(x) ≤

√
(2e)/πg(x) for all x ∈ R.

Solution (to Exercise 5.1). First we note that if the evolution of the risky asset is
given by

dSt = rStdt+ σStdWt,

where (Wt)t∈[0,T ] is a Wiener process in the risk neutral measure then we already know
that

Su = S exp

((
r − 1

2
σ2

)
(u− t) + σ(Wu −Wt)

)
, St = S.

Thus we may calculate

S̄G =

(
n∏
i=1

STi

)1/n

= S exp

((
r − 1

2
σ2

)(
1

n

n∑
i=1

Ti − t

)
+ σ

(
1

n

n∑
i=1

WTi −Wt

))
.

Next we observe that
∑n

i=1(WTi −Wt) has the same distribution as
∑n

i=1 Zi, where
Zi ∼ N(0, Ti − t) and their correlation is given by the variance-covariance matrix
Σ = σij = min{Ti, Tj} − t. Indeed

E
(
(WTi −Wt)

(
WTj −Wt

))
= E

(
WTiWTj −WtWTi −WtWTj +W 2

t

)
= min{Ti, Tj} − t.

We know that, in general, if X ∼ N(µ,Σ) then AX ∼ N(Aµ,AΣAT ). In our case we
takeA = (1, 1, . . . , 1) ∈ Rn. Then, letting Z = (Z1, Z2, . . . , Zn)T we getAZ =

∑n
i=1 Zi

and

AΣAT = (2n− 1)(T1− t) + (2n− 3)(T2− t) + · · ·+ (Tn− t) =
n∑
i=1

(2i− 1)(Tn+1−i− t).

We can thus conclude that

n∑
i=1

Zi ∼ N

(
0,

n∑
i=1

(2i− 1)(Tn+1−i − t)

)
.

We know that the option payoff must be equal to

vAG
(t, S) = e−r(T−t)E

(
[S̄G −K]+

)
= e−r(T−t)E

[S exp

((
r − 1

2
σ2

)(
1

n

n∑
i=1

Ti − t

)
+
σ

n

n∑
i=1

Zi

)
−K

]
+

 .

Let T̄ := n−1
∑n

i=1 Ti. Notice that if we let X ∼ N(0, 1) then
∑n

i=1 Zi has the same
distribution as the random variable

X

√√√√ n∑
i=1

(2i− 1)(Tn+1−i − t).
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Now we choose σ̄ such that

σ̄
√
T̄ − t =

σ

n

√√√√ n∑
i=1

(2i− 1)(Tn+1−i − t).

Then

vAG
(t, S) = e−r(T−t)E

([
S exp

((
r − 1

2
σ2

)
(T̄ − t) + σ̄

√
T̄ − tX

)
−K

]
+

)
= e−r(T−t)+r(T̄−t)E

(
e−r(T̄−t)

[
Seγ(T̄−t) exp

((
r − 1

2
σ̄2

)
(T̄ − t) + σ̄

√
T̄ − tX

)
−K

]
+

)
,

where we have taken γ := (1/2)(σ̄2− σ2). But now the expectation on the right hand
side is simply just the price of a European call option in the Black–Scholes framework
with spot price Seγ(T̄−t), time-to-expiry T̄ − t, volatility σ̄, risk free rate r and strike
K. This we can calculate using the Black–Scholes formula.
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A Appendix

A.1 Multi-dimensional Itô’s formula

Let us introduce {W (t)}t≥0, a Rm valued stochastic process where

W (t) = (W1(t),W2(t), . . . ,Wm(t))T

and {Wi(t)}t≥0 are independent Wiener processes for i = 1, 2, . . . ,m. So {W (t)}t≥0

is a m-dimensional Wiener process with respect to {Ft}t≥0.

Definition A.1 (Multi-dimensional Itô process). Let {X(t)}t∈[0,T ] be a process taking

values in Rn. That is, let X(t) = (X1(t), X2(t), . . . , Xn(t))T where the evolution of
the ith compoment of the process is given by

dXi(t) = ui(t)dt+ vi1(t)dW1(t) + vi2(t)dW2(t) + · · ·+ vim(t)dWm(t).

Assume that {ui(t)}t≥0 satisfy the conditions placed on {U(t)}t≥0 in the definition
of an Itô process for i = 1, 2, . . . , n and {vij(t)}t≥0 satisfy the conditions placed on
{V (t)}t≥0 in the definition of an Itô process for i = 1, 2, . . . , n and j = 1, 2, . . . ,m.
Then {X(t)}t∈[0,T ] is a n-dimensional Itô process.

Let us define the vector u = (u1, u2, . . . , un) and the matrix v = (vij) with i =
1, 2, . . . , n and j = 1, 2, . . . ,m. Then we can write

dX(t) = u(t)dt+ v(t)dW (t). (21)

Theorem A.2 (Multi-dimensional Itô formula). Let the evolution of the stochstic
process {X(t)}t∈[0,T ] be given by (21). Let g : [0,∞]× Rn → Rd be given by g(t, x) =
(g1(t, x), g2(t, x), . . . , gd(t, x)) with gk : [0, T ] × Rn → R such that all first and second
partial derivatives with respect to the function’s arguments exist and are continuous.

Then the process Y (t) := g(t,X(t)) is a d-dimensional Itô process and its kth com-
ponent is given by

dYk(t) =
∂gk
∂(t)

(t,X(t))dt+

n∑
i=1

∂gk
∂xi

(t,X(t))dXi(t)

+ 1
2

∑
i,j=1,...,n

∂2gk
∂xi∂xj

(t,X(t))〈dXi(t), dXj(t)〉.

Furthermore 〈dXi(t), dXj(t)〉 = δijdt and 〈dXi(t), dt〉 = 〈dt, dXi(t)〉 = 0.

For proof see e.g. [5, Theorem 4.2.1].

Now we get the product rule for Itô processes.

Corollary A.3. Let {X(t)}t≥0 and {Z(t)}t≥0 be Itô processes given by

dX(t) = µ(t)dt+ σ(t)dW (t), X(0) = x0,

dZ(t) = φ(t)dt+ ψ(t)dW (t), Z(0) = z0.

Then
d(X(t)Z(t)) = Z(t)dX(t) +X(t)dZ(t) + 〈dX(t), dZ(t)〉.
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Proof. We have g : R2 → R given by g(x, z) = xz. Clearly

∂g

∂x
= z,

∂g

∂z
= x,

∂2g

∂x2
=
∂2g

∂z2
= 0,

∂2g

∂x∂z
= 1.

Using the multi-dimensional Itô formula we get, for Y (t) = g(X(t), Z(t), that

d(X(t)Z(t)) = dY (t) = Z(t)dX(t) +X(t)dZ(t) +
1

2
(0 + 1 + 1 + 0)〈dX(t), dZ(t)〉.
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