Stochastic Control and Dynamic Asset Allocation
MATH11150 Solutions and comments April and May 2020

Throughout the examination paper we will assume the existence of a suitable probability
space (2, F,P). Results proved in the lectures may be used without further justification unless
the question is asking specifically for the proof of a particular result.

1. We consider the standard Black—Scholes model for optimal investment: a risk-free asset B
and a risky asset S given by

B; :=exp(rt) and S; := Syexp ((u — %02) t+ cht) )

Here W is a Wiener process and r,u and o are real constants with ¢ > 0. Fix T > 0. Let
X, denote the investment portfolio value at time s > t and X; = x > 0. There will be no cash
injections and no consumption. Let v = (v4).¢[0,) be the fraction of portfolio value invested in the
risky asset. We will assume that E fOT v2ds < oo and that v is adapted to the filtration generated
by W. For such v we write v € A. Let g(x) := 27, v € (0,1) and

o(t,x) := sup E [g(X7"")] . (1)
veA

a) Find a candidate for the optimal control and hence show that the solution to the corresponding
Bellman PDE is
v(t,z) =exp (T — t)B)a”,

where 3 is a constant given in terms of o, u, r and . Give an explicit expression for 3.

[7 marks]

b) Use verification theorem to check that = v and the candidate optimal control is the true
optimal control. [8 marks]
Comment: This question is meant as a straightforward application of Bellman PDE and

verification theorems or Pontryiagin’s optimality and is available in lecture notes. Full marks
will be awarded only if verification theorem was employed correctly.

Solution:

a) We calculate (Itd formula) that dB; = rBy dt and dS; = Sy dt + oSy dW;. We then have (with
1 being the number of units of risky asset we hold)

Xt — Sy
By

1 X, - X
dB; = vi X, dS; + 2R B,
t

dX, = ¥, dS; + =
t

So
dX: = X¢ [(u— r)ve + 1] dt + i Xeo dWs .
We can check that the solution to this SDE is of the form X; = Xgexp(...) > 0 for Xy > 0.
The Bellman PDE is
1
O + sup 502u2x28mv +z[(p —r)u+r]dv| =0 on [0,T) x (0,00)
v(T,z) =27 Vx> 0.
Since X; > 0 for all ¢ € [0,T] the spatial domain is (0, c0).
The domain has to be specified and justified to get full marks.

We “guess” the form of the solution
v(t,x) = A(t)x”

with A € C*([0,7]) and A > 0. Hence we have v = N (t)z7, Opv = ANt)y2? L, Oppv =
vy —1)27=2. So we get

N (t)a -+ sup [Bouy(y ~ DAD)T + M) (1 = )+ 1) 327] =0,



Stochastic Control and Dynamic Asset Allocation

MATH11150 Solutions and comments April and May 2020

We can divide by 7 > 0. The function u — 2o%u?y(y — 1)A(t) + A(t) (p — r)u+r)y is
maximized (calculus and concavity) when
0=cuy(y =1+ (n—r)
ie.
* BT
f T

The maximum itself is
1 2 *\2 *
Bi= g0 (W) y(y = 1) + (p—r)yu” +r7.
Thus
N(t)==BAt), AT)=1 = At)=exp (T —1)B) .
We have established that v(t,z) = exp((T — t)8)x” is a solution to the Bellman PDE.

Let us check whether it’s the value function of the control problem using verification. Moreover
the Markovian optimal control 4(t, z) = % is constant and hence certainly measurable.
The wealth equation with the optimal control is

dXy = X [(n—r)a+r] dt + aX,0dW, .

This is a linear SDE with Lipschitz coefficients so it has unique solution which moreover has all
the moments when started from deterministic initial value. In particular Esup,.p |X¢[* < co.

‘We consider . v
t’r—>/ (X)X o dW, :ma/ (X)) dWs.
t t
Now
T A
E/ | X |*7 dt < oo
0

because of the moment bound above. So the stochastic integral is a martingale. So the
verification is complete, the constant strategy u is optimal and the optimal value for this
control is v = .
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2. A producer with production rate X = X; at time ¢ may allocate a portion o = a; of their
production rate to reinvestment (thus increasing production rate) and 1 — i to actual production
of a storable good. Thus

dXt:’yO[tXtdt, t e [O,T], Xo=2>0,

where v > 0 is a constant. The admissible controls are measurable maps ¢t — «; € [0,1]. The
objective is to maximize the amount of goods produced over time [0, 7] i.e. maximize

T
J(z,a) = /0 (1 — o)X dt.

i) Use Pontryagin’s maximum principle to show that an optimal control is

0if ¥; < 2,
o = . 1
].lf}ft>;,

where Y; is the solution of the adjoint (backward) equation in Pontryagin optimality.

[5 marks]
ii) Assume that T > % Show that since Y = 0 we have
(T—1) if te (T~ 3,T],
Y, = |
%exp ('y (T— %) —Wt) if tel0,T— %]
[5 marks]
iii) Hence show that the optimally controlled state is given by
vt _1
N ze if t€[0,T - 2],
t = 1
2e"(T3) i e (T—-1,71].
&t
[5 marks]

Comment: An application of Pontryagin’s optimality that’s not been seen.

Solution:

i) We can solve the controlled ODE to see that X; = xexp ('y fot o dr) > 0.

The Hamiltonian is H(z,y,a) = yazy + (1 —a)x = ax - (yy — 1) +«. This is a linear function
of a. Since we only need to consider x > 0 this will be increasing when vy — 1 > 0 and
decreasing or flat otherwise. So, if Y; > % then this is maximized by a; = 1 and when Y; < %
then this is maximized by oy = 0. [5 marks]

ii) The question is asking us to solve the backward equation
dY; = —(Vath—i— (1 —at))dt, tel0,T)], Yr=0

for the optimal control. Since Y7 = 0 we know that at (and for ¢ close to T, due to continuity)
Y: < % and so the optimal control is 0. So dY; = —dt i.e. Y; =T —t. Letting time run

backwards it is increasing linearly from 0 and will reach % when t =T — % Thus we have

_ 1
Yi=T—t for t € (T - ,T].

[2 marks]
For earlier times we have dY; = —vY; dt and so Y; = C exp(—~t). Moreover % = Y;,L% which
implies that % = Cexp(—y(T — %)) ie. C= %exp(’y(T - %)) [3 marks]

iii) This follows from parts i), ii) and iii) since until 7'— % the optimal control is 1 while afterwards
the optimal control is 0. [5 marks]
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3. We consider a problem of optimal trade execution. Fix T" > 0, A > 0, 0 > 0, kK > 0. The
mid-price of an asset is

dS; = Ay dt + odWy, t€[0,T], So>0.
Our holding in the asset is given by
dé, = apdt , t€0,T], & €R.

Our cash account is

dBt:—ozt(St—Fgat) dt, te [O,T']7 By >0.

Here the control is @ = ay representing they “buying rate”. The constant A > 0 is the “permanent
price impact” while x > 0 is the “temporary price impact”.

Our task is to deliver one unit of the risky asset at time 1" > 0 and there is a quadratic penalty
for missing the target. We want to do this while maximising our cash balance. Let A comprise

processes «; adapted to the filtration generated by W and such that E fOT a? dt < co. The overall
objective to maximize is, over o € A,

M(So, &0, Bo,a) = E BfT — 1+ Br+ (ér — 1)ST] .

a) Show that
E?}M(SO’&’BO’ a) = By — So + &S0 + max J(&o, ),
where
r K 1 9
Hena) =5[] [ (= Sa+daule — ) e+ Jer —17].
0
[8 marks]

b) Find an explicit expression for the optimal control. Hint. You can use either the Bellman PDE
or Pontryagin optimality to solve this. [12 marks]

Comment: A new question in the spirit of optimal execution. It’s basically a linear-quadratic
control problem (the students will need to recognise this).

Solution:
a) Clearly we have S; = Sy + A f; asds + oW, and By = By + fot(—oerr — %a2) dr. Moreover
d(ftSt) = )\Oétft dt + Uftth + Stat dt .

[2 marks]
We note that with Holder’s inequality we have

T T t 2 T t T
E E?dt:E/ </ ozrdr> dtSE/ t/ ozfdrdtSTQ]E/ aZdr < oo
0 0 0 0 0 0

for admissible controls. Hence E fOT & dW, = 0. [3 marks]
We thus have that

T
ESTST = 5050 + E/ (Aatﬁt + StOét> dt .
0

This leads to

T 1
M(So, &, B, ) = Bo—So+§050+E[/ (—aeSi—FaZ—rar+Aaigi+Srar) dt+§5T—1l2] -
0

4
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Hence
M (So, o, Bo, ) = By — So + &S0 + J (&0, @),

where
g K 2 1 2
J(€0,0) =E (—§ar+)\at(§t—1)) dt + 5 ler 17|
0
This conveniently reduced the dimension of the underlying state space to 1. [3 marks]

Let us further set Q; = & — 1 so that dQ; = oy dt with Qg = & — 1. So let us maximize
T
1
J(Qo0) = EU (- Sa2+AaQr)dt+ —QQT] .
0 2 2
The Hamiltonian is

H(Q,Y,Z,a,) :aY+)\aQ_ ga?.

We can check that this is concave as a function of (Q,a) and so we are allowed to apply
Pontryagin optimality. The adjoint equation is

dYy = —dapdt + Z, dWy, Ypr=Qr.
We know the optimal control must locally maximize the Hamiltonian and so
0=V.H =Y, +AQ; — kay

means that

Y + AQ:
oap = ———.
K
[7 marks]
We try the solution to the adjoint of the form Y; = ¢,Q;, ¢ € C', o1 =1 so that
A
ap = A+ ¢1) Qs .
K
We also see that (chain rule, substitute optimal control):
A+
Yy = SDt(T%)Qt dt + Qe dt
while at the same time (substituting optimal control):
A
4y, = —)\#Qt dt + Z, W, .
This can only be true if Z; = 0 and if
A+ A+
o ) . At
K K
which leads to an ODE for ¢ of the form:
A+ A+ 1
S02:_)\( Sot)_sat( Spt):—_(A‘FSDt)Q
K K K
So we must solve 1
@;:_E<)‘+§Ot)27 te [OaT]v YT = 1.
This is
(=T, 1 o
e K 14+ A
The optimal control is thus
t—7 1\
=k — -1).
ap =k < - +1+)\> (& —1)
[5 marks]




