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Talk Outline

i) Motivation from Vega,

ii) Machine learning algorithms for path-dependent derivatives:
» Projection solver,
» Martingale representation solver - direct,
» Martingale representation solver - variance,
» Martingale representation solver - control variate.

iii) Covergence:
» On-line black box quality estimation with control variates and CLT,
» Numerical results.
» Some theory.
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Vega
Vision*:
i) Decentralized derivatives exchange,

ii) Anyone can design a derivative using smart language of economic
primitives and open a market by committing (financially) to market
make,

iii) Markets are opened by default but can be voted down during
proposal period by stakeholders.

Risk management challenge: not a spot exchange, people are trading
promises.

How to safely margin the trades, in particular

i) What risk models,
ii) Robust calibration,
i) Efficient risk calculation.

*See Danezis, Hrycyszyn, Mannerings, Rudolph and S [1].
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Margin calculation

We need:

i) Model to evaluate derivative liabilities at time 7 > 0 given a real
world scenario (pricing in risk-neutral measure Q)

i) Model to move one step to the next possible closeout run time 7 > 0
(real-world measure P).

iii) A coherent risk-measure p = p" to establish the risk in a given
(discounted) position X.

Minimum margin is, for position =,

mnin .= pP (E@ [zprm]) .
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Nested simulations |

Simulations of the risk drivers (asset processes, vol processes etc.
i=1,...,d) under P denoted x'/ for j =1,..., N

11 N
min s o INE N N
RN z_:< Phiel Ly e vartps) -

Here )
N J | i
Pl ’Xu,vxodl X
t+71 ~ N 0J| i
k=1 %Xk X
i.e. for each j we need to simulate kK = 1,... N realizations of the

discounted payoff & [x'¥ under Q.

Killer:

» Need NN simulations.

» The faster this can be done the lower 7 > 0 and the lower margin i.e.

higher leverage.
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Nested simulations I

More efficient methods:

> Regression based methods, see [1].

v

Multi-level approach, see [2].

» Machine learning based approach.

[1] M. Broadie and Y. Du and C. C. Moallemi. Risk Estimation via Regression. Operations Research, 63(5), 1077-1097,
2015.
[2] M. Giles and A.-L. Haji-Ali. Multilevel Nested Simulation for Efficient Risk Estimation. arXiv:1802.05016, 2018.
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Feed-forward neural networks

Layers L, size of layer k given by /, € N.

i) Space of parameters

L

MN=@®R"" xR") x (R* xRF) x -« x (R xRM),
i) The network parameters
V= ((a',BY),....(ah 8h)) en.

iii) Reconstruction RV : R’ - R" given recursively, for xg € R”, by
2 € R” by

Ik

(RW)(2°) = alzt= 148t 2K =l (&F 2"t 485 k=1,...,L—1.
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LTSM neural networks

Diagram®:

Linearlayer] Linear layer [ Linear layer ]
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We will still denote its parameters W € I1 and think of LSTM net as

v

(RV) :{0,1,..., Nsteps} X (Rd)1+NStep5 — (Rd/)l"‘Nsteps .

®From Christopher Olah https://colah.github.io/
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General pricing / hedging setup

Path-dependent (discounted) payoff:
== G((XS)SE[QT]), G: C([0, T];RY) — R given.

Price in (some) r.n. measure is

Vi = E[=7]Fe] = E[G((Xs)seqo, 7)|(Xs)sepo, ]

Assume I := (Fs)seo,q is generated by d’-dim Wiener process and
U((XS)SSt) = Ft.

Take a partition of [0, T] denoted
Ti={t=1t < <ty = T}

and consider a discretization of (Xs)sejo, 7] by (Xg)f\itg”s.
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Learning L2-orthogonal projection

Theorem 1
Let X € L2(F). Let G C F be a sub o-algebra. There exists a unique
random variable ) € L?(G) such that J = E[X|G] and

E[|X — Y’ = inf E[X —n|?
[[&X—Y[7T= '['2 o) [ —n[7].
Take X :===7, G :=F; = U((Xs)se[o,t]) SO

V; = argmin E[|=7 — 5|3].
neL>(F)

Doob-Dynkin Lemma implies that for any 1 € L? (o/((Xsat)sepo,7])) there
is h: [0, T] x C([0, T]; RY) — R measurable s.t. 7 = h(t, (Xsat)se[o,7])-

So
E[IZr - Vi?) = infE[I=T — h(t, (Xone)scio )]

Infimum over measurable functions h: [0, T] x C([0, T];RY) — R
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Learning L?-orthogonal projection I

Network:
E[IZ7 - Ve[l = Jnf E[IZF — (RY)(t, (XTAt)i=0.1,....Nutepe) ]
and so
Ve ~ argminE[|ZF — (RW)(t, (XZ01)i=0,1,....Neps )] -
ver
Here:

i) =%, X™ denote numerical approximations.

ii) Hat over arg min denotes the we will use SGD (and so won't
necessarily find actual minimum).
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Learning L?-orthogonal projection Il

Algorithm: Projection solver

Initialisation: WO € M, Ny € N large
for i :1: N;p, do

Generate (x| ),,N“Bps from (Xs)sepo, 77
Compute_ = G((X Vk=01,. Neteps ) -
end for

Starting with WO use SGD to find WoNim \where

Ntrn Nsteps 1

Z Z [_”’ RW)(tka(th/\t )j= 0,17-'-7N5teps)|2]
i=1

return WO N

» Works with incomplete markets but no (direct) access to hedging
strategy.

» In Markovian setting automatic differentiation gives hedging strategy.
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Learning martingale representation |

Assume complete market (d = d’). Then (classical) martingale
representation: 3Z which is F adapted and

-
Vt:ET/ Zs dWs .
t
With functional 1t6 calculus

-
Vt = G((XS)SG[O,T]) - /t Vu.)G(()<r/\s)rE[0,T]) dXs .

See Cont and Fournié [2].
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Learning martingale representation |l
Aim: use Monte Carlo and Machine Learning to obtain Z. Why?

i) You also get V.
i) You get the hedging strategy.

With the partition 7 of [0, T] in mind

tmt1
Vtm: Vtm+1+/ stWS fOl’mZO,l,...,Nsteps—].,
tm

thteps - =T

Approximate by two networks with (possibly) different size / architecture
venV ¢cn®:

Vi, = (RV) <tm, (Xsﬂ/\tm)se[(),T]) and Z;, =~ (R®) (tm7 (X:/\tm)se[QT]) :

Get consistency condition:
0~ (RW) <tm+1a (XS7T/\tm+1)se[07T]> - (R\U) (tm7 (Xsﬂ/\tm)se[oyﬂ)

+ (R®) (tm: (Xt seio 1)) (Wemes = Wan) =3 Emia (W, 0).
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Learning martingale representation Il
Initialisation: WO, ®°, Ny,
for i :1: N;p, do '
Generate samples (W,{n),ly;t%"s, use these to generate (xg"),/y;tg’s by
approximating X = (Xs)sc[o,7], generate ET-,rii.
end for
Starting with W0 &0 use SGD to find (6% Nm WwoNem) where

2

=7 l (Rw)( (eri)kzoylymylvsteps)

1 Ntrn

—_—

(WO N o Nem) : —argmin E [
(W, @) Mtrn T

Nsteps -1

+ Z |5W7i(wa¢)m+1|2:|a

m=0

VW, @) i1 =(RY) (tmi1, 0T seory) — (RY) (tms (0 o)
+ (R®) (tms (X0 seo ) (Whos = W4,) -
return (W N oMo
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Learning martingale representation - minimizing variance |

Recall
-
Vt:ET—/ Zs dWs .
t

Monte Carlo: say Z/, W', =% are iid samples of Z, W, =. Then for

1</, T
yN ::N;<E’T—/t ZS’dWs’>
we have

i) Unbiased estimator: E [Vt’v|]-"t] =V,
i) Zero variance estimator: Var [V)|F,] = 0.

Use variance as objective in learning.
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Learning martingale representation - minimizing variance |l
Initialisation: ®°, Ny,
for i :1: Ny, do
Generate the samples of Wiener process increments (Awtn)nNS:‘ips.

Use (Awtn)gliefs to generate samples (x{n)nN;‘Bps by simulating the
process X.
Use these to compute =

end for

Starting with ®° use SGD to approximate ®*Mm with objective

Ntrn

. . 2
¢<>7Ntrn — a@ 1 Z (EIT o VWyNstePSﬂ(q))) 7
dell Ntrn i1

where
Nsteps_]-
N. . ) . . .
Vﬂ’ Step57l(¢) = Z (Rq)) (tm’ (th'k/\tm)k:()vl)"wNStepS) (Wt{m+1 - Wt{m) .
m=0

return N
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Learning martingale representation - control variate |

Recall that with
1L/, T
VN = N; (E’T —/t Z dWs’>
we have E [VtN|.7:t] = V,, Var [VtN|-7:t] =0.

With
Nsteps_]-

1o (2 (i
PN . N - > 7 (Wf’kﬂ - Wtk)
i=1 k=0

we have E [VN7™|F,] ~ Vo, Var VN7 | F,] > 0 but small.

Aim: Use stochastic integral as control variate.
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Learning martingale representation - control variate |l
With
Nsteps_]-

N

n 1 =i 3 '

V,_{V’ PA L m (:T)\ (R®)(tk, (X;
=1

i
i Atk )j:Oa]-:---stteps) AWtk+1 > .
k=0

=:M®
The optimal coefficient \*'® that minimises the variance is

Vb Cov[=T, M?®]
~ Var[M?]

Variance reduction factor is Tlm)z where

e _ (COV(ET, M¢)
v/ Var[Z7]Var[M?] '

Objective:

q)<>,7r ‘= ar . [1 _ ( 7r,¢v)2:|
= argmin P .
dell
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Learning martlngale representation - control variate Il
Initialisation: ®°, N
for i :1: Nyn do
Nsteps

Generate the samples of Wiener process increments (Awy,), " 7.

Nsteps

Use (Awtn)NSteps to generate samples (xt Jnesg” by simulating the

Nsteps

process X. Use (x{ ),
end for
Starting with ®° use SGD to find

to compute _T

2
O Nern ::ar/gm] 1— le.vztfi‘(l\/]i,d) _ M¢)(E{r —;)
el Neen (= =_\2 Nirn i TP\ 2 1/2
Zi:l(—T - —T) Z,’:]_(M7 - M )

where =1 := S Mm =i M@ = S Men pi® and
Ntrn Nsteps 1

Z Z Rq)) tk t/\tk) 0,1,.. 7Nsteps)Athk+1'
i=1 =

return & Mm
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Sanity check: exchange option

Method H Confidence Interval Variance ‘ Confidence Interval Estimator ‘

Monte Carlo

[5.95 x 1077,1.58 x 107°]

[0.1187,0.1195]

Martingale rep. - var. min.

432%x1079,1.14x 1078

0.11919,0.11926

Martingale rep. - corr. max.

230 x 1079,6.12 x 108

0.11920,0.11924

Martingale rep. - two networks

[4.13 x 107°,1.09 x 10~F]

[0.11919,0.11926]

MC + CV Margrabe

[3.10 x 10 °,8.23 x 10 7]

[0.11919, 0.11925]

Error is time discretization arising even when exact form of martingale

representation term is used.
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Robustness example

Exchange option (Markovian) in d = 5 with random covariance matrix
(parametric approximation).

Histogram of log of squared error on test set

40 1

30 A

20 A

104

1078 1077 107 1073 1074 1073
log of squared error

Clearly, there are input combinations where error is 10~3 rather than 1076.
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On-line quality estimation with control variates and CLT

Say SGD converges to ¢>™N,

Approximation of martingale representation term gives access to control
variate with 0 expectation:

Nsteps -1

(‘ . ! )(tk’ (Xt{"/\tk )j70117"'7NStep5) AWtikJrl : Mi’d) .
J
k=0

i) n-samples, evaluate %27:1 Mi® If “far” from 0 things went wrong,

i) evaluate
LM MOy =)
(ST - Srp sl mie - mo)2)

T, d.n __

p 12"

If “far” from 1 things went wrong.
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Variance reduction - outside parameter range

Training for fixed volatility of 30% versus parametric (constant cost).

Variance reduction

140 A

120 A

100 A

80 A

60 1

40

20 1

method
—&— MC + CV Corr op
-%- MC + CV Var op
@ MC + CV Margrabe
-#- MC + CV BSDE solver
—&- BSDE solver rand sigma

0.200 0.225 0.250 0.275 0.300 0.325 0.350 0.375
Volatility
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High dimensional Markovian example

Take d = 100,
d
1 1 i
g(S) =max | 0,5 — 725
d—1+4
=2
‘ Method H Confidence Interval Variance ‘ Confidence Interval Estimator ‘
Monte Carlo [2.03 x 1077,5.41 x 1077] [0.0845,0.0849]
Martingale rep. - var. min. [4.13 x 107°,1.09 x 1079 0.08484,0.08490
Martingale rep. - corr. max. [3.80 x 107°,1.0 x 1079] 0.08487,0.08493
Martingale rep. - two networks || [5.32 x 107°,1.41 x 1079 [0.08485,0.8492]

Table: Results on exchange option problem on 100 assets, Monte Carlo vs.
control variate with 10° samples.

Model trained for any initial asset price (log-normal)®.

All results from Sabate-Vidales, S, Szpruch [3].

®With all parameters fixed we get variance reduction factor 5 - 10° - too easy.
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LSTM vs FFN

Using the “martingale representation - minimizing variance” method:

— LSTM on path - 100 timesteps — Feedforward net on path - 100 timesteps
LSTM on path signature - 100 timesteps Feedforward net on path signature - 100 timesteps.
0.010 —— LSTM on path - 50 timesteps —— Feedforward net on path - 50 timesteps
— LSTM on path signature - 50 timesteps — Feedforward net on path signature - 50 timesteps
0.008
% 0.006 i
0.004
0.002
0 5000 10000 15000 20000 25000 30000 o 5000 10000 15000 20000 25000 30000

nnnnnnnnnnnnnnnnnn

i) “Lookback option” [max;<7(X + X?) — (X% + X2)];.
i) LSTM training objective converges to minimum error due to time
discretization.
iii) Signatures help training for LSTM (but not decisive).
iv) FFN don’t learn in this setup with SGD.
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Choosing network sizes

Classical view:

under-fitting . over-fitting

. Test risk

Risk

~

« Training risk
sweet spot_ T ~ _

Capacity of H

Modern view from Belkin, Hsu, Ma and Mandal [4]
B

under-parameterized

over-parameterized
Test risk
“classical”

regime

“modern”
interpolating regime

~ Training risk:

. _interpolation threshold
Capacity of H

Conclusion: Network should have many more parameters than training
data points.
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Representation theorems

» Hornik [5]: “any level of accuracy in approximation of a continuous
function on a compact set is achievable by sufficiently wide one
hidden layer feedforward network with appropriate parameters.”

» Hornung et al. [6] and related: “solutions to many PDEs (e.g.
Black—Scholes) can be approximated to any accuracy by a sufficiently
deep and wide feedforward network with appropriate parameters
without suffering from curse of dimensionality .”

» But does SGD reach such parameters? Supervised learning is
non-convex.
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Non-covex minimization problem

With ¢(x,z) = Bp(a - z) for x = (a, B) € (R x RP)", we should minimize,

IR 52
(R x RP)" 5 x o Cb(y - Z @(X’,Z)) v(dy, dz) —i—% x|?

which is non-convex.

Supervised learning:

i) ®:R — RT given, convex, e.g. ®(x) = |x|?
ii) sample learning data from measure v € P(R x RP) i.e. “big data”

iii) aim is to find optimal network parameters w.r.t. .
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Mean-field limit and convexity

Assume that x' are i.i.d. samples from some measure m € P(R?). Due to
law of large numbers, for each fixed z € RD we have

IR
- Z@(X’,z) — / P(x,z) m(dx) as n— oo.
n 1 Rd

The search for the optimal measure m* € P(R?) amounts to minimizing

PRY) > m RXRD¢<y— /Rd ?(x, 2) m(dx))u(dy, dz) =: F(m),

which is convex as long as @ is i.e. for any m, m’ € P(RY), a € [0,1] we
have
F((1 —a)m+am') < (1—a)F(m)+aF(m').

Observed in the pioneering works of Mei, Misiakiewicz and Montanari [7],
Chizat and Bach [8] as well as Rotskoff and Vanden-Eijnden [9].

Study V7(m) := F(m) + "72H(m).
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Mean-field Langevin dynamics
For some F : P(R?) — R and a Gibbs measure g:

g(x) = e~ UX) with U s.t. / e U gy — 1
Rd
consider mean-field Langevin equation:

2
dX, = — <DmF(mt,Xt) + UQVU(Xt)> dt + odW,, t € [0,00), "
my = Law(X;), t € [0,00).

Corresponding gradient flow:

o2 o2 ;
om=YV - ((DmF(m,-) + 7VU)m+ 2Vm> on (0,00) x R?.

If m" € 7, where
2 2

T, = {m e P(RY) : g—:(m, )+ % log(m) + %U is a constant}

then m" = arg min ,cp(ra) V7.
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Mean-field results

LV
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N
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Details is Hu, Ren, S, Szpruch [10].
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Conclusions:

» Machine learning can approximate high dimensional and parametric
models of pricing and hedging.

> To get learning convergence requires careful design and tuning.
» Unanswered questions about convergence and robustness.

» Can be partially mitigated by on-line performance tests based on
control variates.

» LSTM for path dependent.

» Separate data generation from network training.
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Outlook - Research

» Do machine learning models in finance suffer from adversarial
attacks? i.e. can we find inputs where trained network fails
spectacularly?

» Signatures in high dimension as dimension reduction method .

» Comparisons with existing algorithms for path-dependent derivatives
e.g. Cont, Lu [11].

Outlook - Vega

» Invitation only “Nicenet” launching Q4 2019 (get in touch to get
access).

» Working on smart product language coming in 2020.
» Public “Testnet” in 2020 (still no real money).

» Ongoing research: distributed model calibration, better liquidity
pricing, market making stake modelling, ...
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