2018/19 Semester 2

Stochastic Control and Dynamic Asset Allocation

Problem Sheet 3 - Tuesday 26th February (should have been Friday 15th February) 2019^1

Exercise 3.1 (Merton problem with an exponential utility, no consumption). We return to the portfolio optimization problem, see Section 1.1. Unlike in Example 3.10 we consider the utility function $g(x) := -e^{-\gamma x}$, $\gamma > 0$ a constant. We will also take r = 0 for simplicity and assume there is no consumption (C = 0). With X_t denoting the wealth at time time t we have the value function given by

$$\psi(t,x) = \sup_{\pi \in \mathcal{U}} \mathbb{E}\left[g\left(X_T^{\pi,t,x,}\right)\right]$$

- i) Write down the expression for the wealth process in terms of π , the amount of wealth invested in the risky asset and with r = 0, C = 0.
- ii) Write down the HJB equation associated to the optimal control problem. Solve the HJB equation by inspecting the terminal condition and thus suggesting a possible form for the solution. Write down the optimal control explicitly.
- iii) Use verification theorem to show that the solution and control obtained in previous step are indeed the value function and optimal control.

Exercise 3.2 (Unattainable optimizer). Here is a simple example in which no optimal control exists, in a finite horizon setting, $T \in (0, \infty)$. Suppose that the state equation is

$$dX_s = \alpha_s \, ds + dW_s \ s \in [t, T], \quad X_t = x \in \mathbb{R}.$$

A control α is admissible ($\alpha \in A$) if: α takes values in \mathbb{R} , is $(\mathcal{F}_t)_{t \in [0,T]}$ -adapted, and $\mathbb{E} \int_0^T \alpha_s^2 ds < \infty$.

Let $J(t, x, \alpha) := \mathbb{E}[|X_T^{t,x,\alpha}|^2]$. The value function is $v(t,x) := \inf_{\alpha \in \mathcal{A}} J(t,x,\alpha)$. Clearly $v(t,x) \ge 0$.

- i) Show that for any $t \in [0,T]$, $x \in \mathbb{R}$, $\alpha \in \mathcal{A}$ we have $\mathbb{E}[|X_T^{t,x,\alpha}|^2] < \infty$.
- ii) Show that if $\alpha_t := -cX_t$ for some constant $c \in (0,\infty)$ then $\alpha \in \mathcal{A}$ and

$$J^{\alpha}(t,x) = J^{cX}(t,x) = \frac{1}{2c} - \frac{1 - 2cx^2}{2c}e^{-2c(T-t)}$$

Hint: with such an α , the process X is an Ornstein-Uhlenbeck process, see an earlier exercise.

- iii) Conclude that v(t, x) = 0 for all $t \in [0, T)$, $x \in \mathbb{R}$.
- iv) Show that there is no $\alpha \in \mathcal{A}$ such that $J(t, x, \alpha) = 0$. *Hint:* Suppose that there is such a α and show that this leads to a contradiction.
- v) The associated HJB equation is

$$\partial_t v + \inf_{a \in \mathbb{R}} \left\{ \frac{1}{2} \partial_{xx} v + a \partial_x v \right\} = 0, \quad \text{on } [0, T) \times \mathbb{R}.$$

 $v(T, x) = x^2.$

Show that there is no value $\alpha \in \mathbb{R}$ for which the infimum is attained.

¹Last updated 25th February 2019