Learning to price and hedge path-dependent derivatives

David Šiška 1,2

This is joint work with Marc Sabate-Vidales¹ and Lukasz Szpruch^{2,3}.

Conference on Machine Learning in Finance 17th September 2019, Oxford

¹Universitiy of Edinburgh ²Vega http://vega.xyz/ ³The Alan Turing Institute

Talk Outline

- i) Motivation from Vega,
- ii) Machine learning algorithms for path-dependent derivatives:
 - Projection solver,
 - Martingale representation solver direct,
 - Martingale representation solver variance,
 - Martingale representation solver control variate.

iii) Covergence:

- On-line black box quality estimation with control variates and CLT,
- Numerical results.
- Some theory.

Vega

Vision⁴:

- i) Decentralized derivatives exchange,
- ii) Anyone can design a derivative using smart language of economic primitives and open a market by committing (financially) to market make,
- iii) Markets are opened by default but can be voted down during proposal period by stakeholders.

Risk management challenge: not a spot exchange, people are trading promises.

How to safely margin the trades, in particular

- i) What risk models,
- ii) Robust calibration,
- iii) Efficient risk calculation.

 $^{^4} See$ Danezis, Hrycyszyn, Mannerings, Rudolph and Š [1].

Margin calculation

We need:

- i) Model to evaluate derivative liabilities at time $\tau > 0$ given a real world scenario (pricing in risk-neutral measure \mathbb{Q})
- ii) Model to move one step to the next possible closeout run time $\tau > 0$ (real-world measure \mathbb{P}).
- iii) A coherent risk-measure $\rho = \rho^{\mathbb{P}}$ to establish the risk in a given (discounted) position X.

Minimum margin is, for position Ξ ,

$$m_t^{\min} := \rho^{\mathbb{P}}\left(\mathbb{E}^{\mathbb{Q}}\left[\Xi|\mathcal{F}_{t+\tau}\right]\right) \,.$$

Nested simulations I

Simulations of the risk drivers (asset processes, vol processes etc. i = 1, ..., d) under \mathbb{P} denoted $x^{i,j}$ for j = 1, ..., N

$$m_t^{\min} \approx rac{1}{\lambda} rac{1}{N} \sum_{j=1}^N \left(-p_{t+\tau}^j | x^{i,j} \mathbb{1}_{p_{t+\tau}^j | x^{i,j} < -\operatorname{VaR}_{\lambda}^N | x^{i,j}}
ight) \,.$$

Here

$$p_{t+\tau}^j | x^{i,j} \approx x^{0,j} \frac{1}{\tilde{N}} \sum_{k=1}^{\tilde{N}} \frac{\xi_k^j | x^{i,j}}{x_k^{0,j} | x^{i,j}}$$

i.e. for each j we need to simulate $k = 1, ..., \tilde{N}$ realizations of the discounted payoff $\xi_k^j | x^{i,j}$ under \mathbb{Q} .

Killer:

► Need NÑ simulations.

The faster this can be done the lower \(\tau > 0\) and the lower margin i.e. higher leverage.

More efficient methods:

- Regression based methods, see [1].
- Multi-level approach, see [2].

Machine learning based approach.

- M. Broadie and Y. Du and C. C. Moallemi. Risk Estimation via Regression. Operations Research, 63(5), 1077–1097, 2015.
- [2] M. Giles and A.-L. Haji-Ali. Multilevel Nested Simulation for Efficient Risk Estimation. arXiv:1802.05016, 2018.

Feed-forward neural networks

Layers *L*, size of layer *k* given by $I_k \in \mathbb{N}$.

i) Space of parameters

$$\Pi = (\mathbb{R}^{l^1 \times l^0} \times \mathbb{R}^{l^1}) \times (\mathbb{R}^{l^2 \times l^1} \times \mathbb{R}^{l^2}) \times \cdots \times (\mathbb{R}^{l^L \times l^{L-1}} \times \mathbb{R}^{l^L}),$$

ii) The network parameters

$$\Psi = ((\alpha^1, \beta^1), \dots, (\alpha^L, \beta^L)) \in \mathsf{\Pi}.$$

iii) Reconstruction $\mathcal{R}\Psi: \mathbb{R}^{I^0} \to \mathbb{R}^{I^L}$ given recursively, for $x_0 \in \mathbb{R}^{I^0}$, by $z_0 \in \mathbb{R}^{I^0}$, by

$$(\mathcal{R}\Psi)(z^{0}) = \alpha^{L} z^{L-1} + \beta^{L}, \quad z^{k} = \varphi^{\prime^{k}}(\alpha^{k} z^{k-1} + \beta^{k}), k = 1, \dots, L-1.$$

LTSM neural networks

We will still denote its parameters $\Psi\in\Pi$ and think of LSTM net as

$$(\mathcal{R}\Psi): \{0, 1, \dots, N_{\mathsf{steps}}\} imes (\mathbb{R}^d)^{1+N_{\mathsf{steps}}} o (\mathbb{R}^{d'})^{1+N_{\mathsf{steps}}}$$

⁵From Christopher Olah https://colah.github.io/

General pricing / hedging setup

Path-dependent (discounted) payoff:

$$\Xi_{\mathcal{T}} := G\bigl((X_s)_{s \in [0, \mathcal{T}]}\bigr), \ G : C([0, \mathcal{T}]; \mathbb{R}^d) \to \mathbb{R} \text{ given}.$$

Price in (some) r.n. measure is

$$V_t = \mathbb{E}\left[\Xi_T | \mathcal{F}_t\right] = \mathbb{E}\left[G((X_s)_{s \in [0,T]}) | (X_s)_{s \in [0,t]}\right]$$

Assume $\mathbb{F} := (\mathcal{F}_s)_{s \in [0,t]}$ is generated by d'-dim Wiener process and $\sigma((X_s)_{s \leq t}) = \mathcal{F}_t$.

Take a partition of [0, T] denoted

$$\pi := \{t = t_0 < \cdots < t_{N_{\mathsf{steps}}} = T\}$$

and consider a discretization of $(X_s)_{s \in [0,T]}$ by $(X_{t_i}^{\pi})_{i=0}^{N_{\text{steps}}}$.

Learning L^2 -orthogonal projection

Theorem 1 Let $\mathcal{X} \in L^2(\mathcal{F})$. Let $\mathcal{G} \subset \mathcal{F}$ be a sub σ -algebra. There exists a unique random variable $\mathcal{Y} \in L^2(\mathcal{G})$ such that $\mathcal{Y} = \mathbb{E}[\mathcal{X}|\mathcal{G}]$ and

$$\mathbb{E}[|\mathcal{X} - \mathcal{Y}|^2] = \inf_{\eta \in L^2(\mathcal{G})} \mathbb{E}[|\mathcal{X} - \eta|^2].$$

Take
$$\mathcal{X}:=\Xi_{\mathcal{T}},\ \mathcal{G}:=\mathcal{F}_t=\sigma((X_s)_{s\in[0,t]})$$
 so

$$V_t = \operatorname*{argmin}_{\eta \in L^2(\mathcal{F}_t)} \mathbb{E}[|\Xi_T - \eta|^2].$$

Doob–Dynkin Lemma implies that for any $\eta \in L^2\left(\sigma((X_{s \wedge t})_{s \in [0, T]})\right)$ there is $h: [0, T] \times C([0, T]; \mathbb{R}^d) \to \mathbb{R}$ measurable s.t. $\eta = h(t, (X_{s \wedge t})_{s \in [0, T]})$. So

$$\mathbb{E}[|\Xi_{T} - V_t|^2] = \inf_h \mathbb{E}[|\Xi_{T} - h(t, (X_{s \wedge t})_{s \in [0, T]})|^2]$$

Infimum over measurable functions $h: [0, T] \times C([0, T]; \mathbb{R}^d) \to \mathbb{R}$

Learning L^2 -orthogonal projection II

Network:

$$\mathbb{E}[|\Xi_{\mathcal{T}}-V_t|^2]\approx\inf_{\Psi\in\Pi}\mathbb{E}[|\Xi_{\mathcal{T}}^{\pi}-(\mathcal{R}\Psi)(t,(X_{t_i\wedge t}^{\pi})_{i=0,1,...,\mathsf{N}_{\mathsf{steps}}})|^2]$$

and so

$$V_t \approx \widehat{\operatorname{argmin}} \mathbb{E}[|\Xi^{\pi}_T - (\mathcal{R}\Psi)(t, (X^{\pi}_{t_i \wedge t})_{i=0,1,\dots,N_{\text{steps}}})|^2].$$

Here:

- i) Ξ_T^{π} , X^{π} denote numerical approximations.
- ii) Hat over arg min denotes the we will use SGD (and so won't necessarily find actual minimum).

Learning L^2 -orthogonal projection III

Algorithm: Projection solver

Initialisation: $\Psi^0 \in \Pi$, $N_{trn} \in \mathbb{N}$ large for $i : 1 : N_{trn}$ do Generate $(x_{t_n}^i)_{n=0}^{N_{steps}}$ from $(X_s)_{s \in [0,T]}$. Compute $\Xi_T^{\pi,i} := G((X_{t_k}^{\pi,i})_{k=0,1,\dots,N_{steps}})$. end for

Starting with $\Psi^0,$ use SGD to find $\Psi^{\diamond,\textit{N}_{trn}},$ where

$$\Psi^{\diamond, \mathcal{N}_{\mathsf{trn}}} = \widehat{\operatorname{argmin}}_{\theta} \frac{1}{\mathcal{N}_{\mathsf{trn}}} \sum_{i=1}^{\mathcal{N}_{\mathsf{trn}}} \sum_{k=0}^{\mathcal{N}_{\mathsf{steps}}-1} [|\Xi_T^{\pi,i} - (\mathcal{R}\Psi)(t_k, (x_{t_k \wedge t_j}^i)_{j=0,1,\dots,\mathcal{N}_{\mathsf{steps}}})|^2]$$

return $\Psi^{\diamond, N_{trn}}$.

- Works with incomplete markets but no (direct) access to hedging strategy.
- ▶ In Markovian setting automatic differentiation gives hedging strategy.

Learning martingale representation I

Assume complete market (d = d'). Then (classical) martingale representation: $\exists Z$ which is \mathbb{F} adapted and

$$V_t = \Xi_T - \int_t^T Z_s \, dW_s$$
 .

With functional Itô calculus

$$V_t = G((X_s)_{s\in[0,T]}) - \int_t^T \nabla_{\omega} G((X_{r\wedge s})_{r\in[0,T]}) dX_s.$$

See Cont and Fournié [2].

Learning martingale representation II

Aim: use Monte Carlo and Machine Learning to obtain Z. Why?

i) You also get V.

١

ii) You get the hedging strategy.

With the partition π of [0, T] in mind

$$V_{t_m} = V_{t_{m+1}} + \int_{t_m}^{t_{m+1}} Z_s \, dW_s \text{ for } m = 0, 1, \dots, N_{\text{steps}} - 1,$$

$$V_{t_{N_{\text{steps}}}} = \Xi_T.$$

Approximate by **two** networks with (possibly) different size / architecture $\Psi \in \Pi^{\Psi}$, $\Phi \in \Pi^{\Phi}$:

$$V_{t_m} \approx (\mathcal{R}\Psi) \left(t_m, \left(X_{s \wedge t_m}^{\pi} \right)_{s \in [0,T]} \right) \text{ and } Z_{t_m} \approx (\mathcal{R}\Phi) \left(t_m, \left(X_{s \wedge t_m}^{\pi} \right)_{s \in [0,T]} \right).$$

Get consistency condition:

$$0 \approx (\mathcal{R}\Psi) \left(t_{m+1}, \left(X_{s \wedge t_{m+1}}^{\pi} \right)_{s \in [0,T]} \right) - (\mathcal{R}\Psi) \left(t_m, \left(X_{s \wedge t_m}^{\pi} \right)_{s \in [0,T]} \right) \\ + (\mathcal{R}\Phi) \left(t_m, \left(X_{s \wedge t_m}^{\pi} \right)_{s \in [0,T]} \right) \left(W_{t_{m+1}} - W_{t_m} \right) =: \mathcal{E}_{m+1}^{\pi}(\Psi, \Phi) \,.$$

Learning martingale representation III

Initialisation: Ψ^0 , Φ^0 , N_{trn} for $i : 1 : N_{trn}$ do Generate samples $(w_{t_n}^i)_{n=0}^{N_{steps}}$, use these to generate $(x_{t_n}^{\pi,i})_{n=0}^{N_{steps}}$ by approximating $X = (X_s)_{s \in [0,T]}$, generate $\Xi_T^{\pi,i}$. end for

Starting with Ψ^0, Φ^0 , use SGD to find $(\theta^{\diamond, N_{trn}}, \Psi^{\diamond, N_{trn}})$ where

$$\begin{split} (\Psi^{\diamond,N_{\rm trn}},\Phi^{\diamond,N_{\rm trn}}) &:= \widehat{\operatorname{argmin}}_{(\Psi,\Phi)} \frac{1}{N_{\rm trn}} \sum_{i=1}^{N_{\rm trn}} \left[\left| \Xi_T^{\pi,i} - (\mathcal{R}\Psi)(T,(x_{t_k}^{\pi,i})_{k=0,1,\dots,N_{\rm steps}}) \right|^2 \\ &+ \sum_{m=0}^{N_{\rm steps}-1} |\mathcal{E}^{\pi,i}(\Psi,\Phi)_{m+1}|^2 \right], \\ \mathcal{E}^{\pi,i}(\Psi,\Phi)_{m+1} &:= (\mathcal{R}\Psi) \left(t_{m+1}, (x_{s\wedge t_{m+1}}^{\pi,i})_{s\in[0,T]} \right) - (\mathcal{R}\Psi) \left(t_m, (x_{s\wedge t_m}^{\pi,i})_{s\in[0,T]} \right) \\ &+ (\mathcal{R}\Phi) \left(t_m, (X_{s\wedge t_m}^{\pi,i})_{s\in[0,T]} \right) \left(w_{t_{m+1}}^i - w_{t_m}^i \right). \end{split}$$

return $(\Psi^{\diamond,N_{trn}},\Phi^{\diamond,N_{trn}}).$

Learning martingale representation - minimizing variance I

Recall

$$V_t = \Xi_T - \int_t^T Z_s \, dW_s \, .$$

Monte Carlo: say Z^i , W^i , Ξ^i_T are iid samples of Z, W, Ξ . Then for

$$\mathcal{V}_t^N := \frac{1}{N} \sum_{i=1}^N \left(\Xi_T^i - \int_t^T Z_s^i \, dW_s^i \right)$$

we have

- i) Unbiased estimator: $\mathbb{E}\left[\mathcal{V}_{t}^{N}|\mathcal{F}_{t}\right] = V_{t}$,
- ii) Zero variance estimator: $\mathbb{V}ar\left[\mathcal{V}_t^N|\mathcal{F}_t\right] = 0.$

Use variance as objective in learning.

Learning martingale representation - minimizing variance II

Initialisation: Φ^0 , N_{trn}

for $i:1:N_{trn}$ do

Generate the samples of Wiener process increments $(\Delta w_{t_n})_{n=1}^{N_{\text{steps}}}$. Use $(\Delta w_{t_n})_{n=1}^{N_{\text{steps}}}$ to generate samples $(x_{t_n}^i)_{n=0}^{N_{\text{steps}}}$ by simulating the process X.

Use these to compute Ξ_T^i .

end for

Starting with Φ^0 use SGD to approximate $\Phi^{\diamond, N_{trn}}$ with objective

$$\Phi^{\diamond,N_{trn}} := \widehat{\underset{\Phi \in \Pi}{\operatorname{argmin}}} \frac{1}{N_{trn}} \sum_{i=1}^{N_{trn}} \left(\Xi_{T}^{i} - \mathcal{V}^{\pi,N_{steps},i}(\Phi) \right)^{2} ,$$

where

$$\mathcal{V}^{\pi, \mathcal{N}_{ ext{steps}}, i}(\Phi) := \sum_{m=0}^{\mathcal{N}_{ ext{steps}}-1} (\mathcal{R}\Phi) \left(t_m, (x^i_{t_k \wedge t_m})_{k=0,1,...,\mathcal{N}_{ ext{steps}}}
ight) \left(w^i_{t_{m+1}} - w^i_{t_m}
ight).$$

return $\Phi^{\diamond, N_{trn}}$.

Learning martingale representation - control variate I

Recall that with

$$\mathcal{V}_t^N := \frac{1}{N} \sum_{i=1}^N \left(\Xi_T^i - \int_t^T Z_s^i \, dW_s^i \right)$$

we have $\mathbb{E}\left[\mathcal{V}_{t}^{N}|\mathcal{F}_{t}\right] = V_{t}$, $\mathbb{V}ar\left[\mathcal{V}_{t}^{N}|\mathcal{F}_{t}\right] = 0$.

With

$$\mathcal{V}^{N,\pi} := \frac{1}{N} \sum_{i=1}^{N} \left(\Xi_{\mathcal{T}}^{i} - \sum_{k=0}^{N_{\text{steps}}-1} Z_{t_{k}}^{i} \left(W_{t_{k+1}}^{i} - W_{t_{k}} \right) \right)$$

we have $\mathbb{E}\left[\mathcal{V}^{\textit{N},\pi}|\mathcal{F}_t\right]\approx\textit{V}_0,~\mathbb{V}\text{ar}\left[\mathcal{V}^{\textit{N},\pi}|\mathcal{F}_t\right]>0$ but small.

Aim: Use stochastic integral as control variate.

Learning martingale representation - control variate II With

$$\mathcal{V}_{t}^{N,\pi,\Phi,\lambda} := \frac{1}{N} \sum_{i=1}^{N} \left(\Xi_{T}^{i} - \lambda \underbrace{\sum_{k=0}^{N_{\text{steps}}-1} (\mathcal{R}\Phi)(t_{k}, (X_{t_{j}\wedge t_{k}}^{i})_{j=0,1,\dots,N_{\text{steps}}}) \Delta W_{t_{k+1}}^{i}}_{=:M^{\Phi}} \right)$$

The optimal coefficient $\lambda^{*,\Phi}$ that minimises the variance is

$$\lambda^{*, \Phi} = \frac{\mathbb{C}\mathsf{ov}[\Xi_T, M^{\Phi}]}{\mathbb{V}\mathsf{ar}[M^{\Phi}]}$$

Variance reduction factor is $\frac{1}{1-(\rho^{\pi,\Phi})^2}$ where

$$\rho^{\pi,\Phi} = \frac{\mathbb{C}\mathsf{ov}(\Xi_T, M^{\Phi})}{\sqrt{\mathbb{V}\mathsf{ar}[\Xi_T]\mathbb{V}\mathsf{ar}[M^{\Phi}]}}$$

Objective:

$$\Phi^{\diamond,\pi} := \underset{\Phi \in \Pi}{\operatorname{argmin}} \left[1 - \left(\rho^{\pi,\Phi} \right)^2 \right]$$

Learning martingale representation - control variate III Initialisation: Φ^0 , N_{trn}

for $i: 1: N_{trn}$ do

Generate the samples of Wiener process increments $(\Delta w_{t_n})_{n=1}^{N_{\text{steps}}}$. Use $(\Delta w_{t_n})_{n=1}^{N_{\text{steps}}}$ to generate samples $(x_{t_n}^i)_{n=0}^{N_{\text{steps}}}$ by simulating the process X. Use $(x_{t_n}^i)_{n=0}^{N_{\text{steps}}}$ to compute Ξ_T^i .

end for

Starting with Φ^0 use SGD to find

$$\Phi^{\diamond, N_{trn}} := \widehat{\operatorname{argmin}}_{\Phi \in \Pi} \left[1 - \left(\frac{\sum_{i=1}^{N_{trn}} (M^{i, \Phi} - \overline{M^{\Phi}}) (\Xi_{T}^{i} - \overline{\Xi_{T}})}{\left(\sum_{i=1}^{N_{trn}} (\Xi_{T} - \overline{\Xi_{T}})^2 \sum_{i=1}^{N_{trn}} (M^{i, \Phi} - \overline{M^{\Phi}})^2 \right)^{1/2}} \right)^2 \right]$$

where $\overline{\Xi_T} := \sum_{i=1}^{N_{trn}} \Xi_T^i$, $\overline{M^{\Phi}} := \sum_{i=1}^{N_{trn}} M^{i,\Phi}$ and

$$M^{i,\Phi}:=\sum_{i=1}^{N_{ ext{trn}}}\sum_{k=0}^{N_{ ext{steps}}-1}(\mathcal{R}\Phi)(t_k,(X^i_{t_j\wedge t_k})_{j=0,1,...,N_{ ext{steps}}})\,\Delta W^i_{t_{k+1}}\,.$$

return $\Phi^{\diamond, N_{trn}}$

,

Sanity check: exchange option

Method	Confidence Interval Variance	Confidence Interval Estimator
Monte Carlo	$[5.95 imes 10^{-7}, 1.58 imes 10^{-6}]$	[0.1187, 0.1195]
Martingale rep var. min.	$[4.32 imes 10^{-9}, 1.14 imes 10^{-8}]$	[0.11919, 0.11926]
Martingale rep corr. max.	$[2.30 imes10^{-9}, 6.12 imes10^{-8}]$	[0.11920, 0.11924]
Martingale rep two networks	$[4.13 imes 10^{-9}, 1.09 imes 10^{-8}]$	[0.11919, 0.11926]
MC + CV Margrabe	$[3.10 imes 10^{-9}, 8.23 imes 10^{-9}]$	[0.11919, 0.11925]

Error is time discretization arising even when exact form of martingale representation term is used.

Robustness example

Exchange option (Markovian) in d = 5 with random covariance matrix (parametric approximation).

Histogram of log of squared error on test set 40 30 20 10 0 10-7 10^{-6} 10^{-8} 10^{-5} 10^{-4} 10^{-3} log of squared error

Clearly, there are input combinations where error is 10^{-3} rather than 10^{-6} .

On-line quality estimation with control variates and CLT

Say SGD converges to $\Phi^{\diamond,\pi,N}$.

Approximation of martingale representation term gives access to control variate with 0 expectation:

$$\sum_{k=0}^{N_{\text{steps}}-1} (\mathcal{R}\Phi)(t_k, (X^i_{t_j \wedge t_k})_{j=0,1,...,N_{\text{steps}}}) \Delta W^i_{t_{k+1}} =: M^{i,\Phi}$$

i) *n*-samples, evaluate $\frac{1}{n} \sum_{i=1}^{n} M^{i,\Phi}$. If "far" from 0 things went wrong, ii) evaluate

$$\rho^{\pi,\Phi,n} = \frac{\sum_{i=1}^{N_{\rm trn}} (M^{i,\Phi} - \overline{M^{\Phi}}) (\Xi_{T}^{i} - \overline{\Xi_{T}})}{\left(\sum_{i=1}^{N_{\rm trn}} (\Xi_{T} - \overline{\Xi_{T}})^2 \sum_{i=1}^{N_{\rm trn}} (M^{i,\Phi} - \overline{M^{\Phi}})^2\right)^{1/2}}.$$

If "far" from 1 things went wrong.

Variance reduction - outside parameter range

Training for fixed volatility of 30% versus parametric (constant cost).

High dimensional Markovian example

Take d = 100,

$$g(S) := \max\left(0,S^1 - rac{1}{d-1}\sum_{i=2}^d S^i
ight)\,.$$

Method	Confidence Interval Variance	Confidence Interval Estimator
Monte Carlo	$[2.03 imes 10^{-7}, 5.41 imes 10^{-7}]$	[0.0845, 0.0849]
Martingale rep var. min.	$[4.13 imes 10^{-9}, 1.09 imes 10^{-8}]$	[0.08484, 0.08490]
Martingale rep corr. max.	$[3.80 imes10^{-9}, 1.0 imes10^{-8}]$	[0.08487, 0.08493]
Martingale rep two networks	$[5.32 imes 10^{-9}, 1.41 imes 10^{-8}]$	[0.08485, 0.8492]

Table: Results on exchange option problem on 100 assets, Monte Carlo vs. control variate with 10^6 samples.

Model trained for any initial asset price $(log-normal)^{6}$.

All results from Sabate-Vidales, Š, Szpruch [3].

 $^6\text{With}$ all parameters fixed we get variance reduction factor $5\cdot10^5$ - too easy.

LSTM vs FFN

Using the "martingale representation - minimizing variance" method:

- i) "Lookback option" $[\max_{t \leq T} (X_t^1 + X_t^2) (X_T^1 + X_T^2)]_+$.
- ii) LSTM training objective converges to minimum error due to time discretization.
- iii) Signatures help training for LSTM (but not decisive).
- iv) FFN don't learn in this setup with SGD.

Choosing network sizes

Conclusion: Network should have many more parameters than training data points.

Representation theorems

- Hornik [5]: "any level of accuracy in approximation of a continuous function on a compact set is achievable by sufficiently wide one hidden layer feedforward network with appropriate parameters."
- Hornung et al. [6] and related: "solutions to many PDEs (e.g. Black–Scholes) can be approximated to any accuracy by a sufficiently deep and wide feedforward network with appropriate parameters without suffering from curse of dimensionality."
- But does SGD reach such parameters? Supervised learning is non-convex.

Non-covex minimization problem

With $\hat{\varphi}(x,z) = \beta \varphi(\alpha \cdot z)$ for $x = (\alpha,\beta) \in (\mathbb{R} \times \mathbb{R}^D)^n$, we should minimize, $(\mathbb{R} \times \mathbb{R}^D)^n \ni x \mapsto \underbrace{\int_{\mathbb{R} \times \mathbb{R}^D} \Phi\left(y - \frac{1}{n} \sum_{i=1}^n \hat{\varphi}(x^i, z)\right) \nu(dy, dz)}_{=:F(x)} + \frac{\bar{\sigma}^2}{2} \underbrace{|x|^2}_{=:U(x)},$

which is non-convex.

Supervised learning:

- i) $\Phi:\mathbb{R}\to\mathbb{R}^+$ given, convex, e.g. $\Phi(x)=|x|^2$
- ii) sample learning data from measure $u \in \mathcal{P}(\mathbb{R} \times \mathbb{R}^D)$ i.e. "big data"
- iii) aim is to find optimal network parameters w.r.t. Φ .

Mean-field limit and convexity

Assume that x^i are i.i.d. samples from some measure $m \in \mathcal{P}(\mathbb{R}^d)$. Due to law of large numbers, for each fixed $z \in \mathbb{R}^D$ we have

$$\frac{1}{n}\sum_{i=1}^{n}\hat{\varphi}(x^{i},z)\rightarrow\int_{\mathbb{R}^{d}}\hat{\varphi}(x,z)\,m(dx) \text{ as } n\rightarrow\infty\,.$$

The search for the optimal measure $m^* \in \mathcal{P}(\mathbb{R}^d)$ amounts to minimizing

$$\mathcal{P}(\mathbb{R}^d) \ni m \mapsto \int_{\mathbb{R} \times \mathbb{R}^D} \Phi\left(y - \int_{\mathbb{R}^d} \hat{\varphi}(x, z) \, m(dx)\right) \nu(dy, dz) =: F(m),$$

which is convex as long as Φ is i.e. for any $m, m' \in \mathcal{P}(\mathbb{R}^d)$, $\alpha \in [0, 1]$ we have

$$F((1-\alpha)m + \alpha m') \leq (1-\alpha)F(m) + \alpha F(m').$$

Observed in the pioneering works of Mei, Misiakiewicz and Montanari [7], Chizat and Bach [8] as well as Rotskoff and Vanden-Eijnden [9].

Study
$$V^{\sigma}(m) := F(m) + \frac{\sigma^2}{2}H(m)$$
.

Mean-field Langevin dynamics

For some $F : \mathcal{P}(\mathbb{R}^d) \to \mathbb{R}$ and a Gibbs measure g:

$$g(x) = e^{-U(x)}$$
 with U s.t. $\int_{\mathbb{R}^d} e^{-U(x)} dx = 1$

consider mean-field Langevin equation:

$$\begin{cases} dX_t = -\left(D_m F(m_t, X_t) + \frac{\sigma^2}{2} \nabla U(X_t)\right) dt + \sigma dW_t, \ t \in [0, \infty), \\ m_t = \operatorname{Law}(X_t), \ t \in [0, \infty). \end{cases}$$
(1)

Corresponding gradient flow:

$$\partial_t m = \nabla \cdot \left(\left(D_m F(m, \cdot) + \frac{\sigma^2}{2} \nabla U \right) m + \frac{\sigma^2}{2} \nabla m \right) \text{ on } (0, \infty) \times \mathbb{R}^d$$

If $m' \in \mathcal{I}_\sigma$ where

$$\mathcal{I}_{\sigma} := \left\{ m \in \mathcal{P}(\mathbb{R}^d) : \frac{\delta F}{\delta m}(m, \cdot) + \frac{\sigma^2}{2} \log(m) + \frac{\sigma^2}{2} U \text{ is a constant} \right\}$$

then $m' = \arg \min_{m \in \mathcal{P}(\mathbb{R}^d)} V^{\sigma}$.

Mean-field results

Details is Hu, Ren, Š, Szpruch [10].

Conclusions:

- Machine learning can approximate high dimensional and parametric models of pricing and hedging.
- ▶ To get learning convergence requires careful design and tuning.
- Unanswered questions about convergence and robustness.
- Can be partially mitigated by on-line performance tests based on control variates.
- LSTM for path dependent.
- Separate data generation from network training.

Outlook - Research

- Do machine learning models in finance suffer from adversarial attacks? i.e. can we find inputs where trained network fails spectacularly?
- Signatures in high dimension as dimension reduction method .
- Comparisons with existing algorithms for path-dependent derivatives e.g. Cont, Lu [11].

Outlook - Vega

- Invitation only "Nicenet" launching Q4 2019 (get in touch to get access).
- Working on smart product language coming in 2020.
- Public "Testnet" in 2020 (still no real money).
- Ongoing research: distributed model calibration, better liquidity pricing, market making stake modelling, ...

References I

Code available: https://github.com/marcsv87/Deep-PDE-Solvers.

- Danezis, G., Hrycyszyn, D., Mannerings, B., Rudolph, T., and Šiška, D. Vega Protocol. https://vegaprotocol.io/papers/vega-protocol-whitepaper.pdf (2018).
- [2] Cont, R. and Fournié, D.-A. (2013) Functional Itô calculus and stochastic integral representation of martingales. Ann. Probab., 41(1), 109–133.
- [3] Sabate-Vidales, M., Šiška, D., and Szpruch, L. (2018) Unbiased deep solvers for parametric PDEs. arXiv:1810.05094,.
- Belkin, M., Hsu, D., Ma, S., and Mandal, S. (2019) Reconciling modern machine-learning practice and the classical bias-variance trade-off. PNAS, 116(32), 15849–15854.
- [5] Hornik, K. (1991) Approximation capabilities of multilayer feedforward networks. Neural Networks, 4(2), 251-257.
- [6] Grohs, P., Hornung, F., Jentzen, A., and von Wurstemberger, P. (2018) A proof that artificial neural networks overcome the curse of dimensionality in the numerical approximation of Black–Scholes partial differential equations. arXiv:1809.02362,
- [7] Mei, S., Montanari, A., and Nguyen, P.-M. (2018) A mean field view of the landscape of two-layer neural networks. Proceedings of the National Academy of Sciences, 115(33), E7665–E7671.
- [8] Chizat, L. and Bach, F. (2018) On the global convergence of gradient descent for over-parameterized models using optimal transport. In Advances in neural information processing systems pp. 3040–3050.
- [9] Rotskoff, G. M. and Vanden-Eijnden, E. (2018) Neural networks as interacting particle systems: Asymptotic convexity of the loss landscape and universal scaling of the approximation error. arXiv:1805.00915,.
- [10] Hu, K., Ren, Z., Šiška, D., and Szpruch, L. (2019) Mean-Field Langevin Dynamics and Energy Landscape of Neural Networks. arXiv:1905.07769,.
- [11] Cont, R. and Lu, Y. (2016) Weak approximation of martingale representations. Stochastic Process. Appl., 126(3), 857–882.