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Talk Outline

i) Motivation from Vega,

ii) Machine learning algorithms for path-dependent derivatives:
I Projection solver,
I Martingale representation solver - direct,
I Martingale representation solver - variance,
I Martingale representation solver - control variate.

iii) Covergence:
I On-line black box quality estimation with control variates and CLT,
I Numerical results.
I Some theory.

2 / 35



Vega

Vision4:

i) Decentralized derivatives exchange,

ii) Anyone can design a derivative using smart language of economic
primitives and open a market by committing (financially) to market
make,

iii) Markets are opened by default but can be voted down during
proposal period by stakeholders.

Risk management challenge: not a spot exchange, people are trading
promises.

How to safely margin the trades, in particular

i) What risk models,

ii) Robust calibration,

iii) Efficient risk calculation.

4See Danezis, Hrycyszyn, Mannerings, Rudolph and Š [1].
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Margin calculation

We need:

i) Model to evaluate derivative liabilities at time τ > 0 given a real
world scenario (pricing in risk-neutral measure Q)

ii) Model to move one step to the next possible closeout run time τ > 0
(real-world measure P).

iii) A coherent risk-measure ρ = ρP to establish the risk in a given
(discounted) position X .

Minimum margin is, for position Ξ,

mmin
t := ρP

(
EQ [Ξ|Ft+τ ]

)
.
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Nested simulations I

Simulations of the risk drivers (asset processes, vol processes etc.
i = 1, . . . , d) under P denoted x i ,j for j = 1, . . . ,N

mmin
t ≈ 1

λ

1

N

N∑
j=1

(
−pjt+τ |x i ,j1pjt+τ |x i,j<−VaRN

λ |x i,j

)
.

Here

pjt+τ |x i ,j ≈ x0,j 1

Ñ

Ñ∑
k=1

ξjk |x
i ,j

x0,j
k |x i ,j

i.e. for each j we need to simulate k = 1, . . . Ñ realizations of the
discounted payoff ξjk |x

i ,j under Q.

Killer:

I Need NÑ simulations.

I The faster this can be done the lower τ > 0 and the lower margin i.e.
higher leverage.
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Nested simulations II

More efficient methods:

I Regression based methods, see [1].

I Multi-level approach, see [2].

I Machine learning based approach.

[1] M. Broadie and Y. Du and C. C. Moallemi. Risk Estimation via Regression. Operations Research, 63(5), 1077–1097,
2015.

[2] M. Giles and A.-L. Haji-Ali. Multilevel Nested Simulation for Efficient Risk Estimation. arXiv:1802.05016, 2018.
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Feed-forward neural networks

Layers L, size of layer k given by lk ∈ N.

i) Space of parameters

Π = (Rl1×l0 × Rl1)× (Rl2×l1 × Rl2)× · · · × (RlL×lL−1 × RlL) ,

ii) The network parameters

Ψ = ((α1, β1), . . . , (αL, βL)) ∈ Π .

iii) Reconstruction RΨ : Rl0 → RlL given recursively, for x0 ∈ Rl0 , by
z0 ∈ Rl0 , by

(RΨ)(z0) = αLzL−1 +βL , zk = ϕlk (αkzk−1 +βk) , k = 1, . . . , L−1 .
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LTSM neural networks

Diagram5:

We will still denote its parameters Ψ ∈ Π and think of LSTM net as

(RΨ) : {0, 1, . . . ,Nsteps} × (Rd)1+Nsteps → (Rd ′)1+Nsteps .

5From Christopher Olah https://colah.github.io/
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General pricing / hedging setup

Path-dependent (discounted) payoff:

ΞT := G
(
(Xs)s∈[0,T ]

)
, G : C ([0,T ];Rd)→ R given.

Price in (some) r.n. measure is

Vt = E [ΞT |Ft ] = E
[
G ((Xs)s∈[0,T ])|(Xs)s∈[0,t]

]
Assume F := (Fs)s∈[0,t] is generated by d ′-dim Wiener process and
σ((Xs)s≤t) = Ft .

Take a partition of [0,T ] denoted

π := {t = t0 < · · · < tNsteps = T}

and consider a discretization of (Xs)s∈[0,T ] by (X π
ti

)
Nsteps

i=0 .
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Learning L2-orthogonal projection
Theorem 1
Let X ∈ L2(F). Let G ⊂ F be a sub σ-algebra. There exists a unique
random variable Y ∈ L2(G) such that Y = E[X|G] and

E[|X − Y|2] = inf
η∈L2(G)

E[|X − η|2].

Take X := ΞT , G := Ft = σ((Xs)s∈[0,t]) so

Vt = argmin
η∈L2(Ft)

E[|ΞT − η|2].

Doob–Dynkin Lemma implies that for any η ∈ L2
(
σ((Xs∧t)s∈[0,T ])

)
there

is h : [0,T ]× C ([0,T ];Rd)→ R measurable s.t. η = h(t, (Xs∧t)s∈[0,T ]).

So
E[|ΞT − Vt |2] = inf

h
E[|ΞT − h(t, (Xs∧t)s∈[0,T ])|2]

Infimum over measurable functions h : [0,T ]× C ([0,T ];Rd)→ R

10 / 35



Learning L2-orthogonal projection II

Network:

E[|ΞT − Vt |2] ≈ inf
Ψ∈Π

E[|ΞπT − (RΨ)(t, (Xπ
ti∧t)i=0,1,...,Nsteps)|2]

and so

Vt ≈ ârgmin
Ψ∈Π

E[|ΞπT − (RΨ)(t, (X π
ti∧t)i=0,1,...,Nsteps)|2] .

Here:

i) ΞπT , Xπ denote numerical approximations.

ii) Hat over arg min denotes the we will use SGD (and so won’t
necessarily find actual minimum).
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Learning L2-orthogonal projection III

Algorithm: Projection solver

Initialisation: Ψ0 ∈ Π, Ntrn ∈ N large
for i : 1 : Ntrn do

Generate (x itn)
Nsteps

n=0 from (Xs)s∈[0,T ].

Compute Ξπ,iT := G ((Xπ,i
tk )k=0,1,...,Nsteps).

end for
Starting with Ψ0, use SGD to find Ψ�,Ntrn , where

Ψ�,Ntrn = ârgmin
θ

1

Ntrn

Ntrn∑
i=1

Nsteps−1∑
k=0

[|Ξπ,iT − (RΨ)(tk , (x
i
tk∧tj )j=0,1,...,Nsteps)|2]

return Ψ�,Ntrn .

I Works with incomplete markets but no (direct) access to hedging
strategy.

I In Markovian setting automatic differentiation gives hedging strategy.

12 / 35



Learning martingale representation I

Assume complete market (d = d ′). Then (classical) martingale
representation: ∃Z which is F adapted and

Vt = ΞT −
∫ T

t
Zs dWs .

With functional Itô calculus

Vt = G
(
(Xs)s∈[0,T ]

)
−
∫ T

t
∇ωG

(
(Xr∧s)r∈[0,T ]

)
dXs .

See Cont and Fournié [2].
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Learning martingale representation II
Aim: use Monte Carlo and Machine Learning to obtain Z . Why?

i) You also get V .

ii) You get the hedging strategy.

With the partition π of [0,T ] in mind

Vtm = Vtm+1 +

∫ tm+1

tm

Zs dWs for m = 0, 1, . . . ,Nsteps − 1,

VtNsteps
= ΞT .

Approximate by two networks with (possibly) different size / architecture
Ψ ∈ ΠΨ, Φ ∈ ΠΦ:

Vtm ≈ (RΨ)
(
tm,
(
Xπ
s∧tm

)
s∈[0,T ]

)
and Ztm ≈ (RΦ)

(
tm,
(
Xπ
s∧tm

)
s∈[0,T ]

)
.

Get consistency condition:

0 ≈ (RΨ)
(
tm+1,

(
X π
s∧tm+1

)
s∈[0,T ]

)
− (RΨ)

(
tm,
(
Xπ
s∧tm

)
s∈[0,T ]

)
+ (RΦ)

(
tm,
(
Xπ
s∧tm

)
s∈[0,T ]

) (
Wtm+1 −Wtm

)
=: Eπm+1(Ψ,Φ) .
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Learning martingale representation III
Initialisation: Ψ0, Φ0, Ntrn

for i : 1 : Ntrn do
Generate samples (w i

tn)
Nsteps

n=0 , use these to generate (xπ,itn )
Nsteps

n=0 by

approximating X = (Xs)s∈[0,T ], generate Ξπ,iT .
end for
Starting with Ψ0,Φ0, use SGD to find (θ�,Ntrn ,Ψ�,Ntrn) where

(Ψ�,Ntrn ,Φ�,Ntrn) :=ârgmin
(Ψ,Φ)

1

Ntrn

Ntrn∑
i=1

[ ∣∣∣Ξπ,iT − (RΨ)(T , (xπ,itk )k=0,1,...,Nsteps)
∣∣∣2

+

Nsteps−1∑
m=0

|Eπ,i (Ψ,Φ)m+1|2
]
,

Eπ,i (Ψ,Φ)m+1 :=(RΨ)
(
tm+1,

(
xπ,is∧tm+1

)
s∈[0,T ]

)
− (RΨ)

(
tm,
(
xπ,is∧tm

)
s∈[0,T ]

)
+ (RΦ)

(
tm,
(
Xπ,i
s∧tm

)
s∈[0,T ]

) (
w i
tm+1
− w i

tm

)
.

return (Ψ�,Ntrn ,Φ�,Ntrn).
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Learning martingale representation - minimizing variance I

Recall

Vt = ΞT −
∫ T

t
Zs dWs .

Monte Carlo: say Z i , W i , Ξi
T are iid samples of Z , W , Ξ. Then for

VNt :=
1

N

N∑
i=1

(
Ξi
T −

∫ T

t
Z i
s dW

i
s

)
we have

i) Unbiased estimator: E
[
VNt |Ft

]
= Vt ,

ii) Zero variance estimator: Var
[
VNt |Ft

]
= 0.

Use variance as objective in learning.
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Learning martingale representation - minimizing variance II
Initialisation: Φ0, Ntrn

for i : 1 : Ntrn do
Generate the samples of Wiener process increments (∆wtn)

Nsteps

n=1 .

Use (∆wtn)
Nsteps

n=1 to generate samples (x itn)
Nsteps

n=0 by simulating the
process X .
Use these to compute Ξi

T .
end for
Starting with Φ0 use SGD to approximate Φ�,Ntrn with objective

Φ�,Ntrn := ârgmin
Φ∈Π

1

Ntrn

Ntrn∑
i=1

(
Ξi
T − Vπ,Nsteps,i (Φ)

)2
,

where

Vπ,Nsteps,i (Φ) :=

Nsteps−1∑
m=0

(RΦ)
(
tm, (x

i
tk∧tm)k=0,1,...,Nsteps

)
(w i

tm+1
− w i

tm) .

return Φ�,Ntrn .
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Learning martingale representation - control variate I

Recall that with

VNt :=
1

N

N∑
i=1

(
Ξi
T −

∫ T

t
Z i
s dW

i
s

)

we have E
[
VNt |Ft

]
= Vt , Var

[
VNt |Ft

]
= 0.

With

VN,π :=
1

N

N∑
i=1

Ξi
T −

Nsteps−1∑
k=0

Z i
tk

(
W i

tk+1
−Wtk

)
we have E

[
VN,π|Ft

]
≈ V0, Var

[
VN,π|Ft

]
> 0 but small.

Aim: Use stochastic integral as control variate.
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Learning martingale representation - control variate II
With

VN,π,Φ,λt :=
1

N

N∑
i=1

(
Ξi
T−λ

Nsteps−1∑
k=0

(RΦ)(tk , (X
i
tj∧tk )j=0,1,...,Nsteps) ∆W i

tk+1︸ ︷︷ ︸
=:MΦ

)
.

The optimal coefficient λ∗,Φ that minimises the variance is

λ∗,Φ =
Cov[ΞT ,M

Φ]

Var[MΦ]
.

Variance reduction factor is 1
1−(ρπ,Φ)2 where

ρπ,Φ =
Cov(ΞT ,M

Φ)√
Var[ΞT ]Var[MΦ]

.

Objective:

Φ�,π := argmin
Φ∈Π

[
1−

(
ρπ,Φ

)2
]
.
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Learning martingale representation - control variate III
Initialisation: Φ0, Ntrn

for i : 1 : Ntrn do
Generate the samples of Wiener process increments (∆wtn)

Nsteps

n=1 .

Use (∆wtn)
Nsteps

n=1 to generate samples (x itn)
Nsteps

n=0 by simulating the

process X . Use (x itn)
Nsteps

n=0 to compute Ξi
T .

end for
Starting with Φ0 use SGD to find

Φ�,Ntrn :=ârgmin
Φ∈Π

1−

 ∑Ntrn
i=1(M i ,Φ −MΦ)(Ξi

T − ΞT )(∑Ntrn
i=1(ΞT − ΞT )2

∑Ntrn
i=1(M i ,Φ −MΦ)2

)1/2


2  ,

where ΞT :=
∑Ntrn

i=1 Ξi
T , MΦ :=

∑Ntrn
i=1 M

i ,Φ and

M i ,Φ :=
Ntrn∑
i=1

Nsteps−1∑
k=0

(RΦ)(tk , (X
i
tj∧tk )j=0,1,...,Nsteps) ∆W i

tk+1
.

return Φ�,Ntrn .
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Sanity check: exchange option

Method Confidence Interval Variance Confidence Interval Estimator

Monte Carlo [5.95× 10−7, 1.58× 10−6] [0.1187, 0.1195]

Martingale rep. - var. min. [4.32× 10−9, 1.14× 10−8] [0.11919, 0.11926]

Martingale rep. - corr. max. [2.30× 10−9, 6.12× 10−8] [0.11920, 0.11924]

Martingale rep. - two networks [4.13× 10−9, 1.09× 10−8] [0.11919, 0.11926]

MC + CV Margrabe [3.10× 10−9, 8.23× 10−9] [0.11919, 0.11925]

Error is time discretization arising even when exact form of martingale
representation term is used.
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Robustness example

Exchange option (Markovian) in d = 5 with random covariance matrix
(parametric approximation).

10 8 10 7 10 6 10 5 10 4 10 3

log of squared error

0

10

20

30

40

Histogram of log of squared error on test set

Clearly, there are input combinations where error is 10−3 rather than 10−6.
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On-line quality estimation with control variates and CLT

Say SGD converges to Φ�,π,N .

Approximation of martingale representation term gives access to control
variate with 0 expectation:

Nsteps−1∑
k=0

(RΦ)(tk , (X
i
tj∧tk )j=0,1,...,Nsteps) ∆W i

tk+1
=: M i ,Φ .

i) n-samples, evaluate 1
n

∑n
i=1 M

i ,Φ. If “far” from 0 things went wrong,

ii) evaluate

ρπ,Φ,n =

∑Ntrn
i=1(M i ,Φ −MΦ)(Ξi

T − ΞT )(∑Ntrn
i=1(ΞT − ΞT )2

∑Ntrn
i=1(M i ,Φ −MΦ)2

)1/2
.

If “far” from 1 things went wrong.
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Variance reduction - outside parameter range

Training for fixed volatility of 30% versus parametric (constant cost).

0.200 0.225 0.250 0.275 0.300 0.325 0.350 0.375
Volatility

0

20

40
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method
MC + CV Corr op
MC + CV Var op
MC + CV Margrabe
MC + CV BSDE solver
BSDE solver rand sigma

24 / 35



High dimensional Markovian example
Take d = 100,

g(S) := max

(
0, S1 − 1

d − 1

d∑
i=2

S i

)
.

Method Confidence Interval Variance Confidence Interval Estimator

Monte Carlo [2.03× 10−7, 5.41× 10−7] [0.0845, 0.0849]

Martingale rep. - var. min. [4.13× 10−9, 1.09× 10−8] [0.08484, 0.08490]

Martingale rep. - corr. max. [3.80× 10−9, 1.0× 10−8] [0.08487, 0.08493]

Martingale rep. - two networks [5.32× 10−9, 1.41× 10−8] [0.08485, 0.8492]

Table: Results on exchange option problem on 100 assets, Monte Carlo vs.
control variate with 106 samples.

Model trained for any initial asset price (log-normal)6.

All results from Sabate-Vidales, Š, Szpruch [3].
6With all parameters fixed we get variance reduction factor 5 · 105 - too easy.
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LSTM vs FFN
Using the “martingale representation - minimizing variance” method:

0 5000 10000 15000 20000 25000 30000
Training iterations

0.002

0.004

0.006

0.008

0.010

Lo
ss

 o
n 

te
st

 se
t

LSTM on path - 100 timesteps
LSTM on path signature - 100 timesteps
LSTM on path - 50 timesteps
LSTM on path signature - 50 timesteps

0 5000 10000 15000 20000 25000 30000
Training iterations

Lo
ss

 o
n 

te
st

 se
t

Feedforward net on path - 100 timesteps
Feedforward net on path signature - 100 timesteps
Feedforward net on path - 50 timesteps
Feedforward net on path signature - 50 timesteps

i) “Lookback option” [maxt≤T (X 1
t + X 2

t )− (X 1
T + X 2

T )]+.

ii) LSTM training objective converges to minimum error due to time
discretization.

iii) Signatures help training for LSTM (but not decisive).

iv) FFN don’t learn in this setup with SGD.
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Choosing network sizes

Classical view:
A B

Fig. 1. Curves for training risk (dashed line) and test risk (solid line). (A) The classical U-shaped risk curve arising from the bias–variance trade-off. (B) The
double-descent risk curve, which incorporates the U-shaped risk curve (i.e., the “classical” regime) together with the observed behavior from using high-
capacity function classes (i.e., the “modern” interpolating regime), separated by the interpolation threshold. The predictors to the right of the interpolation
threshold have zero training risk.

networks and kernel machines trained to interpolate the training
data obtain near-optimal test results even when the training data
are corrupted with high levels of noise (5, 6).

The main finding of this work is a pattern in how perfor-
mance on unseen data depends on model capacity and the
mechanism underlying its emergence. This dependence, empir-
ically witnessed with important model classes including neural
networks and a range of datasets, is summarized in the “double-
descent” risk curve shown in Fig. 1B. The curve subsumes the
classical U-shaped risk curve from Fig. 1A by extending it beyond
the point of interpolation.

When function class capacity is below the “interpolation
threshold,” learned predictors exhibit the classical U-shaped
curve from Fig. 1A. (In this paper, function class capacity is iden-
tified with the number of parameters needed to specify a function
within the class.) The bottom of the U is achieved at the sweet
spot which balances the fit to the training data and the suscepti-
bility to overfitting: To the left of the sweet spot, predictors are
underfitted, and immediately to the right, predictors are overfit-
ted. When we increase the function class capacity high enough
(e.g., by increasing the number of features or the size of the neu-
ral network architecture), the learned predictors achieve (near)
perfect fits to the training data—i.e., interpolation. Although
the learned predictors obtained at the interpolation threshold
typically have high risk, we show that increasing the function
class capacity beyond this point leads to decreasing risk, typically
going below the risk achieved at the sweet spot in the “classical”
regime.

All of the learned predictors to the right of the interpolation
threshold fit the training data perfectly and have zero empiri-
cal risk. So why should some—in particular, those from richer
functions classes—have lower test risk than others? The answer
is that the capacity of the function class does not necessarily
reflect how well the predictor matches the inductive bias appro-
priate for the problem at hand. For the learning problems we
consider (a range of real-world datasets as well as synthetic
data), the inductive bias that seems appropriate is the regular-
ity or smoothness of a function as measured by a certain function
space norm. Choosing the smoothest function that perfectly fits
observed data is a form of Occam’s razor: The simplest expla-
nation compatible with the observations should be preferred (cf.
refs. 7 and 8). By considering larger function classes, which con-
tain more candidate predictors compatible with the data, we
are able to find interpolating functions that have smaller norm
and are thus “simpler.” Thus, increasing function class capacity
improves performance of classifiers.

Related ideas have been considered in the context of margins
theory (7, 9, 10), where a larger function class H may permit
the discovery of a classifier with a larger margin. While the
margins theory can be used to study classification, it does not

apply to regression and also does not predict the second descent
beyond the interpolation threshold. Recently, there has been an
emerging recognition that certain interpolating predictors (not
based on ERM) can indeed be provably statistically optimal or
near optimal (11, 12), which is compatible with our empirical
observations in the interpolating regime.

In the remainder of this article, we discuss empirical evidence
for the double-descent curve and the mechanism for its emer-
gence and conclude with some final observations and parting
thoughts.

Neural Networks
In this section, we discuss the double-descent risk curve in the
context of neural networks.

Random Fourier Features. We first consider a popular class of non-
linear parametric models called random Fourier features (RFF)
(13), which can be viewed as a class of 2-layer neural networks
with fixed weights in the first layer. The RFF model family
HN with N (complex-valued) parameters consists of functions
h : Rd !C of the form

h(x ) =
NX

k=1

ak�(x ; vk ) where �(x ; v):=e
p�1hvk ,xi,

and the vectors v1, . . . , vN are sampled independently from the
standard normal distribution in Rd . (We consider HN as a class
of real-valued functions with 2N real-valued parameters by tak-
ing real and imaginary parts separately.) Note that HN is a
randomized function class, but as N !1, the function class
becomes a closer and closer approximation to the reproducing
kernel Hilbert space (RKHS) corresponding to the Gaussian
kernel, denoted by H1. While it is possible to directly use
H1 [e.g., as is done with kernel machines (14)], the random
classes HN are computationally attractive to use when the sam-
ple size n is large but the number of parameters N is small
compared with n .

Our learning procedure using HN is as follows. Given data
(x1, y1), . . . , (xn , yn) from Rd ⇥R, we find the predictor hn,N 2
HN via ERM with squared loss. That is, we minimize the empiri-
cal risk objective 1

n

Pn
i=1(h(xi)� yi)

2 over all functions h 2HN .
When the minimizer is not unique (as is always the case when
N >n), we choose the minimizer whose coefficients (a1, . . . , aN )
have the minimum `2 norm. This choice of norm is intended as
an approximation to the RKHS norm khkH1 , which is generally
difficult to compute for arbitrary functions in HN . For prob-
lems with multiple outputs (e.g., multiclass classification), we use
functions with vector-valued outputs and the sum of the squared
losses for each output.

15850 | www.pnas.org/cgi/doi/10.1073/pnas.1903070116 Belkin et al.

Modern view from Belkin, Hsu, Ma and Mandal [4]:
A B

Fig. 1. Curves for training risk (dashed line) and test risk (solid line). (A) The classical U-shaped risk curve arising from the bias–variance trade-off. (B) The
double-descent risk curve, which incorporates the U-shaped risk curve (i.e., the “classical” regime) together with the observed behavior from using high-
capacity function classes (i.e., the “modern” interpolating regime), separated by the interpolation threshold. The predictors to the right of the interpolation
threshold have zero training risk.

networks and kernel machines trained to interpolate the training
data obtain near-optimal test results even when the training data
are corrupted with high levels of noise (5, 6).

The main finding of this work is a pattern in how perfor-
mance on unseen data depends on model capacity and the
mechanism underlying its emergence. This dependence, empir-
ically witnessed with important model classes including neural
networks and a range of datasets, is summarized in the “double-
descent” risk curve shown in Fig. 1B. The curve subsumes the
classical U-shaped risk curve from Fig. 1A by extending it beyond
the point of interpolation.

When function class capacity is below the “interpolation
threshold,” learned predictors exhibit the classical U-shaped
curve from Fig. 1A. (In this paper, function class capacity is iden-
tified with the number of parameters needed to specify a function
within the class.) The bottom of the U is achieved at the sweet
spot which balances the fit to the training data and the suscepti-
bility to overfitting: To the left of the sweet spot, predictors are
underfitted, and immediately to the right, predictors are overfit-
ted. When we increase the function class capacity high enough
(e.g., by increasing the number of features or the size of the neu-
ral network architecture), the learned predictors achieve (near)
perfect fits to the training data—i.e., interpolation. Although
the learned predictors obtained at the interpolation threshold
typically have high risk, we show that increasing the function
class capacity beyond this point leads to decreasing risk, typically
going below the risk achieved at the sweet spot in the “classical”
regime.

All of the learned predictors to the right of the interpolation
threshold fit the training data perfectly and have zero empiri-
cal risk. So why should some—in particular, those from richer
functions classes—have lower test risk than others? The answer
is that the capacity of the function class does not necessarily
reflect how well the predictor matches the inductive bias appro-
priate for the problem at hand. For the learning problems we
consider (a range of real-world datasets as well as synthetic
data), the inductive bias that seems appropriate is the regular-
ity or smoothness of a function as measured by a certain function
space norm. Choosing the smoothest function that perfectly fits
observed data is a form of Occam’s razor: The simplest expla-
nation compatible with the observations should be preferred (cf.
refs. 7 and 8). By considering larger function classes, which con-
tain more candidate predictors compatible with the data, we
are able to find interpolating functions that have smaller norm
and are thus “simpler.” Thus, increasing function class capacity
improves performance of classifiers.

Related ideas have been considered in the context of margins
theory (7, 9, 10), where a larger function class H may permit
the discovery of a classifier with a larger margin. While the
margins theory can be used to study classification, it does not

apply to regression and also does not predict the second descent
beyond the interpolation threshold. Recently, there has been an
emerging recognition that certain interpolating predictors (not
based on ERM) can indeed be provably statistically optimal or
near optimal (11, 12), which is compatible with our empirical
observations in the interpolating regime.

In the remainder of this article, we discuss empirical evidence
for the double-descent curve and the mechanism for its emer-
gence and conclude with some final observations and parting
thoughts.

Neural Networks
In this section, we discuss the double-descent risk curve in the
context of neural networks.

Random Fourier Features. We first consider a popular class of non-
linear parametric models called random Fourier features (RFF)
(13), which can be viewed as a class of 2-layer neural networks
with fixed weights in the first layer. The RFF model family
HN with N (complex-valued) parameters consists of functions
h : Rd !C of the form

h(x ) =

NX

k=1

ak�(x ; vk ) where �(x ; v):=e
p�1hvk ,xi,

and the vectors v1, . . . , vN are sampled independently from the
standard normal distribution in Rd . (We consider HN as a class
of real-valued functions with 2N real-valued parameters by tak-
ing real and imaginary parts separately.) Note that HN is a
randomized function class, but as N !1, the function class
becomes a closer and closer approximation to the reproducing
kernel Hilbert space (RKHS) corresponding to the Gaussian
kernel, denoted by H1. While it is possible to directly use
H1 [e.g., as is done with kernel machines (14)], the random
classes HN are computationally attractive to use when the sam-
ple size n is large but the number of parameters N is small
compared with n .

Our learning procedure using HN is as follows. Given data
(x1, y1), . . . , (xn , yn) from Rd ⇥R, we find the predictor hn,N 2
HN via ERM with squared loss. That is, we minimize the empiri-
cal risk objective 1

n

Pn
i=1(h(xi)� yi)

2 over all functions h 2HN .
When the minimizer is not unique (as is always the case when
N >n), we choose the minimizer whose coefficients (a1, . . . , aN )
have the minimum `2 norm. This choice of norm is intended as
an approximation to the RKHS norm khkH1 , which is generally
difficult to compute for arbitrary functions in HN . For prob-
lems with multiple outputs (e.g., multiclass classification), we use
functions with vector-valued outputs and the sum of the squared
losses for each output.
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Conclusion: Network should have many more parameters than training
data points.
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Representation theorems

I Hornik [5]: “any level of accuracy in approximation of a continuous
function on a compact set is achievable by sufficiently wide one
hidden layer feedforward network with appropriate parameters.”

I Hornung et al. [6] and related: “solutions to many PDEs (e.g.
Black–Scholes) can be approximated to any accuracy by a sufficiently
deep and wide feedforward network with appropriate parameters
without suffering from curse of dimensionality .”

I But does SGD reach such parameters? Supervised learning is
non-convex.
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Non-covex minimization problem

With ϕ̂(x , z) = βϕ(α · z) for x = (α, β) ∈ (R×RD)n, we should minimize,

(R× RD)n 3 x 7→
∫
R×RD

Φ

(
y − 1

n

n∑
i=1

ϕ̂(x i , z)

)
ν(dy , dz)︸ ︷︷ ︸

=:F (x)

+
σ̄2

2
|x |2︸︷︷︸

=:U(x)

,

which is non-convex.

Supervised learning:

i) Φ : R→ R+ given, convex, e.g. Φ(x) = |x |2

ii) sample learning data from measure ν ∈ P(R× RD) i.e. “big data”

iii) aim is to find optimal network parameters w.r.t. Φ.
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Mean-field limit and convexity

Assume that x i are i.i.d. samples from some measure m ∈ P(Rd). Due to
law of large numbers, for each fixed z ∈ RD we have

1

n

n∑
i=1

ϕ̂(x i , z)→
∫

Rd

ϕ̂(x , z)m(dx) as n→∞ .

The search for the optimal measure m∗ ∈ P(Rd) amounts to minimizing

P(Rd) 3 m 7→
∫
R×RD

Φ

(
y −

∫
Rd

ϕ̂(x , z)m(dx)

)
ν(dy , dz) =: F (m),

which is convex as long as Φ is i.e. for any m,m′ ∈ P(Rd), α ∈ [0, 1] we
have

F ((1− α)m + αm′) ≤ (1− α)F (m) + αF (m′) .

Observed in the pioneering works of Mei, Misiakiewicz and Montanari [7],
Chizat and Bach [8] as well as Rotskoff and Vanden-Eijnden [9].

Study V σ(m) := F (m) + σ2

2 H(m).
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Mean-field Langevin dynamics
For some F : P(Rd)→ R and a Gibbs measure g :

g(x) = e−U(x) with U s.t.

∫
Rd

e−U(x) dx = 1

consider mean-field Langevin equation:dXt = −
(
DmF (mt ,Xt) +

σ2

2
∇U(Xt)

)
dt + σdWt , t ∈ [0,∞) ,

mt = Law(Xt) , t ∈ [0,∞) .

(1)

Corresponding gradient flow:

∂tm = ∇ ·
((

DmF (m, ·) +
σ2

2
∇U

)
m +

σ2

2
∇m

)
on (0,∞)× Rd .

If m′ ∈ Iσ where

Iσ :=

{
m ∈ P(Rd) :

δF

δm
(m, ·) +

σ2

2
log(m) +

σ2

2
U is a constant

}
then m′ = arg minm∈P(Rd ) V

σ.
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Mean-field results
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Conclusions:

I Machine learning can approximate high dimensional and parametric
models of pricing and hedging.

I To get learning convergence requires careful design and tuning.

I Unanswered questions about convergence and robustness.

I Can be partially mitigated by on-line performance tests based on
control variates.

I LSTM for path dependent.

I Separate data generation from network training.
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Outlook - Research

I Do machine learning models in finance suffer from adversarial
attacks? i.e. can we find inputs where trained network fails
spectacularly?

I Signatures in high dimension as dimension reduction method .

I Comparisons with existing algorithms for path-dependent derivatives
e.g. Cont, Lu [11].

Outlook - Vega

I Invitation only “Nicenet” launching Q4 2019 (get in touch to get
access).

I Working on smart product language coming in 2020.

I Public “Testnet” in 2020 (still no real money).

I Ongoing research: distributed model calibration, better liquidity
pricing, market making stake modelling, . . .
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