2018/19 Semester 2

Stochastic Control and Dynamic Asset Allocation

Problem Sheet 5 - Friday 22nd March 2019¹

Exercise 5.1 (Merton's problem with exponential utility, no consumption, using Pontryagin's Maximum Principle). Consider a model with a risky asset $(S_t)_{t \in [0,T]}$ and a risk-free asset $(B_t)_{t \in [0,T]}$ given by

$$dS_t = \mu S_t dt + \sigma S_t dW_t \ t \in [0, T], S_0 = S,$$

$$dB_t = rB_t dt \ t \in [0, T], S_0 = S, B_0 = 1,$$

where $\mu, r \in \mathbb{R}$ and $\sigma > 0$ are given constants. Let $(X_t)_{t \in [0,T]}$ denote the value of a self-financing investment portfolio with $X_0 = x > 0$ and let α_t denote the fraction X_t invested in the risky asset. We note that X_t depends on the investment strategy α_t and so we write $X_t = X_t^{\alpha}$. We will only consider α that are real-valued, adapted and such that $\mathbb{E} \int_0^T \alpha_t^2 dt < \infty$, denoting such strategies \mathcal{A} and calling them admissable. Our aim is to find the investment strategy $\hat{\alpha}$ which maximizes, over $\alpha \in \mathcal{A}$,

$$J(\alpha) = \mathbb{E}\left[-\exp(-\gamma X_T^{\alpha})\right],$$

for some $\gamma > 0$.

i) Use the definition of a self-financing portfolio to derive the equation for the portfolio value:

$$dX_t = X_t \left[\alpha_t(\mu - r) + r \right] dt + X_t \alpha_t \sigma dW_t.$$

- ii) Write down the Hamiltonian for the problem and the adjoint BSDE for the optimal portfolio (use $\hat{\alpha}$ to denote the optimal control, (\hat{Y}, \hat{Z}) to denote the BSDE).
- iii) Justify the use of Pontryagin's maximum principle and show that it implies that

$$\hat{Z}_t = -\frac{\mu - r}{\sigma} \hat{Y}_t \,.$$

iv) Noting that $\hat{Y}_T = \gamma e^{-\gamma \hat{X}_T}$ use the "ansatz" $\hat{Y}_t = \phi_t e^{-\psi_t \hat{X}_t}$ with some $\phi, \psi \in C^1([0,T])$ such that $\phi_T = \gamma$ and $\psi_T = \gamma$. Hence show that

$$\hat{X}_t \hat{\alpha}_t = e^{-r(T-t)} \frac{\mu - r}{\gamma \sigma^2} \,.$$

¹Last updated 21st March 2019