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Literature on CFMs & MM
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Literature on CFMs

◮ [Angeris and Chitra, 2020] show that the convexity of the trading function is key
in CFMs,

◮ [Lehar and Parlour, 2021] discuss the competition between CFMs and LOBs,

◮ [Angeris et al., 2022] study the returns of LPs in simple setups

◮ [Neuder et al., 2021] and [Cartea et al., 2022a] study strategic liquidity provision
in CFMs with concentrated liquidity,

◮ [Li et al., 2023] study strategic liquidity provision in different types of AMMs,

◮ [Cartea et al., 2023] derive the predictable losses of LPs in CFMs and in
concentrated liquidity AMMs,

◮ [Milionis et al., 2022] study the arbitrage gains of LTs in CFMs, and
[Fukasawa et al., 2023] study the hedging of the impermanent losses of LPs,

◮ A strand of the literature studies liquidity taking strategies in AMMs; see
[Cartea et al., 2022b] and [Jaimungal et al., 2023].

◮ [Goyal et al., 2023] study an AMM with a dynamic trading function that
incorporates the beliefs of LPs about future asset prices,

◮ [Sabate-Vidales and Šǐska, 2022] study variable fees in CPMs, and
[Cohen et al., 2023] derive no-arbitrage relationship between fee revenue and the
perpetual option premium of CFM LP.
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Literature on MM

Liquidity provision in OTC and LOB markets:

◮ [Ho and Stoll, 1983]

◮ [Glosten and Milgrom, 1985]

◮ [Avellaneda and Stoikov, 2008]

◮ extended in many directions [Guéant et al., 2012], [Guéant et al., 2013],
[Cartea et al., 2015], [Guéant, 2016].

◮ [Bergault et al., 2022] design an AMM where LPs set quotes around an
exogenous oracle.

In contrast to all the above, we avoid need for exogenous price input.
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AMMs based on CFMs
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CFMs: an overview

A constant function market (CFM) is characterised by

i) The reserves (x (1), x (2)) ∈ R2
+ describing amounts of assets in the pool.

ii) A “trade” function Ψ : R2
+ → R which determines valid states of the pool

after each trade:
󰁱
(x (1), x (2)) ∈ R2

+ : Ψ(x (1), x (2)) = constant
󰁲
. (1)

iii) A trading fee (1− γ), for γ ∈ (0, 1].
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CFMs: an overview
To buy ∆x(1) of asset x(1):

1. Deposit (i.e. sell) a quantity ∆x(2) of asset x(2) into the pool s.t.

Ψ(x(1) −∆x(1), x(2) +∆x(2)) = Ψ(x(1), x(2)) . (2)

2. Pay a fee (1− γ)∆x(2).

3. Reserves get updated

x(1) ← x(1) −∆x(1) and x(2) ← x(2) +∆x(2) . (3)
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CFMs: an overview

The relative price of trading ∆x (1) for ∆x (2) is defined as

P1,CFM(∆x (1))

P2,CFM(∆x (2))
:=

∆x (2)

∆x (1)
s.t. Ψ(x (1) −∆x (1), x (2) +∆x (2)) = Ψ(x (1), x (2)) .

Observe that

0 = Ψ(x (1) −∆x (1), x (2) +∆x (2))−Ψ(x (1), x (2))

= −∂x(1)Ψ(x (1), x (2))∆x (1) + ∂x(2)Ψ(x (1), x (2))∆x (2) +O((∆x (1))2) +O((∆x (2))2) .

Hence relative “price” is given by

P1,CFM

P2,CFM
:= lim

∆x(1)→0

P1,CFM(∆x (1))

P2,CFM(∆x (2))
=

∂x(1)Ψ(x (1), x (2))

∂x(2)Ψ(x (1), x (2))
. (4)
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CFMs: an overview

Assume frictionless external market with S = (S (1), S (2)). No-arbitrage
condition in the case of no fees (γ = 1) implies that

P1,CFM
t

P2,CFM
t

=
S1
t

S2
t

. (5)
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Example 1 (GMM)

Let the trading function be

Ψ(x (1), x (2)) = (x (1))θ(x (2))1−θ (6)

for θ ∈ (0, 1). The no arbitrage relationship (5), in GMM is given by

P1,CFM

P2,CFM
=

θx (2)

(1− θ)x (1)
=

S (1)

S (2)
. (7)
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Example 2 (GMM with θ = 1/2 LOB)

◮ x (1) = 10 (e.g. ETH), x (2) = 15 000 (e.g. USDT)

◮
P1,CFM

P2,CFM
=

x (2)

x (1)
=

15 000

10
= 1 500 .

◮ Fix tick size e.g. 0.015 = 1.5 · 10−2.
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AMMs using stochastic control
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Avellanda–Stoikov market making model

◮ Mid-price process dSt = σ dWt .

◮ MM quotes prices at St + δat (MM sells) and St − δbt (MM buys);
δ = (δt)t∈[0,T ] = (δat , δ

b
t )t∈[0,T ] is the strategy.

◮ Nb
t counts the number of times the MM bought ζ units.

◮ Na
t counts the number of times the MM sold ζ units.

◮ Trade intensity depends on MM quotes:
◮ λb

t (δ
b
t ) is the arrival intensity for Nb

t and
◮ λa

t (δ
a
t ) is the arrival intensity for Na

t .
◮ E.g. λa

t (δ
a
t ) = exp(−κδat ), λ

b
t (δ

b
t ) = exp(−κδbt ), κ > 0.

◮ MM has inventory
dyt = ζdNb

t − ζdNa
t

◮ and cash
dxt = ζ(St + δat ) dN

a
t + ζ(St − δbt ) dN

b
t

◮ and objective5

vδ(t, x , y , S) = Et,x,y,S

󰀗
xT + yTST − α(yT − ŷ)2 − φ

󰁝 T

t

(ys − ŷ)2 ds

󰀘
.

One can write down the HJB, solve, perform verification.
5In [Avellaneda and Stoikov, 2008] there is exponential utility.
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Price formation
In Avellanda–Stoikov:

◮ We rely on some exogenous price formation process summarized by the
mid price dSt = σ dWt .

◮ Prices at which the MM trades i.e. St ± δb;at have no impact on St .

In contrast in a CFM-based AMM:

◮ Price forms as a result of incoming trades e.g.

P1,CFM

P2,CFM
=

x (2)

x (1)
=

15 000

10
= 1 500 .

◮ Can be purely “toxic” flow:
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Arithmetic Liquidity Pool (ALP)
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Arithmetic Liquidity Pool (ALP): The model

◮ Impact functions y 󰀁→ ηa(y), y 󰀁→ ηb(y) determine the pool’s marginal
rate response to incoming trades as a function of the LP’s position.

◮ Reference price process

dZt =− ηb(yt−) dNb
t + ηa(yt−) dNa

t . (8)

◮ Nb
t counts the number of times the ALP bought ζ units.

◮ Na
t counts the number of times the ALP sold ζ units.

◮ Trade intensity depends on MM quotes:
◮ λb

t (δ
b
t ) is the arrival intensity for Nb

t and
◮ λa

t (δ
a
t ) is the arrival intensity for Na

t .◮ 󰀫
λb
t

󰀃
δbt

󰀄
= cb e−κ δbt 1b (yt− ) ,

λa
t (δ

a
t ) = ca e−κ δat 1a (yt− ) ,

(9)

1b(y) = 1{y+ζ≤y} and 1a(y) = 1{y−ζ≥y} . (10)

◮ Inventory risk constraint yt ∈ Y := {y , y + ζ, . . . , y − ζ, y}.
◮ MM has inventory

dyt = ζdNb
t − ζdNa

t

◮ and cash

dxt = −ζ
󰀓
Zt− − δbt

󰀔
dNb

t + ζ
󰀓
Zt− + δat

󰀔
dNa

t .
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ALP: Objective

For t ∈ [0,T ], we define the set At of admissible shifts

At =

󰀝
δs = (δbs , δ

a
s )s∈[t,T ], R2-valued, F-adapted,

square-integrable, and bounded from below by δ

󰀞
,

where δ ∈ R is given and write A := A0.

The objective is to maximize wδ : [0,T ]× R× Y × R → R, given by

wδ(t, x , y , z) = Et,x,y,z

󰀗
xT + yT ZT − α (yT − ŷ)2 − φ

󰁝 T

t

(ys − ŷ)2 ds

󰀘

over δ =
󰀃
δb, δa

󰀄
∈ A.
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ALP: Value function

The value function w : [0,T ]× R× Y × R → R of the LP is

w(t, x , y , z) = sup
δ∈At

wδ(t, x , y , z) . (11)

Proposition 1

There is C ∈ R such that for all (δs)s∈[t,T ] ∈ At , the performance criterion of
the LP satisfies

wδ(t, x , y , z) ≤ C < ∞ ,

so the value function w in (11) is well defined.
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ALP: HJB

The HJB equation associated with problem (11) is given by

0 = ∂tω − φ (y − ŷ)2

+ sup
δb

λb(δb)
󰁱
ω(t, x − ζ (z − δb), y + ζ, z − ηb(y))− ω (t, x , y , z)

󰁲

+ sup
δa

λa(δa)
󰁱
ω (t, x + ζ (z + δa) , y − ζ, z + ηa(y))− ω (t, x , y , z)

󰁲
(12)

on [0,T )× R× Y × R with the terminal condition

ω(T , x , y , z) = x + y z − α (y − ŷ)2 . (13)
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ALP: HJB solution

Proposition 2 (Candidate closed-form solution: ALP)
Let N = y/ζ, N = y/ζ, and N = N − N + 1. Define the matrix K ∈ RN×N by

Kmn =

󰀻
󰁁󰀿

󰁁󰀽

ca e−1 eκ (m−1) ηa(m ζ) if n = m − 1 and m > N ,

−κφ (m ζ − ŷ)2
󰀑
ζ if n = m ,

cb e−1 e−κ (m+1) ηb(m ζ) if n = m + 1 and m < N ,

for m, n ∈ {N,N + 1, . . . ,N}. Let U ∈ C1([0,T ],RN) be

U(t) = exp (K t) U(0) , t ∈ [0,T ] ,

where

U(0)m = e
−α κ

ζ
(ζ m−ŷ)2

, m ∈ [N, N̄] ∩ Z .

For m ∈ [N, N̄] ∩ Z let

u(t,m ζ) = U(T − t)m , (14)

and define

θ(t, y) =
ζ

κ
log u(t, y) . (15)

Then, the function ω : [0,T ]× R× Y × R → R given by

ω(t, x , y , z) = x + y z + θ(t, y) (16)

solves the HJB equation (12).
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ALP: Verification and strategy

Theorem 3 (Verification: ALP)

Let ω be defined as in Proposition 2. Then the function ω in (16) satisfies that
for all (t, x , y , z) ∈ [0,T ]× R× Y × R and δ = (δs)s∈[t,T ] ∈ At ,

wδ(t, x , y , z) ≤ ω (t, x , y , z) . (17)

Moreover, equality is obtained in (17) with the admissible optimal Markovian
control (δ󰂏s )s∈[t,T ] =

󰀃
δb󰂏s , δa󰂏s

󰀄
s∈[t,T ]

∈ At given by the feedback formulae

δb󰂏(t, yt−) =
1

κ
− θ (t, yt− + ζ)− θ (t, yt−)

ζ
− (yt− + ζ) ηb(yt−)

ζ
, (18)

δa󰂏(t, yt−) =
1

κ
− θ (t, yt− − ζ)− θ (t, yt−)

ζ
+

(yt− − ζ) ηa(yt−)

ζ
, (19)

where θ is in (15). In particular, ω = w on [0,T ]× R× Y × R .

22 / 44



ALP: impact functions and arbitrage
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ALP: impact functions and arbitrage

Poorly chosen impact functions may lead to arbitrage against the pool:

Definition 4 (Arbitrage)

Arbitrage is any (roundtrip) sequence of trades {󰂃1, . . . , 󰂃m}, where 󰂃k = ±1
(buy/sell) for k ∈ {1, . . . ,m} and

󰁓m
k=1 󰂃k = 0, such that the terminal cash of

the liquidity taker (LT) is positive.
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ALP: Roundtrip arb

P&L of the LT after the roundtrip trade as

case (i) P&L = ζ
󰀓
ηa (y0)− da(y0,Z0)− db(y0 − ζ,Z + ηa(y0)

󰀔
,

case (ii) P&L = ζ
󰀓
ηb (y0)− db(y0,Z0)− da(y0 + ζ,Z0 − ηb(y0)

󰀔
.

(20)

Clearly, the profits in (20) are non-positive if the bid quote

Z0 + ηa(y0)− db(y0 − ζ,Z0 + ηa(y0))󰁿 󰁾󰁽 󰂀
the bid quote after a buy trade

≤ Z0 + da(y0,Z0)󰁿 󰁾󰁽 󰂀
ask quote before the trade

(21)

because it guarantees

ηa(y0) ≤ db(y0 − ζ,Z0 + ηa(y0)) + da(y0,Z0) ,

and conversely for a sell trade.
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ALP: Marginal rate manipulation arb

The condition (21) doesn’t guarantee that

Z + ηa(y)− ηb(y − ζ) = Z

and that
Z − ηb(y) + ηa(y + ζ) = Z

at the end of the arbitrage sequence of length m = 2.

Condition for Z to take values on a grid only: let y1 = y , y2 = y + ζ, . . . , and
yN = y .

Proposition 3

The marginal rate Z takes only the ordered finitely many values
Z = {z1, . . . , zN}, with the property that Z0 ∈ Z and for i ∈ {1, . . . ,N − 1}

zi+1 − ηb(yN−i ) = zi and zi + ηa(yN−i + ζ) = zi+1 , (22)

if and only if ηa( · ) and ηb( · ) are such that

ηb(yi ) = ηa(yi + ζ) , (23)

for i ∈ {1, . . . ,N − 1}.
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ALP: no-arbitrage impact functions

Theorem 5
Let ηa( · ) and ηb( · ) satisfy (23) for i ∈ {1, . . . ,N − 1}. For any liquidity
provision strategy of the form

󰀃
δb, δa

󰀄
=

󰀃
db(y ,Z), da(y ,Z)

󰀄
, if for all

i ∈ {1, . . . ,N − 1},

ηa(yi+1) ≤ da (yi+1, zN−i ) + db (yi+1 − ζ, zN−i + ηa (yi+1)) (24)

and ηb(yi ) ≤ db (yi , zN−i+1) + da
󰀓
yi + ζ, zN−i+1 − ηb (yi )

󰀔
, (25)

or equivalently

ηa(yi+1) ≤ da (yi+1, zN−i ) + db (yi , zN−i+1) and

ηb(yi ) ≤ db (yi , zN−i+1) + da (yi+1, zN−i ) ,

then there is no roundtrip sequence of trades that a liquidity taker can execute
to arbitrage the ALP. For the liquidity provision strategy in (18), the condition
simplifies to

ηa(yi ) ≤
1

κ
, and ηb(yi ) ≤

1

κ
, (26)

for all i ∈ {1, . . . ,N}.
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ALP: examples of no-arbitrage impact functions

1. ηa(y) = ηb(y) = η ≤ 1
κ
with η ∈ R+ a constant.

2. Fix y ≥ ζ and recall y ∈ Y = {y , . . . , y}. Fix L < 1
κ
and let

ηb(y) =
ζ

1
2
y + ζ

L and ηa(y) =
ζ

1
2
y − ζ

L , (27)

3. Impact functions built using a CFM trade function.
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CFM as a special case of ALPs if LT trade size is ζ
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CFMs are special case of ALPs if LT trade size is ζ: marginal price

Recall CFM is given by a convex differentiable trade function Ψ and the two
pool balances satisfies:

Ψ(xt , yt) = constant .

Due to convexity of Ψ we know that ∃ a level function ϕ : R+ → R+ such that

xt = ϕ(yt) .

So
Ψ(ϕ(y), y) = constant

so taking derivative in y we get

∂xΨ(ϕ(y), y)ϕ′(y) + ∂yΨ(ϕ(y), y) = 0

and so, recalling (4)

ϕ′(y) = − ∂yΨ(ϕ(y), y)

∂xΨ(ϕ(y), y)ϕ′(y)
= −marginal price in CFM .
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CFMs are special case of ALPs if LT trade size is ζ: CFM dynamics

The dynamics of the amounts of asset X and asset Y and the marginal rate
ZCFM in the CFM pool are given by

dyCFM
t = ζ dNb

t − ζ dNa
t ,

dxCFM
t =

󰀓
ϕ
󰀓
yCFM
t− + ζ

󰀔
− ϕ

󰀓
yCFM
t−

󰀔
+ f ζ

󰀃
−ϕ′(yt−)

󰀄󰀔
dNb

t

+
󰀓
ϕ
󰀓
yCFM
t− − ζ

󰀔
− ϕ

󰀓
yCFM
t−

󰀔
+ f ζ

󰀃
−ϕ′(yt−)

󰀄󰀔
dNa

t .

dZCFM
t =

󰀓
−ϕ′

󰀓
yCFM
t− + ζ

󰀔
+ ϕ′

󰀓
yCFM
t−

󰀔󰀔
dNb

t

+
󰀓
−ϕ′

󰀓
yCFM
t− − ζ

󰀔
+ ϕ′

󰀓
yCFM
t−

󰀔󰀔
dNa

t ,

where f ∈ [0, 1) is a given CFM fee.
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CFMs are special case of ALPs if LT trade size is ζ: impact fns and strategy

Theorem 6
Let ϕ( · ) be the level function of a CFM. Assume the LP in the ALP chooses
the impact functions

ηa(y) = ϕ′(y)− ϕ′(y − ζ) , ηb(y) = −ϕ′(y) + ϕ′(y + ζ) , (28)

and chooses the offsets

δat =
ϕ(yt− − ζ)− ϕ(yt−)

ζ
+ ϕ′(yt−) + f ζ (−ϕ′(yt−))󰁿 󰁾󰁽 󰂀

if we include fees

,

δbt =
ϕ(yt− + ζ)− ϕ(yt−)

ζ
− ϕ′(yt−) + f ζ (−ϕ′(yt−))󰁿 󰁾󰁽 󰂀

if we include fees

.

(29)

Then, the marginal rate dynamics, inventory dynamics, and execution costs in
the ALP are the same as those in the CFM with level function ϕ( · ).
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CFMs are special case of ALPs if LT trade size is ζ: CFMs are suboptimal

Proposition 4

Let ϕ( · ) be the level function of a CFM. Consider a CFM LP whose
performance criterion is

JCFM = E
󰀗
xCFM
T + yCFM

T ZCFM
T − α (yCFM

T − ŷ)2 − φ

󰁝 T

0

(yCFM
s − ŷ)2 ds

󰀘
, (30)

with JCFM ∈ R. Consider an ALP LP with impact functions given by (28). Let

δCFMt =
󰀓
δa,CFMt , δb,CFMt

󰀔
be given by (29). Consider the performance criterion

J : A0 → R

J(δ) = E
󰀗
xT + yT ZT − α (yT − ŷ)2 − φ

󰁝 T

0

(ys − ŷ)2 ds

󰀘
. (31)

Then,

JCFM = J
󰀓
δCFM

󰀔
and JCFM ≤ J (δ󰂏) , (32)

where δ󰂏 = (δa,󰂏, δb,󰂏) is given by (18).
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Backtesting ALP
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ALP evaluation: quotes
Fix y ≥ ζ and recall y ∈ Y = {y , . . . , y}. Fix L < 1

κ
and let

ηb(y) =
ζ

1
2
y + ζ

L and ηa(y) =
ζ

1
2
y − ζ

L .

Then

δb󰂏(t, y) =
1

κ
−

θ (t, y + ζ)− θ (t, y)

ζ
− L , (33)

δa󰂏(t, y) =
1

κ
−

θ (t, y − ζ)− θ (t, y)

ζ
+ L . (34)
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ALP evaluation: Binance and Uniswap v3 data

ETH/USDC 0.05% Binance

LT LP

Number of transactions 216,739 42,022 12,341,854

Average transaction size $ 109,037 $ 2,765,499 $ 1,735

Gross USD volume ≈ $ 185.57 ×109 ≈ $ 116.2 ×109 ≈ $ 21.42 ×109

Average trading frequency 18.27 seconds 12.3 minutes 2.56 seconds

Median LP holding time 86 minutes n.a.

Average pool depth 19,788,327
√
ETH · USDC n.a.

Table: LT and LP activity statistics in the Uniswap v3 pool ETH/USDC 0.05% and in
Binance between 5 May 2021 (Uniswap inception) and 30 April 2022; see
[Drissi, 2023] for more details.
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ALP evaluation: base case
ALP for ETH/USDC between 1 August 2021 09:00 and 09:30. The LP’s
strategy parameters are ζ = 1 ETH, κ = 1ETH−1, c = 100 , L = 0.3 ETH,
y = −500 ETH, y = 500 ETH. Moreover, we set T = 30 minutes,

φ = α = 10−4 USDC · ETH−2, and y0 = ŷ = 100.

09:00 09:10 09:20
Time

$ 2, 585

$ 2, 590

$ 2, 595

$ 2, 600

P
ri

ce

CQV
Binance
Uniswap
[Zt ≠ ”bt , Zt + ”at ]

09:00 09:10 09:20
Time

$ ≠7, 500

$ ≠5, 000

$ ≠2, 500

$ 0

$ 2, 500

$ 5, 000

Pe
rf

or
m

an
ce Pool value

Buy and Hold
Earnings
LP total wealth

Figure: LP wealth when arbitrageurs trade in the ALP and Binance. Left: Exchange
rates from ALP, Binance, and Uniswap v3. Right: Pool value is computed as
xt + yt Zt , Buy and Hold is computed as the wealth from holding the LP’s inventory
outside the ALP, i.e., yt Zt , Earnings are the revenue from the quotes, and LP total
wealth is the total LP’s wealth.
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ALP evaluation: higher inventory penalty

As before but φ = α = 10−4 USDC · ETH−2.
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Figure: LP wealth when only an arbitrageur interacts in the ALP.
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ALP evaluation: toxic flow impact

Scenario I: toxic flow only.

Scenario II: 1/2 volume is toxic, 1/2 volume is noise traders.

Average Standard deviation

ALP (scenario I) −0.004% 0.719%

ALP (scenario II) 0.717% 2.584%

Buy and Hold 0.001% 0.741%

Uniswap v3 −1.485% 7.812%

Table: Average and standard deviation of 30-minutes performance of LPs in the ALP
for both simulation scenarios, LPs in Uniswap v3 pool ETH/USDC 0.05% ., and
buy-and-hold.

39 / 44



Discussion and References

40 / 44



References I

[Angeris and Chitra, 2020] Angeris, G. and Chitra, T. (2020). Improved price oracles:
Constant function market makers. In Proceedings of the 2nd ACM Conference on
Advances in Financial Technologies, pages 80–91.

[Angeris et al., 2022] Angeris, G., Chitra, T., and Evans, A. (2022). When does the
tail wag the dog? curvature and market making.

[Avellaneda and Stoikov, 2008] Avellaneda, M. and Stoikov, S. (2008).
High-frequency trading in a limit order book. Quantitative Finance, 8(3):217–224.

[Bergault et al., 2022] Bergault, P., Bertucci, L., Bouba, D., and Guéant, O. (2022).
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Inefficiency of CFMs: hedging perspective and agent-based simulations. arXiv
preprint arXiv:2302.04345.

[Drissi, 2023] Drissi, F. (2023). Models of market liquidity: Applications to traditional
markets and automated market makers. Available at SSRN 4424010.

[Fukasawa et al., 2023] Fukasawa, M., Maire, B., and Wunsch, M. (2023). Model-free
hedging of impermanent loss in geometric mean market makers. arXiv preprint
arXiv:2303.11118.

[Glosten and Milgrom, 1985] Glosten, L. R. and Milgrom, P. R. (1985). Bid, ask and
transaction prices in a specialist market with heterogeneously informed traders.
Journal of Financial Economics, 14(1):71–100.

[Goyal et al., 2023] Goyal, M., Ramseyer, G., Goel, A., and Mazières, D. (2023).
Finding the right curve: Optimal design of constant function market makers. In
Proceedings of the 24th ACM Conference on Economics and Computation, pages
783–812.
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