There are *three* questions, each worth 25 marks. Correct answers to all questions yields the maximum of 75 marks.

Throughout the examination paper we will assume the existence of a suitable probability space $(\Omega, \mathcal{F}, \mathbb{P})$. Results in the lectures may be used without further justification unless the question is asking specifically for the proof of a particular result.

(1) Given $(s, y) \in [0, 1) \times \mathbb{R}$, consider the following stochastic control problem

$$V(0,0) = \min_{\nu} J(0,0;\nu)$$

= $\min_{\nu} \mathbb{E} \left[\left(X_{0,0}^{\nu}(1) \right)^2 - \int_0^1 2 \, s \, \nu(s) \mathrm{d}s \right]$
such that
$$\begin{cases} \mathrm{d}X_{0,0}^{\nu}(r) = \nu(r) \mathrm{d}W(r), & r \in [0,1] \\ X_{0,0}^{\nu}(0) = 0 \\ \nu(t) \in \mathbb{R} \quad \forall t \in [0,1], \ (\mathcal{F}_t)_{t \in [0,T]} \text{-adapted} \\ & \text{and } \mathbb{E} [\int_0^1 \left(\nu(s) \right)^2 \mathrm{d}s] < \infty \end{cases}$$

(a) Write the dynamic version of the optimal control problem above, i.e. write down V(t, y) for $t \in [0, 1]$ and $y \in \mathbb{R}$.

[2 marks]

(b) Show that one can write $V(t, x) = x^2 + g(t)$ for some function g(t) you need to identify. Compute further $\partial_x V(t, x)$ and $\partial_{xx} V(t, x)$.

[8 marks]

(c) Write down the HJB equation for this stochastic control problem.

[5 marks]

(d) Find a solution to the HJB equation and compute V(0,0).

[10 marks]

MATH11150 Stochastic Control and Dynamic Asset Allocation

(2) (a) Denote V(t, x) as the value function of the optimal control problem below starting from time t at position x, i.e.,

$$V(t,x) := \inf_{\nu} \mathbb{E} \left[\int_{t}^{T} f\left(s, X_{t,x}^{\nu}(s), \nu(s)\right) \mathrm{d}s + h\left(X_{t,x}^{\nu}(T)\right) \right]$$

where
$$\begin{cases} \mathrm{d}X_{t,x}^{\nu}(s) = b\left(s, X_{t,x}^{\nu}(s), \nu(s)\right) \mathrm{d}s + \sigma\left(s, X_{t,x}^{\nu}(s), \nu(s)\right) \mathrm{d}W_{s}, & s \in [t,T] \\ X_{t,x}^{\nu}(t) = x \\ \nu \in \mathcal{U}_{ad}[t,T] \end{cases}$$

Make the general assumption that the SDE coefficients satisfy assumption (S1) from class and \mathcal{U}_{ad} is the usual admissibility set used in class implying that the SDE is well defined and has good properties, in particular, it holds that

$$\mathbb{E}\Big[\sup_{s\in[t,T]}|X_{t,y}^{\nu}(s) - X_{t,x}^{\nu}(s)|^2\Big] \le C|y-x|^2.$$

Assume additionally that the function $h : \mathbb{R} \to \mathbb{R}$ is Lipschitz. Assume the function $f : [0,T] \times \mathbb{R} \times \mathbb{R} \to \mathbb{R}$, i.e. f(t,x,u) is Lipschitz in x uniformly in t, u and uniformly bounded in u and t.

Then, show that there exists constants K > 0 such that

$$|V(t, x) - V(t, y)| \le K|x - y|.$$

[12 marks]

(b) A Black-Scholes market is given where there are only one stock (with drift $a \in \mathbb{R}$ and volatility $\sigma > 0$) and one bank account with constant interest rate r > 0. In this market an investor, with initial wealth $x_0 > 0$ selects among proportion strategies ν that are constants and with such a strategy the proportion of wealth invested in the stock is a constant throughout.

The investor seeks to maximise his expected utility at time T which is a power-type utility

$$U(x) = \log x, \qquad x > 0.$$

(i) Identify the dynamics for the underlying assets. Show that the SDE expressing the wealth process $(X^{\nu}(t))_{t \in [0,T]}$ is of Geometric Brownian motion type and write its explicit solution.

[5 marks]

(ii) Write clearly the optimization problem and then compute the constant optimal proportion strategy ν^* explicitly using the duality theory approach, in other words, determine: the deflator process $(Y_t)_{t\in[0,T]}$ and all necessary related quantities; the optimal wealth random variable \hat{X}_T using duality theory; then the optimal wealth process $(\hat{X}_t)_{t\in[0,T]}$; finally determine ν^* . [8 marks] (3) Let $\mathbf{B} := (B, B^{\perp})$ be a two-dimensional Brownian motion (BM) on a stochastic basis $(\Omega, \mathcal{F}, \mathbb{F} := (\mathcal{F}_t)_{0 \le t \le T}, \mathbb{P})$, with \mathbb{F} denoting the filtration generated by \mathbf{B} .

Take a financial market with a bank account with interest rate of *zero*, a stock price S and its volatility Y follow

$$dS_t = S_t(\mu dt + Y_t dB_t), \quad dY_t = a(Y_t)dt + b(Y_t)dW_t, \ \mu \in \mathbb{R},$$

where W is a BM given by

$$W_t := \rho B_t + \sqrt{1 - \rho^2} B_t^{\perp}, \quad \rho \in [-1, 1], \quad 0 \le t \le T.$$

The maps a, b are deterministic such that Y is positive, and the stock's market price of risk $\lambda := \mu/Y$ is square-integrable. An agent with initial wealth x > 0and logarithmic utility function $U(\cdot) = \log(\cdot)$ maximises expected utility of wealth at time T, with wealth process X generated from trading S. Admissible strategies $\pi \in \mathcal{A}$ yield non-negative X. Denote by V the convex conjugate of U. Define Z as the density process with respect to \mathbb{P} of any martingale measure $\mathbb{Q} \in \mathbf{M}$, where **M** denotes the set of equivalent martingale measures.

(a) Write down a stochastic exponential formula for Z involving λ and a second adapted process λ^{\perp} .

[1 marks]

- (b) Derive the dynamics of ZX, deduce that $\mathbb{E}[Z_TX_T] \leq x$, for any $\mathbb{Q} \in \mathbf{M}$, and show that $u(x) \leq v(y) + xy$, where $u(x) := \sup_{\pi \in \mathcal{A}} \mathbb{E}[U(X_T)]$ is the primal value function and $v(y) := \inf_{\mathbb{Q} \in \mathbf{M}} \mathbb{E}[V(yZ_T)]$ is the dual value function, for y > 0. [5 marks]
- (c) Explain the relation between the optimal terminal wealth \hat{X}_T and $y\hat{Z}_T$, where y > 0, and \hat{Z}_T is the Radon-Nikodym derivative of the dual minimiser $\hat{\mathbb{Q}} \in \mathbf{M}$, and explain how y is fixed. Hence derive a formula for \hat{X}_T , given that $U(\cdot) = \log(\cdot)$.

[5 marks]

(d) Derive a formula for the optimal wealth process $\hat{X} = (\hat{X}_t)_{0 \le t \le T}$, the optimal portfolio proportion process $\hat{\theta}$, and characterise the dual minimiser $\hat{\mathbb{Q}} \in \mathbf{M}$. [5 marks]

(e) Show that the primal value function is given by $u(x) = \log x + H$, where H is a constant which you should express in terms of λ .

[1 marks]

(f) Suppose $Y_t = \sigma \exp(\alpha W_t), t \in [0, T]$, for positive constants σ, α . Derive the form of u(x) in this case, show that in the limit $\alpha \to 0$ we have

$$u(x) = \log x + \frac{1}{2} \left(\frac{\mu}{\sigma}\right)^2 T,$$

and interpret the result.

[8 marks]