MATH11150 Stochastic Control and Dynamic Asset Allocation

1. Let (Q, F,P) be a probability space. Let T' > 0 be fixed. For (¢t,z) € [0,T] x R let
f(t,z) =In (e%eT_t + 6_2$6T_t) , gla) =a?.

Let A= {(a',a®) € R?:a! > 0,a%2 > 0,a' +a® = 1}. Let W be a 1-dimensional Wiener process,
let F; = 0(Ws;s < t) and let F = (Fy)epo,7]- Let A denote the class of processes oy = (o, 07)
that are F-adapted and taking values in A. We will call elements of A admissible controls.

Consider the controlled SDE
dXbm = (ol —a?)ds + Xb™dW,, se[t,T], X7 =z eR.

The optimization objective is to minimize

T
J(tx,a) = E[/ (f(Xﬁ’x’a) +allnal +a?na?)ds + g(Xp")
t

over admissible controls «.

(a) Let the value function be
w(t,z) = igf J(t,x,a).

Write down the HJB equation for the control problem. [5 marks]
Solution
The HJB is
O + 32700 + f + grelg(al Ina' 4+ a®Ina® + (a' — a?)d,v) =0 in [0,7) xR,
v(T,-) =g on R.

(b) Show that minimizers of the infimum (candidate optimal controls) are

- e—(‘)zv—l B e~ 0xv - eazv—l B 68“51)
a = e—0zv—1 +€azv71 - e—0zv +681v 0= e—0zv—1 _‘_681071 - e—0zv +6azv
and that
injii‘(a1 Inal + a?Ina® + (a' — a?)9,v) = — In(e%? + 7%,
ac
[15 marks]
Solution

Since a' + a2 = 1 we can see that

inf  (a'lna +a*mna® + (a* — a?)0,v)

(at,a?2)eA

= ir[})fl](alna +(1—a)ln(1—a)+ (a— (1 —a))dyv)
ac|0,

= inf (alna+ (1 —a)ln(l —a) — Oyv + 2a0,v) .
a€[0,1]

Moreover

L(alna+ (1—a)ln(l —a) — v + 2a0,v)
=1+Ina—1~1In(l—a)+20,v =In% +20,v.
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Further

A (g2, +20,0) = >0 fora € (0,1).

2
a—a
Thus any a € (0,1) which satisfies the first order condition will be a minimizer. The first
order condition then leads to In % = —20,v which can be solved:
6—28zv e—azve—azv e~ 0zv

CLlZ(I

= 1 + e—20zv = 02002V | =020 =05V = R S (0, 1) .

Moreover )
eaxv + e—dxv e—axv eaxv

2
a“=(1l—a)= — = .
( ) e0zv 4 e 0v e0xv 4 e—0zv e0zv + e—0zv

Substituting the minimizer back into the expression to be minimized we obtain

e*c%v 5 5 eazv ) )
_ [ — — %A zV e _ —0zv )
i TR ( 0,v —1In(e +e )) t T (&w In(e +e ))

e~ Ozv 3 eazv 3
e—azv o 5 eazv 5 )
:*71H6_”v+6xv - In(e™ x”+exv
e—0zv + e0zv ( ) e—0zv + e0zv ( )

= —In(e %Y 4 V),

This completes one version of solution to part (b).
An alternative approach is to observe that

1
5a(a11na1+a21na2+(a1—a2)6xv> _ <1+lna +8xv> ‘

1+1lna? — v

Moreover

1
Oua (al Ina'+a?na® + (a! — GQ)aa:U) = (%1 ?> :
a?

This is positive definite (e.g. because it’s diagonal, so the eigenvalues are the entries on the

diagonal and these are positive). So the function A 3 a — (al Ina' +a?Ina®+ (a' — az)&rv>
strictly convex and it will have only one minimum characterised by the first order condition

l14na'+0,0=0 1+Ina®—9,v=0.

Solving (and scaling to ensure the resulting point is in A) we get

L 6—8;,:11—1 e—axv ) eaxv—l eawv
a = = a- =

e~ v—1 + 6811}—1 e~ 0zv 4 e(‘)zv ’ e— L v—1 + 68111—1 = e—0zv 4 6811) :

Use the ansatz v(t,z) = ¢ (t)z? with v € C([0,7T]), ¥(T) = 1, to solve the HJB equa-
tion. [10 marks]
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Solution

From parts (a) and (b) we have the HJB

Opv + 50°0z00 + f —In(e™ +¢7%*) =0 in [0,7] xR,
v(T,-) =g on R.

With the ansatz this becomes

t

w/(t)lﬂ + .’L'Qw(t) +1n (eQxeT* + e—2xeT*t> _ ln(ewa(t) + e—?l’iﬁ(t)) =0.

This will hold provided that 9/(t) 4+ 1(t) = 0 and ¥ (t) = e’ ~* which is happily true. Thus

the solution is v(t,z) = x2e .

(d) Carry out the verification argument (either directly or appealing to a theorem in the course)
to show that the solution of the HJB equation is equal to the value function w and that the
feedback controls found in (b) are the optimal ones. [20 marks]

Solution

We will appeal to a theorem from the course whereby we need to check that: 1) the infimum in
the HJB is attainable with measurable minimisers, 2) the resulting SDE has unique solution
X* and 3) t’ — ftt, Ozv(s, X3) X2 dWy is a martingale.

Condition 1) has already been checked by (b). For 2), let us write the SDE for X*:

dXr = (a'(t, X}) — a®(t, X )ds + X dWs, s€[t,T], X; =z € R,

This SDE will have a unique solution as long as the drift and diffusion coefficients are Lipschitz
continuous in z. The diffusion coefficient is linear in  and thus clearly Lipschitz continuous
in . The drift is a difference of two functions which will be Lipschitz continuous in = as long
as both functions in the difference are. Let us show that this is the case. Note that by the
mean-value theorem, for any ¢ € [0,7] and z,2’ € R we have

ja®(t, ) — a®(t,a")| < [8za’ (t,€)]x — 2|

for some ¢ € [z, 2]. Thus, we only need to show that 9,a? is uniformly bounded. A calculation
using the quotient rule of calculus shows that

B 4(t)
2t e () 1 pAEU(t) -

0s0” (1, €) =
Hence |0,a?| < 2¢”. Similarly |9,a'| < 2¢T and thus the drift is Lipschitz continuous in x and
the SDE for X* has a unique solution. Moreover, as an SDE with Lipschitz-in-z coeflicients

that are uniformly bounded in ¢ we have that sup,cp ) E|X #|* < oo for initial x € R.
Condition 3) will hold as long as we can show that

T
= E/ 1050, X5)X7|? dt < o0
0
We see that
T T
I— IE/ 120() (X722 dt < QeT/ E(X?)*dt < co.
0 0

This completes the verification.
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2. Let (2, F,P) be a probability space. Consider the following model for optimal market making
(same as in lectures): Fix real constants o > 0, k > 0, A\* > 0, A* > 0 and T > 0.

Let dS%¥ = odW, for r € [t,T] with initial value S; = S € R given (mid price process).
Let M? = (M});>0 and M = (M{);>0 be two Poisson jump processes with intensities A*, A%
respectively counting sell and buy market order arrivals.

Let (UD)ien, (U8)ien be iid r.v.s with uniform distribution on [0, 1].

Let F; = o(Ws:s <t)Vo(M?: s <t)Vao(M%: s <t)Vo(UP :i < MP)Vo(UP i < MP). Let
A denote RT U{+o0}-valued stochastic processes that are square integrable and progressively
measurable w.r.t F = (F;);e0.77. We shall call these admissible controls. Let 6%, 6* € A. Let
§ = (6°,09).

Let N%9% and N%% be stochastic processes satisfying

b3y _ arbdf b b
N7 = N+ (MY - Mt—>1Ub N
mp=
NP = NSO (v — M
Pt =N+ (M - ML) th{azef'“s?'
t

In other words these are doubly stochastic Poisson processes with stochastic intensities given
by Abe=r3 and ATe=ro¢ counting when the market makers orders get picked up by incoming
market orders.

Let Q149 = ¢ + N' — N® for € [t,T] with initial value Q; = ¢ € {0} UN given.

Let dX 50550 = (8, — §0)dNP" 4 (S, +62)dN" for r € [t, T] with initial value X; = z € R
given.

The market maker has inventory lower and upper bound ¢, q € Z.

So far this was exactly the market making model we used in lectures. We shall now change the
optimization objective. Let v > 0 be a fixed real constant and let u(z) = —e ™" (exponential
utility). Our aim is to mazimize

J(t,4,8,3,6) = g 505 |w(Xr + S1Qr — aQ})]

over A. Here E; g, 5[] denotes the conditional expectation given S; = S € R, X; = = € R,
Q¢ = q € ZN[q,q] and given the process control § is used.

(a) The value function is w(t,S,q,z) = supg saca J(t,S,q, 2, (6°,6%)). Write down the HIB

satisfied by w. [10 marks]
Solution
The HJB is
00 + 1020550 + sup Ne™ (uo(t, S,q + 1,2 — (S = 0)) = v(t, 5,4, 7) ) 1geq
+ (ssau>% A" (v(t, S,q—1,x 4+ (S+0%) —v(t,S, q,:):))1q>g =0

on [0,7] x R x ZN{g,q] x R with the terminal condition

U(Tv Sa q?'%') = U(.%' + Sq - aq2) .
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(b)

Use the ansatz w(t, S, q,z) = u(z + Sq — g(t,q)) = —e V(@ +e5+9(L9) for some g = g(t,q) to
show that the offsets achieving the supremums in the HJB are

"t q) = 2 4 g(t,q) —g(t,q +1), §°(t,q) = 2" +g(t,q) — g(t,q — 1).

You do not need to justify why points satisfying the first order condition are maximiz-
ers. [15 marks]

Solution
We start by noting that the ansatz implies that ¢g(7T,q) = —ag? and moreover
dyw = (—yOhg)w, dssw =7 ¢ w.

Moreover, writing gt = g(¢, ¢+1), we now wish to see what happens with the first supremum.
We have

e (w(t,S,q+ 1,z — (s —8)) —w)
— [e—v(w+q5+y) _ e—v(x—(5—5)+(q4r1)5+9+)}

_ _ _ +
— e KO [e ~v(z+qS+g) —e v(z+6+9S+g )]

— — — _ —~gTt
— ¢~ (@+aS) [e KOo=79 _ o= (K+7)0 =g }

To maximize this over § we can note that

d

7% e M9 — e*(’””)‘;efvgq — —ke e 4 (k4 7)e e eI

To find when this is 0 we solve
0=—ke "+ (k+7y)e e 9"

which yields that
¢ = 1= 4 g— g,

We still need to justify that this is indeed the maximum. The function § — e "9e=79 —
e~ (R80T g g weighted sum of convex functions 6 — e~ 9. Let’s see about the second
supremum:

e ™ (w(t,S,q—1,z+ (s +0)) —w)
_ e—mS [e—'y(x—&-qS-l-g) _ e—’y(x+6+q5+gf)} .
This is the same as before except with ¢~ instead of g™ and so

6“:%111%4-9—97.

Hence show that g satisfies the nonlinear ODE

Bhg — %027(12 + Xbe—n(g—g+)1q<q, + j\ae—n(g—gf)lq>q —-0.

for some constants 5\17, M. Write down what these are in terms of the original problem
constants. [20 marks]
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Solution

Plugging in the maximizing §° into the expression for the supremum we get

e (w(t, S,q + 1,2 — (S — 6%)) — w)

Ly, 55y + +
b — = _
— o Kb [677(z+q3+g) e V(@+3 In = +g—g T +gS+g )}

1, K+
_ efmib [ef'y(x+q5+g) _ e"Y(ﬂC-‘r;ln %+g+q5)}
— oW y(@taS+e) [ _ n | — e, v
K+ Kty ”

For the supremum over 6% we similarly get

e (w(t, 8,q — L + (S +6%) —w) = —e w1,

Thus the HJB equation reads

b — kb — kSO
(—70g)w + 307w = N e wl e — X e Wiy = 0.

Dividing by —~w we thus get

1. K+
L n(bns )

K+ )
5
K4y

1 _
1 e—ff(; In =——+g—g

Org — %027q2 + )P locg + A e 1454 =0.

Which, letting \° := )\bﬁ(ﬁv)*ﬁh and \% := Aaﬁ(fiﬂ*mv is

g — 10*vq® + S\befﬁ(gfgﬂquj + A 97971, = 0.

Show that after a transformation g can be expressed in terms of a solution of a linear
ODE. [5 marks]

Solution

The final transformation to get a linear ODE is g = %lnz for some z leads to

%8’5—2 — %JQVQQ + nglq@ + X“%lpg =0.

z

Writing Z(t)q = 2(t,q) € Z N g, q] we thus get
Z'(t)g — 3026 Z(t)g + N Z () g1 + A Z(t)g-1 =0, t €[0,T], ¢€ZN (g q)

which is the desired linear ODE.

Total marks: 100 Page 6 of 6



