
SCDAA Coursework 2020-21∗

David Šǐska, School of Mathematics, University of Edinburgh

Submit via Learn by Friday 9th April 2021 at 12:01pm

Overview

Your overall task will be to implement a numerical algorithm for solving stochastic
control problems using the Method of Successive Approximation (MSA).

This will be broken into steps which a) give you credit for completion and b) allow
you to check your progress.

1. Create a Python method for estimating conditional expectations from data, see
Section 1.

2. Use this method for estimating conditional expectations to solve a linear BSDE
arising in Black–Scholes pricing and hedging and check that you are getting the
correct answers, see Section 2.

3. Implement the MSA algorithm for deterministic linear quadratic control prob-
lem, see Section 3.

4. Implement the MSA algorithm for stochastic linear quadratic control problem,
see Section 4.

You will be expected to submit a Jupyter notebook which a) clearly describes
what you’re doing1 and why and b) can be run from beginning to the end in under 3
minutes producing output (text / plots) demonstrating sucessful completion of each
of the tasks. Use numpy, scipy and matplotlib and all the functions they contain
but do not use other libraries.2

You will be working in groups of two3 and the first cell in the Jupyter notebook
should state your name, student number and individual contribution percentage.4

You cannot split the tasks (saying one does 1. and 2. and the other does 3. and 4.)
because they depend sequentially on succesful completion of the previous ones. You
need to work together on each of the tasks.

There are 22 marks in total on this assignment but it is marked out of 20. Think
of the extra two marks as a bonus. The Exercise 4.2 may be hard but you can still

∗Last updated 5th April 2021.
1It is possible to write LaTeX in formulae in the Markdown fields.
2If you wish to use another library seek permission from the course organiser first.
3Self-organise. One person from each group should send the course organiser an email (Cc’ing

the other member) with the subject SCDAA CW group stating names and student numbers of group
members.

4The default is that you contributed equally i.e. 50% and 50%. If one of you feels they contributed
more then they have to agree with the other about how you split this (e.g. 65% and 35%). If you
cannot agree speak with the course organiser.

1

score 80% without tackling it. Please note that a submission that doesn’t
demonstrate why things work (e.g. test examples, convergence plots etc.)
will get very few marks even if you have code that correctly solves the
exercises.

We will assume throughout that we have a suitable probability space (Ω,F ,P) on
which our random variables exist.

1 Empirical estimation of conditional expectation

You may wish to review what you know about conditional expectations e.g. in [4,
Appendix A.3]. We will use the notation from there. Let X,Y be random variables
in L2(F). We know that

‖Y − E[Y |X]‖22 = inf
Z∈L2(σ(X))

‖Y − Z‖22 .

So among all the square integrable random variables measurable w.r.t. σ(X) the
conditional expectation E[Y |X] is the one which minimizes the L2 norm.

Moreover the Doob–Dynkin Lemma tells us that there is a measurable function h
s.t. for every Z ∈ L2(σ(X)) we have Z = h(X). So we can equivalently say that the
conditional expectation must satisfy

‖Y − E[Y |X]‖22 = inf
hmeas. andh(X)∈L2(σ(X))

‖Y − h(X)‖22 . (1)

Let ψ1, . . . ,ψM be fixed “basis functions” and let β1, . . . ,βM ∈ R. Consider functions
of the form

h(x) =

M!

r=1

βrψr(x) .

If, instead of minimizing over all measurable functions like in (1), we would do the
minimization over (βr)

M
r=1 then we could get an approximation of the conditional

expectation. The quality of this approximation will depend on our basis functions
and on how many we take.5 This is

‖Y − E[Y |X]‖22 ≈ inf
β∈RM

"""""Y −
M!

r=1

βrψr(X)

"""""

2

2

(2)

and if β̂ ∈ RM are the parameters which minimize the above expression then

E[Y |X] ≈
M!

r=1

β̂rψr(X) .

Now imagine you have N independent samples (xi, yi)
N
i=1 from the (joint) distri-

bution of (X,Y). Since ‖ · ‖22 = E[| · |2] we can use Monte Carlo estimators for the
minimization problem (2). So our problem becomes: find β̂ (which depend on N and
the choice of your basis functions) which minimize, over all β ∈ RM the expression

1

N2

N!

i=1

####yi −
M!

r=1

βrψr(xi)

####
2

.

5We know from Taylor’s theorem that any smooth function is an (infinite) sum of polynomials, we
know from Fourier analysis that every L2 function is an (infinite) sum of e−ikx with integer k etc.

2

Note that N−2 is just a constant in this minimization and can be dropped. What
you’re looking at now is a classical ordinary least squares problem.

Exercise 1.1 (Empirical estimation of conditional expectation, 5 marks).

i) Write a method which will estimate the optimal coefficient β̂ for estimating condi-
tional expectation of E[Y |X] from samples (xi, yi)

N
i=1. Use the method signature

def coeffsForCondiExp(X,Y,hermiteOrder):

ii) Write a method which will estimate the conditional expectation given an input
and the optimal coefficients. Use the method signature

def approxCondExp(X,beta):

Use probabilist’s Hermite polynomials as basis functions ψr so that ψ0(x) = 1,
ψ1(x) = x, ψ2(x) = x2−1 etc. These are implemented in numpy.polynomial.hermite e.
You can use the built-in least-squares solver: numpy.linalg.lstsq or a built-in func-
tion to fit the hermite polynomials: numpy.polynomial.hermite e.hermefit.

2 Solving a BSDE numerically

It will help to read [4, Section 5]. Consider a BSDE of the form

dYt = gt(Yt, Zt) dt+ Zt dWt , t ∈ [0, T] , YT = ξ

with appropriate “driver” g and terminal condition ξ. Consider a time grid Π on [0, T]
i.e.

Π := {(ti)Ni=0 : 0 = t0 < t1 < · · · < tN = T} . (3)

Clearly

Yti = Yti+1 −
$ ti+1

ti

gt(Yt, Zt) dt−
$ ti+1

ti

Zt dWt , i = 0, . . . , N − 1 , YtN = ξ . (4)

Writing Yi := Yti , Zi := Zti , gti := gi, ∆ti+1 := ti+1 − ti and ∆Wi+1 := Wti+1 −Wti

we can approximate (4) by the explicit Euler approximation

Yi ≈ Yi+1 − gi(Yi+1, Zi)∆ti+1 − Zi∆Wi+1 , i = 0, 1, . . . , N − 1 , YN = ξ . (5)

Taking conditional expectation Eti [·] := Eti [·|Fti] in (5) we get

Yi ≈ Eti

%
Yi+1 − gi(Yi+1, Zi)∆ti+1

&
, i = 0, 1, . . . , N − 1 , YN = ξ . (6)

To evaluate this recurrence we still need Zi. To that end we approximate (4) using
implicit Euler scheme obtaining

Yi ≈ Yi+1 − gi(Yi, Zi)∆ti+1 − Zi∆Wi+1 , i = 0, 1, . . . , N − 1 , YN = ξ . (7)

Multiplying (7) by ∆Wi+1 and taking the same conditional expectation we obtain:

Eti

%
Yi∆Wi+1

&
≈ Eti

%
Yi+1∆Wi+1 − gi(Yi, Zi)∆Wi+1∆ti+1 − Zi(∆Wt+1)

2
&
.

This is
0 ≈ Eti

%
Yi+1∆Wi+1

&
− Zi∆ti+1 , i = 0, 1, . . . , N − 1 .

3

Together with (6) we thus have the numerical scheme:

Yi ≈ Eti

%
Yi+1 − gi(Yi+1, Zi)∆ti+1

&
, i = 0, 1, . . . , N − 1 , YN = ξ ,

Zi ≈
1

∆ti+1
Eti

%
Yi+1∆Wi+1

&
.

(8)

You will, in particular notice that you need to calculate two conditional expectations
at each time step.

Exercise 2.1 (Numerical solution of a BSDE, 4 marks). We will use a BSDE for
which we know what the explicit solution is so that you can check that your method
works. To that end fix µ, r ∈ R, σ ∈ (0,∞) constants and consider

dYt =
'
rYt + σ−1(µ− r)Zt

(
dt+ Zt dWt , t ∈ [0, T] , YT = ξ ,

where ξ = [ST −K]+ for K > 0 fixed and dSt = µSt dt+ σSt dWt.
Implement a numerical algorithm based on (8) and your method for estimating

conditional expectations.6 Test its convergence against the exact solution. Plot7 how
it depends on number of Monte Carlo samples NMC , number of time steps N and the
number of basis functions M .

3 Deterministic MSA

In the case of deterministic control the Hamiltonian is:

H(t, x, y, a) = b(t, x, a) · y + f(t, x, a) .

Any optimal control, together with the optimal forward and backward equations must
satify the ordinary differential equation (ODE) system

)
**+

**,

αt ∈ argmax
a∈A

H(t,Xα
t , Y

α
t , a) ,

dXt = b(t,Xα
t ,αt) dt , t ∈ [0, T] , X0 = x ,

dYt = −(∂xH)(t,Xα
t , Y

α
t ,αt) dt , t ∈ [0, T] , Y α

T = (∂xg)(X
α
T) .

(9)

The method of succesive approximation (MSA) is the following iterative method. Fix

a stopping criteria ε > 0. Start with a guess for the control α(0) = (α
(0)
t)t∈[0,T]. At

each j-th step of the algorithm:

i) solve

dX
(j)
t = b(t,X

(j)
t ,α

(j−1)
t) dt , t ∈ [0, T] , X0 = x ,

dY
(j)
t = −(∂xH)(t,X

(j)
t , Y

(j)
t ,α

(j)
t) dt , t ∈ [0, T] , Y

(j)
T = (∂xg)(X

(j)
T) .

(10)

ii) find (approximately is sufficient)

α
(j)
t ∈ argmax

a∈A
H(t,X

(j)
t , Y

(j)
t , a) . (11)

6 Note that you must use the same increments (∆Wi)i=1,...N to generate samples from ST and
in (8) otherwise you will not see good results.

7You probably want log-log plots to see what’s happening.

4

iii) Aproximate Jα(j)
=

- T
0 f(t,X

(j)
t ,α

(j)
t) dt + g(X

(j)
T). If Jα(j)

< Jα(j−1)
then stop:

the method failed due to some numerical instability (you can prove that the

objective functional should be increasing with j). If Jα(j−1)
+ ε > Jα(j)

then
stop: the method converged within your stopping criteria. You found the correct
(approximate) solution. Otherwise continue to the next iteration.

Of course the ODEs in (10) have to be solved numerically on some grid Π, see (3).
Then for each ti ∈ Π you need to approximate (11) so you can update the control.
In [2] they suggest approximating it using 10 iterations of limited memory BFGS
method (L-BFGS). This exists in Python, see scipy.optimize.minimize and use
specifically method=’L-BFGS-B’. On the other hand, it is often enough to fix some
δ > 0 (small) and instead of (11) do

α
(j)
t = α

(j−1)
t + δ(∇aH)(t,X

(j)
t , Y

(j)
t ,α

(j−1)
t)

i.e. do one step of gradient ascent towards the maximum.

Exercise 3.1 (Deterministic Linear Quadratic control, 4 marks). Implement the MSA
algorithm for the deterministic linear quadratic control problem. Use explicit Euler
discretization for both the forward and backward ODEs.

Compare to the exact solution (you can solve the Riccati ODE numerically or
choose a simple setting where it is solvable by hand). Discuss convergence of the MSA
and how it depends on problem and parameter choices.

4 MSA for stochastic control

In the case of stochastic control the Hamiltonian is:

H(t, x, y, z, a) = b(t, x, a) · y + tr(σ(t, x, a)⊤z) + f(t, x, a) .

Any optimal control, together with the optimal forward and backward processes must
satify the stochastic differential equation (SDE) system

)
**+

**,

αt ∈ argmax
a∈A

H(t,Xα
t , Y

α
t , Zα, a) ,

dXt = b(t,Xα
t ,αt) dt+ σ(t,Xα

t ,αt) dWt , t ∈ [0, T] , X0 = x ,

dYt = −(∂xH)(t,Xα
t , Y

α
t , Zα

t ,αt) dt+ Zα
t dWt , t ∈ [0, T] , Y α

T = (∂xg)(X
α
T) .
(12)

The algorithm is then identical as before but (10)-(11) now contain the stochastic
components. Hence solving the backward equation amounts to solving a BSDE as in
Section 2. You will need to generate MC sample paths so that you can evaluate the

conditional expectations. Moreover to approximate Jα(j)
= E

- T
0 f(t,X

(j)
t ,α

(j)
t) dt +

g(X
(j)
T) you need to approximate the expectation.

Exercise 4.1 (Stochastic Linear Quadratic control, 4 marks). Implement the MSA
algorithm for the stochastic linear quadratic control problem. Use explicit Euler dis-
cretization for both the forward SDE and use a BSDE solver for the backward equation.

Compare to the exact solution (you can solve the Riccati ODE numerically or
choose a simple setting where it is solvable by hand). Discuss convergence of the MSA
and how it depends on problem and parameter choices.

5

If you got as far as here you have the MSA working for stochastic problems where
the solution is known already - good to have but not that exciting.

Exercise 4.2 (Optimal asset allocation in Heston Model, 6 marks). Assume that
we have a risk-free asset with price at time t given by Bt such that B0 = 1 and
dBt = rBtdt. Moreover there is a risky asset with the dynamics given by the stochastic
differential equation

dSt = µStdt+
.

VtStdW
(1)
t , S0 = S (13)

where
dVt = κ(θ − Vt)dt+ σ

.
Vt

%
ρdW

(1)
t +

.
1− ρ2dW

(2)
t

&
, V0 = v. (14)

It can be shown that (14) has a unique solution such that, if 2κθ > σ2 then V (t) > 0
(provided of course that the initial value is strictly positive).

Formulate and solve a final-time-utility Merton problem with no consumption for
an utility function of your choice using the MSA. You will find sensible parameter for
the stochastic volatility model e.g. in [1].

Hint. You’ll need to modify your code for conditional expectation so that you can
condition on two dimensional inputs. That is, you want to find a function h : R2 → R
such that E[Y |X1, X2] = h(X1, X2). Try e.g.

h(x1, x2) ≈
M!

r1,r2=1

βr1r2ψr1(x1)ψr2(x2).

You can then condition on (W
(1)
ti

,W
(2)
ti

) or on (Sti , Vti) in (8).
If the algorithm fails to converge, try using the Modified MSA described in [3].

References

[1] H. Albrecher and P. Mayer and W. Schoutens and J. Tistaert, The Little Heston
Trap, Wilmott Magazine, 2007.

[2] Q. Li, L. Chen, C.Tai, and W. E, Maximum principle based algorithms for deep
learning, J. Mach. Learn. Res., 18(165), 1–29, 2018.

[3] B. Kerimkulov, D. Šǐska, and L. Szpruch. A modified MSA for stochastic control
problems. arXiv:2007.05209, 2020.

[4] G. dos Reis and D. Šǐska. Stochastic Control and Dynamic Asset Allocation.
https://www.maths.ed.ac.uk/ dsiska/LecNotesSCDAA.pdf. 2021.

6

https://www.maths.ed.ac.uk/~dsiska/LecNotesSCDAA.pdf

