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Neural networks

We are told these, but much bigger, will run everything. ..
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Neural networks

.. because they work really well for:

i) image recognition, see e.g. Huang et. al. [9],

ii) speech recognition, e.g. Dahl et. al. [3],

)
i)
iii) numerical solution to PDEs, e.g. Vidales et. al. [15],
iv) dynamic hedging in finance, e.g. [1],

) -

\Y

3/49



Until they don't

+.007 x =
£4 sign(VzJ (0, z,y)) esign(VgJ (0, 7))
“panda” “nematode” “gibbon”
57.7% confidence 8.2% confidence 99.3 % confidence

From Goodfellow et. al. [4].
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Until they don't

+ .441 x

M I

argmaxV,J(0,,y);

action taken: down

action taken: up
original input adversarial input

From Huang et. al. [10].

5/49



What is a neural net?

Parametric description of a function.
Fix

i) an activation function ¢ : R — R,

ii) number of layers L € N,

iv) the size of the output layer /| € N,
v) the space of parameters
M= R xR x R x RF) x - x (R

vi) the network parameters

V= ((a},8Y),...,(at, phy) en.

)
)
i) the size of input to each layer k given by I € N, k =0, ...
)
)

x R

L1,

/L

)7
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The neural network

V= ((ohB8Y),.... (", 8h) en

now defines a function RV : R” — R/ given recursively, for xg € R”, by
20 € R”, by

(RV)(2°) = atzt=t 4 L, zk:golk(akzk_1+ﬁk),k:1,...,L71.

Here ¢/ : Rk — R is given, for z = (z1,...,2,)" € Rk, by
¢M(2) = (p(z1), . (2) "
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Example: One-hidden-layer network

let b=d, let = n, let B2=0€R, B =0ecR", al € R™ We will
denote, for i € {1,...,/°}, its i-th row by a} € R™9. Let

a? = (%, ,%)T, where ¢; € R. The neural network is

= (a1, 8, (0, 57)).

0 . . .
For z € R, its reconstruction can be written as

(RV")(2) = %" (a'2) = = 3 ciplal - 2).
=1
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Universal approximation theorem

If an activation function ¢ is bounded, continuous and non-constant, then
for any compact set K C R the set

{(R\U) ‘RY = R : (RW) given above
with L = 2 for some nEN,an,ﬁjl ER,a} ERd,jzl,...,n}

is dense in the space of continuous functions from K to R. See e.g.
Hornik [8, Theorem 2].
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PDE approximation without the curse of dimensionality |

Consider
Orv 4 tr[ad2v] + bdxv =0 in [0, T) x RY,
v(T,)=g onRY,

where a(x) = 3diag(x)o [diag(x)o]" and b(x) = diag(x)u. Let (Bt)eejo, 1]

be an R? -valued Wiener process. The SDE arising in the Feynman—Kac
representation for v(t, x) is

dl
dX{ = Xip'dt + X[ > oVdBl, te[t, T], X =x
j=1

and its solution is

d’ d'
X5 = x"exp {(M’—2 E (a”)2>(T—t)+ g UU(BJT—B{)} = Wx'.

j=1 j=1
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PDE approximation without the curse of dimensionality |l

One-hidden-layer NN denoted ¢ s.t. g(x) = (R®)(x). Say
o= ((W{",B}"),(WQ’,B;")) e (R™9 x RY) x (RM! x RY)

so that (R®)(x) = WSa(WPx + BY) + BS. Further let us define

)4/1 lgf
WY =diagWy, ... oW | o | eRVY BY = 1 | eRV,
CRNx Nd Whn Bf
€RNdxd

1

W;’::N

WS, ... W) e RN BY .= BY ¢ R!
and

V= ((W{“,B}"),(W;’,Bg“)) e (RV*4 x RV) x (RN x RY) |
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PDE approximation without the curse of dimensionality I

Then for any x € R? we have that

(R¥)(x) = WY ANOWY x + BY) + BY

) WP Wix + BY
TV WA : + B3
WEWpx + B
1 N
==y (Wg’a(wf’wkx +BY) + B§’>
k=1
1 N N
== (Wg’a(wf’xr,k +B?) + Bz) Z (R®) (X7
k=1 k:
1 N
= 2_ 8(X74) = E[gWex)] = v(t,x).
k=1

See series of works by Grohs, Hornung, Jentzen and von
Wurstemberger [5] and Jentzen, Salimova and Welti [11].
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PDE approximation without the curse of dimensionality 1V

Note for later that

N
(RW)(x) = %Z (R®) (Wiex)
k=1
=/, (R®)(y x)m"(dy),
where
N 1
m" = N Z o, -
k=1
In fact

v(t,x) = /Rd (R®)(y x)m*(dy) where m* is the law of X7*.
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What is understood in deep learning

i) Representation theorems for various settings,

ii) Deep networks are a way to reduce number of parameters ,

i) ...
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What is not so well understood in deep learning

i) Why does supervised learning (nonconvex optimization) work?

QLJCLKV& .
(—uw\c,\\'vv\ %»ux&\ocaﬂz N
i \uhas 5.9"
eroughh b
P
f  Lpace o‘('
1 R r

FW ete S
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What is not so well understood in deep learning

i) How come massively over-parametrized models generalize well?
P,@ALC}\‘OW

Vrehcb\in\—

v

nreeh,
. wf wt

See Hastie, Montanari, Rosset and Tibshirani [7].

16 / 49



Supervised learning

So we have mathematical theory that shows that optimal parameters for
the network exists. How to find them?

Supervised learning:

i) ®:R — RT given, convex, e.g. ®(x) = |x|?
ii) sample learning data from measure v € P(R x RP) i.e. “big data”

iii) aim is to find optimal network parameters w.r.t. ®.

17 /49



Non-covex minimization problem

With @(x, z) = By(a-z) for x = (a, B) € (R x RP)", we should minimize,

1 , 52
(R xRP)" 5 x <D<y - = Z gb(x’,z)) v(dy, dz) +Z x|?
RxRP n= 2 \,(./)
=:U(x

~~

=:F(x)
which is non-convex.

Gradient descent with “learning rate” 7 > 0:
. . 5% i )
Xjp1 =X — TV i |:F(Xk)+2|XH:| , i=1,...,n.

Here x' = (a/, ') € R x RP.
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Approximation with gradient descent
In practice noisy, regularized, gradient descent algorithms are used:

i i : I - aloi
A =xrr [ o (y ~ S0, z)) V.d(xi. 2) v(dy, dz)
RxRP nj:]_

=2 . .
- % VaU) +5vTe

where (yk, zx)ken are i.i.d. samples from v and {L are i.i.d. samples from
N(O, I4).
Donsker's invariance theorem tells us that with th,i = n~1/2 ZL"”

have Wt("’i) —> W, as n — oo and the limiting dynamics is (after
re-scaling)

i i 1S 5y (X!
axi = [ oy 33002 VX 2) vldy )
RxRP nj:]_

—2
5 V(X )} dt + odW/ |
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Mean-field limit and convexity

Assume that x' are i.i.d. samples from some measure m € P(RY).

Due to law of large numbers, for each fixed z € RP we have

1 o ,
Z@(X',z)a/ @(x,z) m(dx) as n— 0.
= Re

The search for the optimal measure m* € P(R?) amounts to minimizing

PRY) > m RXRch(y /Rd ?(x, 2) m(dx))u(dy, dz) =: F(m),

which is convex as long as ® is.

Observed in the pioneering works of Mei, Misiakiewicz and Montanari [12],
Chizat and Bach [2] as well as Rotskoff and Vanden-Eijnden [14].

20 /49



Propagation of chaos

On the level of the particle system

dX;':[/ <y—2so><{, )th', 2)v(dy, dz)
RxRDP

—2
-5 VU(X; )} dt + odWj ,

we expect to have, as n — oo,
o2

my = Law(X;) t € [0,00).

Fokker—Planck
2 2

om=V - <<DmF(m,-) + %VU)m+ J2Vm> on (0,00) x RY.
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Measure derivatives
Example: If x,y € R? then V,(x,y) = y.

Example: v(m) = [pq f(x) m(dx) = (m, f). So perhaps we want 2% = f?

Definition 1 (Functlonal derivative)

For V : P — R we say the functional derivative exists if there is a
continuous map % : P x RY — R such that for any m, m’ € P

V(1 —s)m+sm') — V(m) / %

lim . = | so(my)d(m' —m)(y).

Indeed for v(m) = (m, f) we have

im (1 —s)m+ sm) —
sI\(O S

imf) _ (m' —m, f)= /Rd f(y)d(m —m)(y).

So g—,‘r’, = f (up to a constant, normalize so that functional derivative
integrates to 0).
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Measure derivatives

Definition 2 (Intrinsic derivative)

For V : P, — R we say the intrinsic derivative exists if %—V P, x R 5 R
is continuously differentiable in the 2nd variable and we say the function
D,V : Py x RY — R given by

DV (m, x) = ng—:(m, X)

is the intrinsic derivative.

Indeed for v(m) = (m, f) we have

Dmv(m, x) = Vif(x).
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Energy functional
Fix a Gibbs measure g:
g(x) = e V™) with U st. / e V) gy = 1.
Rd

Define the relative entropy H for m € P(RY) as:

/ m(x) log (m(x)) dx if mis a.c. w.r.t. Lebesgue measure,
R g(x)

0o otherwise.

H(m) =

We will study V7(m) := F(m) + % H(m).
We have 28 (m) = log(m) — U and so

5j
om

mV—(m)=Vm—mVU

which is the term in the Fokker—Planck due to the noise.
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Assumptions |

Assumption 1

F € C! is convex and bounded from below.

Assumption 2
The function U : R — R belongs to C*°. Further,
i) there exist constants Cy > 0 and C[, € R such that

VU(x)-x > Cy|x|* + C|, forall xecRY.

i) VU is Lipschitz continuous.
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Convergence when o \, 0

Proposition 3

Assume that F is continuous in the topology of weak convergence. Then
the sequence of functions V° = F + ”72H converges in the sense of
-convergence to F as o \, 0. In particular, given a minimizer m* of
V7, we have

limsup F(m*°) = inf F(m).
msup (m™) el (m)

Proof outline: To get liminf,, o V" (my,) > F(m) use |.s.c. of entropy.

To get limsup,, o V7"(m,) < F(m) smooth with heat kernel and use
assumption of quadratic growth of U. |
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Characterization of the minimizer

Proposition 4

Under Assumption 1 and 2, the function V° has a unique minimizer
m* € Po(RY) which is absolutely continuous with respect to Lebesgue
measure and satisfies

oF
om

2

o2 “ O ) «
— log(m™) + 7U is a constant, m* — a.s.

(", )+

On the other hand if m' € I, where

2 2
I, = {m c P(]Rd) : g—:(m, )+ % log(m) + %U is a constant}

then m' = arg min ,cp(ray V7.
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Proof outline: Step 1: Sublevel sets of the entropy are compact so
consider, for some fixed m s.t. V(m) < oo,

0.2
S = {m G Hm) < V(m) - inf F(m,)} .

Since V is |.s.c. it attains its minimum on S, say m* so V(m*) < V(m)
forall me S.
Note that m € S. If m ¢ S then

2

T H(m)+ inf  F(m') < V(m)

Vim* )< V(m) < —
(m™) < V(m) < 2 m'eP(RY)

so m* is global minimum of V. Since V is strictly convex it is unique.
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Step 2: Assume m* € Z,, and show that for any € > 0 and m € P(RY)
you have
V(1 —em*)+em)— V(m*)
€

oF o? o?
> _— * . — * —_ — * = .
_/Rd<6 (m,)+2|ogm+2U>(m m*)(dx) =0
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Step 3: Assume m* is the minimizer of V. Let m € P(RY) be arbitrary.

Use definition of linear functional derivative to show that

g

0< /Rd(m — m*)(x) <§r,;(m*7x) + % log(m*(x)) + %U(x) + 2) dx.
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Connection to gradient flow

If m* € 7, then

5F 2 2
(m*, )+ % log(m™) + 7 _U is a constant, m* — a.s.

om 2

and so (formally, apply V, multiply by m*, apply V- )
o? o2
v ((DmF(m )+ 7vu)m + 5 Vm ) =0

and so it is (formally) the stationary solution of

o2 o2
om=YV - ((DmF(m, )+ 7VU)m + 2Vm) on (0,00) x R?.
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Mean-field Langevin equation

We see that if

2
dX; = — (DmF(mt,Xt) + UQVU(Xr)> dttodWe tef0.00) )
my = LaW(Xt) t e [0, OO)

has a solution then (m;)¢>q solves the Fokker—Planck equation arising
from the 1st order condition i.e.

0'2 0'2
om=YV - ((DmF(m,-) + 7VU)m+ 2Vm) on (0,00) x R?.
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Assumptions ||

Assumption 5

Assume that the intrinsic derivative Dy F : P(R?) x RY — RY of the
function F : P(RY) — R exists and satisfies the following conditions:

i) DmF is bounded and Lipschitz continuous, i.e. there exists Ck > 0
such that for all x,x € R? and m, m’ € P,(RY)

|DmF(m, x) — D F(m',x")| < Cr(|x — X'| + Wa(m, m')) .

i) DmF(m,-) € C®(RY) for all m € P(RY).
i) VDuF : P(RY) x R? — RY x RY is jointly continuous.
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Proposition 6
If Assumptions 2 and 5 hold and if my € P»(RY) then:
i) the mean field Langevin SDE (1) has a unique strong solution,

i) given mg, ml € P2(R9) and denoting by (m¢)t>0, (m})e>0 the
marginal laws of the corresponding solutions to (1), we have for all
t > 0 that there is a constant C > 0 such that

Wa(mye, m},) < CWa(mg, mp) .
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Theorem 3
Let mg € P2(RY). Under Assumption 2 and 5, we have for any t > s > 0

V7 (me) — V7(ms)

//Rd

Proof outline: Follows from a priori estimates and regularity results on the

2

2
o’ Vm,( )—f—%VU(X) my(x) dx dr.

Dy F(m,, x) +—

r

nonlinear Fokker—Planck equation and the chain rule for flows of measures.
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Convergence

Theorem 4

Let Assumption 1, 2 and 5 hold true and mg € Up~2P,(R?). Denote by
(m¢)e>0 the flow of marginal laws of the solution to (1). Then, there
exists an invariant measure of (1) equal to m* := argmin,, V?(m) and

Whr(my,m*) — 0 as t — 0.

Proof key ingredients: Tightness of (m;):>o, Lasalle’s invariance principle,
Theorem 3, HWI inequality.
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Convergence, step 1: invariance

Let S(t)[mo] := m¢, marginals of solution to (1) started from myq.

From mo € U, Pp(RY) let

w(mo) = {u € Po(RY) : 3(ty)nen s.t. Wa(my,, 1) — 0 as n — oo} .

Then

i) w(mp) is nonempty and compact,
ii) if u € w(mg) then S(t)[p] € w(mo) for all t > 0,
i) if u € w(mg) then for any t > 0 there exists ' s.t. S(t)[p'] = p.
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Convergence, step 1: invariance

Then: from i) = there is /i1 € argmin p,c,(me) V(M)

from iii) Vt > 0 there is p s.t. S(t)[p] = M and by Theorem 3 for any
s > 0 we get

V(S(t + 9)[ul) < V(S(0)ll) = V().

from ii) S(t + s)[p] € w(mo) so V(S(t + s)[p]) > V(m). By Theorem 3

~ a2 Vim o? 2 -
D F(m, x) + - (x) + ?VU(X) m(x) dx.

_av(S(@)u) _
0= dt N __(}4;d

Due to the first order condition (Proposition 4) get m = m*.
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Convergence, step 2: HWI inequality

We want to show that if my, — m* then V(m;,, m*) — 0.

But V=F+ %ZH and H only l.s.c. So we need to show that

/ m* log(m™) dx > lim SUP/ m, log(me,) dx .
Rd RY

n—oo
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Convergence, step 2: HWI inequality

Otto, Villani [13, Theorem 3]:

Assume that v(dx) = e=Y)(dx) is a Pr(R?) measure s.t. W € C3(RY),
there is K € R s.t. OV > Kly. Then for any 1 € P(RY) absolutely
continuous w.r.t. v we have

H(ulw) < Walp,) (VTG - G Wanr) )

where [ is the Fisher information:

)= |

2

V log %(x) p(dx).
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Convergence, step 2: HWI inequality

We thus have
/d mt,,(Iog(mtn) — Iog(m*)) dx < Wh(my,, m*)(ﬂ—i— CWh(my,, m*))7
R

with
I =E Uv log (me,(Xe,)) = ¥ log (m"(X,,)) ﬂ .

Need to show sup, I, < co (estimate on Malliavin derivative of the change
of measure exponential).
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Convergence, step 3

Have m;, — m* for some t, — co. Moreover t — V/(m;) is non-increasing
so there is ¢ := lim,_00 V/(tn).

Use uniqueness of m* and step 2 to show that any other sequence V/(m; )
converges to the same ¢, w(mg) = {m*}, so Wa(m; ,, m*) — 0. [
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Assumption 7 (For exponential convergence)

Let 0 > 0 be fixed and the mean-field Langevin dynamics (1) start from
mo € Pp(R?) for some p > 2. Assume that there are constants C > 0,

Cr > 0 and Cy > 0 such that for all x,x' € R? and m, m’ € P1(RY) we
have

\DF(m, x) — DpF(m',x")| < Cr (\x — x|+ Wi (m, m/)> ,

(2)
DuF(m.0) < Cr(1+ [ Iyl m(dy)
(VU(x) = VU(X)) - (x = x') = Cylx = X[, 3)
IVU(x)| < Cy(L+ [x]),
where the constants satisfy
2 2 2
%(p—1)+3CF—|—%\VU(O)|—CU%<O. (4)

43 /49



Exponential convergence

Theorem 5
Let Assumptions 1 and 7 hold true. Then

Wa(me, m*) < eCF= Wy (mo, m*),
where (m;)¢>o is the flow of marginal laws of solution to (1).

Proof outline: Use “integrated Lyapunov condition” from Hammersley, S.
and Szpruch [6].

Main thing to show: for any m € P(R?), that

g 0'2
[ moxv mias) < Zpp — 1) + pCe + p TV U()
Rd

2 2 2
0 [ 5 p- 143+ SIVUO) - | x” ().
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Particle approximation of m*

E

Theorem 6
We assume that the 2nd order linear functional derivative of F exists, is
Jjointly continuous in both variables and that there is L > 0 such that for

any random variables 1y, ny such that E[|n;|?] < oo, i = 1,2, it holds that
oF 5°F

El| sup |—(m)||+E| sup |—=mn,m)|| <L (5)
veP>(RY) om vEP,(RY) om

If there is an m* € P»(R?) such that F(m*) = inf e p,(rey F(m) then
with i.i.d (X*)N| such that X* ~ m*, i=1,...,N we have that

N N
1 \ _ 1 \
F<N ;5&*)] — F(m") (X’_)gfcw F < ;axi> — F(m*)

2L

SN and <

=R

=

Proof outline: Coupling argument.
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Stochastic PDE

Go back to SGD:

i i : IR Al o i
s =+ 7 (= 2 300 20 ) V20 24) - T VUG
j=1
+ V7€) + Tov/TXk

where (yk, zx)ken are i.i.d. samples from v and xk, 5,’; are i.i.d. samples
from N(O, I4).

Now x represents common noise in the algorithm.

We would then need to consider stochastic PDE

02—|—08

2
dme =V - ((DmF(mt, )+ %VU) me + th> + 00 dB,

on (0,00) x RY.
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Outlook

We have (nearly) full analysis of convergence of gradient descent
algorithm for (some) deep networks.

i) Uniform-in-time propagation of chaos,

i) Multiplicative noise in the dynamics,

)
)
iii) Other deep network architectures,
)
)

iv) Common noise case i.e. SPDE,

v) Design better algorithms based on understood theory: faster

convergence, stability w.r.t. YW, metric etc.
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