Throughout the examination paper we will assume the existence of a suitable probability space $(\Omega, \mathcal{F}, \mathbb{P})$. Results proved in the lectures may be used without further justification unless the question is asking specifically for the proof of a particular result.

1. We consider the standard Black–Scholes model for optimal investment: a risk-free asset B and a risky asset S given by

$$B_t := \exp(rt)$$
 and $S_t := S_0 \exp\left(\left(\mu - \frac{1}{2}\sigma^2\right)t + \sigma W_t\right)$.

Here W is a Wiener process and r, μ and σ are real constants with $\sigma > 0$. Fix T > 0. Let X_s denote the investment portfolio value at time $s \ge t$ and $X_t = x > 0$. There will be no cash injections and no consumption. Let $\nu = (\nu_t)_{t \in [0,T]}$ be the fraction of portfolio value invested in the risky asset. We will assume that $\mathbb{E} \int_0^T \nu_s^2 ds < \infty$ and that ν is adapted to the filtration generated by W. For such ν we write $\nu \in \mathcal{A}$. Let $g(x) := x^{\gamma}, \gamma \in (0, 1)$ and

$$\bar{v}(t,x) := \sup_{\nu \in \mathcal{A}} \mathbb{E}\left[g(X_T^{\nu,t,x})\right] \,. \tag{1}$$

a) Find a candidate for the optimal control and hence show that the solution to the corresponding Bellman PDE is

$$v(t,x) = \exp\left((T-t)\beta\right)x^{\gamma},$$

where β is a constant given in terms of σ , μ , r and γ . Give an explicit expression for β . [7 marks]

b) Use verification theorem to check that $\bar{v} = v$ and the candidate optimal control is the true optimal control. [8 marks]

Comment: This question is meant as a straightforward application of Bellman PDE and verification theorems or Pontryiagin's optimality and is available in lecture notes. Full marks will be awarded only if verification theorem was employed correctly.

Solution:

MATH11150

a) We calculate (Itô formula) that $dB_t = rB_t dt$ and $dS_t = \mu S_t dt + \sigma S_t dW_t$. We then have (with ψ_t being the number of units of risky asset we hold)

$$dX_t = \psi_t \, dS_t + \frac{X_t - \psi_t S_t}{B_t} \, dB_t = \nu_t X_t \frac{1}{S_t} \, dS_t + \frac{X_t - \nu_t X_t}{B_t} \, dB_t$$

 So

$$dX_t = X_t \left[(\mu - r)\nu_t + r \right] dt + \nu_t X_t \sigma \, dW_t \, .$$

We can check that the solution to this SDE is of the form $X_t = X_0 \exp(\ldots) > 0$ for $X_0 > 0$. The Bellman PDE is

$$\partial_t v + \sup_u \left[\frac{1}{2} \sigma^2 u^2 x^2 \partial_{xx} v + x [(\mu - r)u + r] \partial_x v \right] = 0 \quad \text{on } [0, T) \times (0, \infty)$$
$$v(T, x) = x^\gamma \quad \forall x > 0 \,.$$

Since $X_t > 0$ for all $t \in [0, T]$ the spatial domain is $(0, \infty)$. The domain has to be specified and justified to get full marks. We "guess" the form of the solution

$$v(t,x) = \lambda(t)x^{\gamma}$$

with $\lambda \in C^1([0,T])$ and $\lambda > 0$. Hence we have $\partial_t v = \lambda'(t)x^{\gamma}$, $\partial_x v = \lambda(t)\gamma x^{\gamma-1}$, $\partial_{xx}v = \gamma(\gamma-1)x^{\gamma-2}$. So we get

$$\lambda'(t)x^{\gamma} + \sup_{u \in \mathbb{R}} \left[\frac{1}{2} \sigma^2 u^2 \gamma(\gamma - 1)\lambda(t)x^{\gamma} + \lambda(t) \left((\mu - r)u + r \right) \gamma x^{\gamma} \right] = 0.$$

MATH11150

We can divide by $x^{\gamma} > 0$. The function $u \mapsto \frac{1}{2}\sigma^2 u^2 \gamma(\gamma - 1)\lambda(t) + \lambda(t) ((\mu - r)u + r)\gamma$ is maximized (calculus and concavity) when

$$0 = \sigma^2 u \gamma (\gamma - 1) + (\mu - r) \gamma$$

i.e.

$$u^* = \frac{\mu - r}{\sigma^2 (1 - \gamma)} \,.$$

The maximum itself is

$$\beta := \frac{1}{2}\sigma^2 (u^*)^2 \gamma (\gamma - 1) + (\mu - r)\gamma u^* + r\gamma \,.$$

Thus

$$\lambda'(t) = -\beta\lambda(t), \ \lambda(T) = 1 \implies \lambda(t) = \exp\left((T-t)\beta\right).$$

We have established that $v(t, x) = \exp((T - t)\beta)x^{\gamma}$ is a solution to the Bellman PDE.

b) Let us check whether it's the value function of the control problem using verification. Moreover the Markovian optimal control $\hat{u}(t,x) = \frac{\mu-r}{\sigma^2(1-\gamma)}$ is constant and hence certainly measurable. The wealth equation with the optimal control is

$$d\hat{X}_t = \hat{X}_t \left[(\mu - r)\hat{u} + r \right] dt + \hat{u}\hat{X}_t \sigma \, dW_t \,.$$

This is a linear SDE with Lipschitz coefficients so it has unique solution which moreover has all the moments when started from deterministic initial value. In particular $\mathbb{E} \sup_{t \leq T} |\hat{X}_t|^{2\gamma} < \infty$. We consider

$$t' \mapsto \int_t^{t'} \gamma(\hat{X}_s)^{\gamma-1} \hat{u} \hat{X}_s \sigma \, dW_s = \hat{u} \gamma \sigma \int_t^{t'} (\hat{X}_s)^{\gamma} \, dW_s \, .$$

Now

$$\mathbb{E}\int_0^T |\hat{X}_t|^{2\gamma} \, dt < \infty$$

because of the moment bound above. So the stochastic integral is a martingale. So the verification is complete, the constant strategy \hat{u} is optimal and the optimal value for this control is $v = \bar{v}$.

2. A producer with production rate $X = X_t$ at time t may allocate a portion $\alpha = \alpha_t$ of their production rate to reinvestment (thus increasing production rate) and $1 - \alpha_t$ to actual production of a storable good. Thus

$$dX_t = \gamma \alpha_t X_t \, dt \,, \ t \in [0, T] \,, \ X_0 = x > 0 \,,$$

where $\gamma > 0$ is a constant. The admissible controls are measurable maps $t \mapsto \alpha_t \in [0, 1]$. The objective is to maximize the amount of goods produced over time [0, T] i.e. maximize

$$J(x,\alpha) := \int_0^T (1-\alpha_t) X_t \, dt \, .$$

i) Use Pontryagin's maximum principle to show that an optimal control is

$$\alpha_t = \begin{cases} 0 & \text{if } Y_t < \frac{1}{\gamma} \,, \\ 1 & \text{if } Y_t > \frac{1}{\gamma} \,, \end{cases}$$

where Y_t is the solution of the adjoint (backward) equation in Pontryagin optimality.

[5 marks]

ii) Assume that $T > \frac{1}{\gamma}$. Show that since $Y_T = 0$ we have

MATH11150

$$Y_t = \begin{cases} (T-t) & \text{if } t \in (T-\frac{1}{\gamma},T], \\ \frac{1}{\gamma} \exp\left(\gamma \left(T-\frac{1}{\gamma}\right) - \gamma t\right) & \text{if } t \in [0,T-\frac{1}{\gamma}]. \end{cases}$$

[5 marks]

iii) Hence show that the optimally controlled state is given by

$$X_t = \begin{cases} x e^{\gamma t} & \text{if } t \in [0, T - \frac{1}{\gamma}], \\ x e^{\gamma \left(T - \frac{1}{\gamma}\right)} & \text{if } t \in (T - \frac{1}{\gamma}, T]. \end{cases}$$

[5 marks]

Comment: An application of Pontryagin's optimality that's not been seen. **Solution:**

i) We can solve the controlled ODE to see that $X_t = x \exp\left(\gamma \int_0^t \alpha_r \, dr\right) > 0.$

The Hamiltonian is $H(x, y, a) = \gamma axy + (1 - a)x = ax \cdot (\gamma y - 1) + x$. This is a linear function of a. Since we only need to consider x > 0 this will be increasing when $\gamma y - 1 > 0$ and decreasing or flat otherwise. So, if $Y_t > \frac{1}{\gamma}$ then this is maximized by $\alpha_t = 1$ and when $Y_t < \frac{1}{\gamma}$ then this is maximized by $\alpha_t = 0$. [5 marks]

ii) The question is asking us to solve the backward equation

$$dY_t = -(\gamma \alpha_t Y_t + (1 - \alpha_t)) dt, \ t \in [0, T], \ Y_T = 0$$

for the optimal control. Since $Y_T = 0$ we know that at (and for t close to T, due to continuity) $Y_t < \frac{1}{\gamma}$ and so the optimal control is 0. So $dY_t = -dt$ i.e. $Y_t = T - t$. Letting time run backwards it is increasing linearly from 0 and will reach $\frac{1}{\gamma}$ when $t = T - \frac{1}{\gamma}$. Thus we have

$$Y_t = T - t$$
 for $t \in (T - \frac{1}{\gamma}, T]$.

[2 marks]

For earlier times we have $dY_t = -\gamma Y_t dt$ and so $Y_t = C \exp(-\gamma t)$. Moreover $\frac{1}{\gamma} = Y_{T-\frac{1}{\gamma}}$ which implies that $\frac{1}{\gamma} = C \exp(-\gamma (T-\frac{1}{\gamma}))$ i.e. $C = \frac{1}{\gamma} \exp(\gamma (T-\frac{1}{\gamma}))$. [3 marks]

iii) This follows from parts i), ii) and iii) since until $T - \frac{1}{\gamma}$ the optimal control is 1 while afterwards the optimal control is 0. [5 marks]

3. We consider a problem of optimal trade execution. Fix T > 0, $\lambda > 0$, $\sigma > 0$, $\kappa > 0$. The mid-price of an asset is

$$dS_t = \lambda \alpha_t \, dt + \sigma dW_t \,, \ t \in [0, T] \,, \ S_0 > 0 \,.$$

Our holding in the asset is given by

$$d\xi_t = \alpha_t \, dt \; , \; t \in [0,T] \, , \; \xi_0 \in \mathbb{R} \, .$$

Our cash account is

MATH11150

$$dB_t = -\alpha_t \left(S_t + \frac{\kappa}{2} \alpha_t \right) dt \,, \ t \in [0, T] \,, \ B_0 > 0 \,.$$

Here the control is $\alpha = \alpha_t$ representing they "buying rate". The constant $\lambda > 0$ is the "permanent price impact" while $\kappa > 0$ is the "temporary price impact".

Our task is to deliver one unit of the risky asset at time T > 0 and there is a quadratic penalty for missing the target. We want to do this while maximising our cash balance. Let \mathcal{A} comprise processes α_t adapted to the filtration generated by W and such that $\mathbb{E} \int_0^T \alpha_t^2 dt < \infty$. The overall objective to maximize is, over $\alpha \in \mathcal{A}$,

$$M(S_0, \xi_0, B_0, \alpha) = \mathbb{E}\left[\frac{1}{2}|\xi_T - 1|^2 + B_T + (\xi_T - 1)S_T\right].$$

a) Show that

$$\max_{\alpha \in \mathcal{A}} M(S_0, \xi_0, B_0, \alpha) = B_0 - S_0 + \xi_0 S_0 + \max_{\alpha \in \mathcal{A}} J(\xi_0, \alpha) ,$$

where

$$J(\xi_0, \alpha) = \mathbb{E}\left[\int_0^T \left(-\frac{\kappa}{2}\alpha_r^2 + \lambda\alpha_t(\xi_t - 1)\right)dt + \frac{1}{2}|\xi_T - 1|^2\right].$$

[8 marks]

b) Find an explicit expression for the optimal control. *Hint*. You can use either the Bellman PDE or Pontryagin optimality to solve this. [12 marks]

Comment: A new question in the spirit of optimal execution. It's basically a linear-quadratic control problem (the students will need to recognise this).

Solution:

a) Clearly we have $S_t = S_0 + \lambda \int_0^t \alpha_s \, ds + \sigma W_t$ and $B_t = B_0 + \int_0^t (-\alpha_r S_r - \frac{\kappa}{2} \alpha_r^2) \, dr$. Moreover

$$d(\xi_t S_t) = \lambda \alpha_t \xi_t \, dt + \sigma \xi_t dW_t + S_t \alpha_t \, dt \, .$$

[2 marks]

We note that with Hölder's inequality we have

$$\mathbb{E}\int_0^T \xi_t^2 dt = \mathbb{E}\int_0^T \left(\int_0^t \alpha_r \, dr\right)^2 dt \le \mathbb{E}\int_0^T t \int_0^t \alpha_r^2 \, dr \, dt \le T^2 \mathbb{E}\int_0^T \alpha_r^2 \, dr < \infty$$

for admissible controls. Hence $\mathbb{E} \int_0^T \xi_t \, dW_t = 0$. We thus have that

$$\mathbb{E}\xi_T S_T = \xi_0 S_0 + \mathbb{E} \int_0^T (\lambda \alpha_t \xi_t + S_t \alpha_t) \, dt \, .$$

This leads to

$$M(S_0, \xi_0, B_0, \alpha) = B_0 - S_0 + \xi_0 S_0 + \mathbb{E} \left[\int_0^T \left(-\alpha_t S_t - \frac{\kappa}{2} \alpha_r^2 - \lambda \alpha_t + \lambda \alpha_t \xi_t + S_t \alpha_t \right) dt + \frac{1}{2} |\xi_T - 1|^2 \right].$$

[3 marks]

MATH11150

Stochastic Control and Dynamic Asset Allocation Solutions and comments April and May 2020

Hence

$$M(S_0, \xi_0, B_0, \alpha) = B_0 - S_0 + \xi_0 S_0 + J(\xi_0, \alpha)$$

where

$$J(\xi_0, \alpha) = \mathbb{E}\left[\int_0^T \left(-\frac{\kappa}{2}\alpha_r^2 + \lambda\alpha_t(\xi_t - 1)\right)dt + \frac{1}{2}|\xi_T - 1|^2\right].$$

This conveniently reduced the dimension of the underlying state space to 1.

[3 marks]

b) Let us further set $Q_t = \xi_t - 1$ so that $dQ_t = \alpha_t dt$ with $Q_0 = \xi_0 - 1$. So let us maximize

$$J(Q_0, \alpha) = \mathbb{E}\left[\int_0^T \left(-\frac{\kappa}{2}\alpha_r^2 + \lambda\alpha_t Q_T\right)dt + \frac{1}{2}Q_T^2\right]$$

The Hamiltonian is

$$H(Q, Y, Z, a) = aY + \lambda aQ - \frac{\kappa}{2}a^2.$$

We can check that this is concave as a function of (Q, a) and so we are allowed to apply Pontryagin optimality. The adjoint equation is

$$dY_t = -\lambda \alpha_t \, dt + Z_t \, dW_t \,, \ \ Y_T = Q_T$$

We know the optimal control must locally maximize the Hamiltonian and so

$$0 = \nabla_a H = Y_t + \lambda Q_t - \kappa a_t$$

means that

$$\alpha_t = \frac{Y_t + \lambda Q_t}{\kappa}$$

[7 marks]

We try the solution to the adjoint of the form $Y_t = \varphi_t Q_t, \ \varphi \in C^1, \ \varphi_T = 1$ so that

$$\alpha_t = \frac{(\lambda + \varphi_t)Q_t}{\kappa}$$

We also see that (chain rule, substitute optimal control):

$$dY_t = \varphi_t \frac{(\lambda + \varphi_t)}{\kappa} Q_t \, dt + Q_t \varphi'_t \, dt$$

while at the same time (substituting optimal control):

$$dY_t = -\lambda \frac{(\lambda + \varphi_t)}{\kappa} Q_t \, dt + Z_t \, dW_t \, .$$

This can only be true if $Z_t = 0$ and if

$$\varphi_t \frac{(\lambda + \varphi_t)}{\kappa} + \varphi'_t = -\lambda \frac{(\lambda + \varphi_t)}{\kappa}$$

which leads to an ODE for φ of the form:

$$\varphi'_t = -\lambda \frac{(\lambda + \varphi_t)}{\kappa} - \varphi_t \frac{(\lambda + \varphi_t)}{\kappa} = -\frac{1}{\kappa} (\lambda + \varphi_t)^2.$$

So we must solve

$$\varphi'_t = -\frac{1}{\kappa} (\lambda + \varphi_t)^2, \ t \in [0, T], \ \varphi_T = 1.$$

This is

$$\varphi_t = \left(\frac{t-T}{\kappa} + \frac{1}{1+\lambda}\right)^{-1} - \lambda.$$

The optimal control is thus

$$\alpha_t = \kappa^{-1} \left(\frac{t - T}{\kappa} + \frac{1}{1 + \lambda} \right)^{-1} \left(\xi_t - 1 \right).$$

[5 marks]