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Stochastic Control Problem with Entropic Regularization |

For ¢ e RY and p € V‘;/V, consider the controlled process

t t
X(n) =€+ [ 00 dr+ [ T ) W, te 0T ()
0 0
Here
.
o= {1/ QY = M, :IEW/ / |a]? ve(da) dt < oo
0
and v; is F{"-measurable Vt € [0, T]}
and
.
My = {v € A0, T < B?) - v € P(R?). / /\a|qut(da,dt) < o0,
0

v(dt, da) = vi(a) dadt for a.a. t € [0, T]} .



Stochastic Control Problem with Entropic Regularization Il

If m € P(RP) is a.c. w.r.t. the Lebesgue measure (so that we can write
m(da) = m(a) da) let

Ent(m / [log m(a) — log~y(a)] m(a) da,
where
~v(a) = e Y@ with U s.t. /er(a) da=1

Otherwise let Ent(m) := oo.

Given F and g we wish to minimize the objective functional
JG(V7§);:IEW{/OT {Ft(Xt(u),ut) + %QEnt(ut)] dt+g(Xr () | Xo(v) g] (2
Example: Relaxed Control
®:xm) = [ 6e(x.am(da)
et m)T = [ el a)n(x,2) m(d).
Fi(x, m) :/ft(x,a) m(da).



Why Regularize with Entropy

Several perspectives:

i) Exploration vs. exploitation when solving an episodic control problem with
unknown dynamics (learning) Wang, Zariphopoulou and Zhou [7] and
Wang and Zhou [8].

ii) Regularity of Markovian controls Reisinger and Zhang [4].
iii) Gradient flow for optimal control S and Szpruch [6].



Talk outline

i) Introduction

i) Minimizing Convex Functions of Measures with Gradient Flows
(one-hidden layer NNs)
> Necessary condition for optimality
» Gradient flow and Free energy balance
» Convergence to minimum

iii) Regularized Stochastic Control (towards reinforcement learning)

> Necessary condition for optimality (Pontryagin)
> Gradient flow and Free energy balance
> Convergence to optimal control



Minimizing Convex Functions of Measures



Minimizing Convex Functions of Measures

Given F : P(RP) — R convex’, find

inf  F .
melg(Rp) (m)
Minimum not unique. Consider
o2
i 7 = inf F —E .
melvg{RP)V (m) melg(RP)< (m) + 2 nt(m))

Example: nonlinear regresssion with an idealized 1 hidden layer neural network:

This has convex + strictly convex part. Observed in the pioneering works of
Mei, Misiakiewicz and Montanari [3], Chizat and Bach [1] as well as Rotskoff
and Vanden-Eijnden [5].

’ 2

y— /mv #(0,z) m(do)| v(dy, dz) + %Ent(m) .

"For any m, m’ € P(RP) we have

F((l —a)m+ am’) < (1 - a)F(m) + aF(m’) forall a€[0,1].



Convergence when o N\, 0

Proposition 1

Assume that F is continuous in the topology of weak convergence. Then the
sequence of functions V° = F + %2H converges in the sense of [ -convergence
to F as o \( 0. In particular, given a sequence of minimizers m*° of V7, we

have

limsup F(m*~?) = inf F(m).
o—0 meP,(RY)



Characterization of the minimizer

Proposition 2 (First order condition)

Assuming that F is convex, bbd. from below and VU dissipative, the function
V° has a unique minimizer m* € P>(R?) which is absolutely continuous with
respect to Lebesgue measure and satisfies

oF , . o2 N o? . «
E(m )+ 5 log(m™) + ?U is a constant, m” — a.s.

On the other hand if m" € I, where
. dy OF o? o? .
Ly = {m € P(RY): 6m(m’ )+ 3 log(m) + > U is a constant

then m' = argmin ,.c pray V.

Corollary 1
The optimal m™ satisfies the functional equation

) OF , .
m(6) = 3 exp (—%(8—m(m 0)+ U(9)>) .
where Z := [exp (—% (g—g(m*ﬁ) + U(G))) do.
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Gradient Flow for Convex Optimization on Space of Measures

Due to the form of m* we “hope” that m* is the invariant measure of

2
do, = — (Vgg—:F(ms,Os) + %vguws)) ds+ odBs, s €[0,00),

ms = Law(6s), s € [0,00).

(3)

Fokker—Planck

OF o>

(7'2 P
dsm =V - ((V@a—m(m,-) + ?VQU)m+ ?ng> on (0,00) x R”.

This can be viewed as a randomized, continuous time version of the classical
gradient descent algorithm.



Energy balance

Theorem 2

Let my € P2(RP). Under our assumptions on F (growth, smoothness) and VU
(smoothness, dissipativity), we have for any s’ > s >0

V7 (ms) = V7 (ms)

//‘DF'"” Uzvmmr(‘g)Jr VU(9)2 .(6) do dr.

Proof outline: Follows from a priori estimates and regularity results on the
nonlinear Fokker—Planck equation and the chain rule for flows of measures.
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Convergence

Theorem 3

Let our assumptions on F (growth, smoothness) and VU (smoothness,
dissipativity) hold and let myg € Uy~2P,(R?). Denote by (ms)s>o the flow of
marginal laws of the solution to (3). Then, there exists an invariant measure of
(3) equal to m* := argmin,, V?(m) and

Wh(ms,m") — 0 as s — oo.

Proof key ingredients: Tightness of (ms)s>o, Lasalle’s invariance principle,
Theorem 2, HWI inequality.

All results so far from Hu, Ren, S and Szpruch [2].



Regularized Stochastic Control
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Stochastic Control Problem with Entropic Regularization

For £ € RY and pu € VY, consider the controlled process

Xt(ﬂ):f-l-/ot(b,(X,(,u),,ur)dr—}—/Ot [ (X0 (), ) AW, , £ € [0, T],

vy = {u QY - M, EW/OT/ |a|? ve(da) dt < oo
and v; is F,"-measurable Vt € [0, T]} ,
Mq:={v e #,(0. T x B) - ve € PRP), /OT/ a7 ve(da, dt) < oo,
v(dt,da) = vi(a) dadt for a.a. t € [0, T]} .

Given F and g we wish to minimize the objective functional

2

S (v,€):=E" MT {Ft(Xt(u), ve) + %Ent(l/t)] dr+g(xT(u)))xo(u):g] .

Note: J7(v,&) is not (necessarily) “convex + strictly convex” function of v.
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Pontryagin optimality

Hamiltonian
2
H (x,y, 2, m) == ®(x, m)y + tr([{ (x, m)z) + Fe(x, m) + %Ent(m) . (4)
Adjoint process for control pu:

dYe(p) = —(VuH)(Xe(), Ye(pt), Ze(p), pe) dt + Ze(p) dWe, t €0, T],

_ (5)
Y1(1) = (V<g)(X7 (1)) -
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Theorem 4 (Necessary condition for optimality)

Fix 0 > 0. Fix g > 2. Let the Assumptions on growth and differentiablity hold.
Ifve V) is (locally) optimal for J°(-, &) given by (2), X(v) and Y (v), Z(v)
are the associated optimally controlled state and adjoint processes given by (1)
and (5) respectively, then for any other u € V:V it holds that

D)

SH? a®  w(a)
[ |5 00, Vi), 20 2) + 5 10w 52 = ()

>0 foraa (w,t)eQ” x(0,T).

ii) Fora.a. (w,t) € QY x (0, T) there exists € > 0 (small and depending on
) such that

HZ (Xe(v), Ye(v), Ze(v), ve + e(pe — 1)) = HY (Xe(v), Ye(v), Ze(v), 1) -

In other words, the optimal relaxed control v € ng locally minimizes the
Hamiltonian.

16
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Necessary condition for optimality

Let
7° = {1/ cev): 5;,'; (a,v) is constant
(6)
foraa. ac R aa. (t,w") e (0,T) x QW} :
Here

SH? __SHO
m('v V) = E(Xf(y)’ Yt(l/)fzf(l/)»l’h ) .

Corollary 5 (First order condition)
Ifv e VY is (locally) optimal for J°(-,&)) then v € I°.

From the first order condition we have that for a.a. (w",t) € Q" x (0, T) we
have

=)
=]

SH
- (a,n™)

SH .
pi(a) = Z7le T i y(a), 2, = / e oz y(a)da.  (7)

So what is the right gradient flow?
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Necessary condition proof outline |

Let u,v € Vy¥ and vf := v¢ + (e — vt). Consider
L J7 ((ve + (pe — ve)eepo, 11, €)

e=0

Let X° be the solution to (1) with control vf and

dV, = {(V D) (Xe, ve) Vi +/ (Xe, vty @) (e — Vt)(da)] .
+ [(er)(Xt,Vt)Vt +/§—;(Xt,ut,a)(,ut - Z/t)(da)} dW; . ©

Lemma 6

We have

Xi — Xi
€

lim Ew{sup - Vi

eNo t<T

1o




Necessary condition proof outline Il

Lemma 7
We have that
d o
EJ ((l/t + E(Nt - Vt)te[O,T]a 5)

e=0

IE{/OT {/ %—I—:(Xt, Yi, Ze, vty @) (pe — z/t)(da)} dt} .
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Necessary condition proof outline Il

Lemma 8

i) for any € € (0,1) we have
é/o [Ent(vi) — Ent(v:)] dt 2/0 /[Iog ve(a)—log v(a)] (e —vt)(da) dt,
i)
lim sup 1/ [Ent(vi) — Ent(1:)] dt < /0 /[Iog ve(a)—logvy(a)](pue—ve)(da) dt.

e=0 € Jo



Necessary condition proof outline IV

Proof of Theorem 4. Let (jit)¢cjo, 7] be an arbitrary relaxed control Since
(vt)eeqo, 7] is optimal we know that

J7 (ve + e(pe — ve))eep,m) = J7(v) for any € > 0.

From this, Lemma 7 and 8 point ii) we get that

1, ., -
0 < limsup = (J (ve + e(pe — ve))eep,r1 — I (v))

e—0

<IE/ /[ (Xe, Yo, Ze, v, )+%2(Iogut(a)—log’y(a)) (e — v:)(da) dt .



Gradient Flow

Definition 9

We will say that b is a permissible flow if b.. € C®*([0,00) x RP;RP), if for all
s, t the function a — bs :(a) is of linear growth and if for any s > 0 and a € R?
the random variable b; ;(a) is F;"-measurable.

Lemma 10
If b is a permissible flow (c.f. Definition 9) then the linear PDE

2

8sl’s,t =V, (bs,tys,t + %Vays,t> , S€ [0700)7 Vot € P2(Rp) (9)

has unique solution v., € CH*°((0,00) x RP;R) for each t € [0, T] and
w" € Q™. Moreover for each s > 0, t € [0, T] and w" € Q" we have
vs,t(3) > 0 and vs.+(a) is F¥-measurable.

N
N

N



Energy balance

Theorem 11

Fix o > 0 and assume enough differentiability / integrability. Let b be a
permissible flow (c. f. Definition 9) such that a — |V ,bs :(a)| is bounded

uniformly in s, t and w" € QY. Let vs, be the solution to (9). Assume that
Xs,., Ys,., Zs,. are the forward and backward processes arising from control

vs,. € V3V and data € € R? given by (1) and (5). Then

d
) =

o [ [(O2) o+ T Fetnti] o

o2
: (bs,t + ?Va log zzs,t) vs.t (da) dt.

We can take

5H0 2
bs,¢+ = (vé t) (a,vs,.) + O_Vau(a)
om 2

so that %JG(VS’.) <0 forall s >0.



Energy balance proof outline |

Lemma 12 (Properties of Gradient Flow, Hu, Ren, S, Szpruch [2])

Let b be a permissible flow such that a — |V.bs ¢(a)| is bounded uniformly in
s>0,te[0,T], w" € QY. Then

i) Foralls>0,tc[0,T], w" € Q" and a € R® we have vs.(a) > 0 and
Ent(vs,:) < 0.

ii) Foralls >0, te[0,T] andw"” € QY we have
J | Valogvs,e(a)*vs,e(a)(da) < oo.
i) Foralls>0,tec[0,T] andw" € Q" we have

/\Vays,t(a)|da+/|a-Vays,t(a)|da+/|AaVs,t(a)\da<oo.



Energy balance proof outline Il

Let
dOs,: = —bs,:(0s,t) ds + o dBs .

With the above estimates we can use 1td formula on log(fs,:) and take
expectation:

Lemma 13

Fix 0 > 0. Let b be a permissible flow (c. f. Definition 9) such that

a > |Vabs,:(a)| is bounded uniformly in s, t and w"Y € QY. Let v, be the
solution to (9). Then

2
dEnt(vs,:) = —/ <Va log vs,: + VaU> . (bs,f + %Va log z/s,t) vs,t(da) ds .



SDE / BSDE System Representation for Gradient Flow

Let (69):cpo,m) be an (F;*)-adapted, RP-valued stochastic process on (Q, F,P)
such that (L(69|F}))teio,7] € V5" and consider with 60 = 67 and s > 0:

SHY

das,t: _((Va )(Xs ty Ys t,Zs t,Vs ty st)+ (V U)(es t)) dS-’-O'st7

(11)

coupled with

vsie = L(0s, t|]:tW)a
Xet =&+ [y Or(Xervsr)dr+ [ Tr(Xer,vs(da))dW, , t €0, T],
dYs: = (VXHt )(Xs,n Ys,t, Zs,h Vs,t) dt + Zs,t dW;,
Yor = (Vag)(X7).
(12)



Theorem 14
Let Assumptions regularity / integrability assumption hold. Moreover, assume
that for any u° € V' the MFLD (11)-(12) has unique solution Ps;® and that
it admits unique invariant measure p* € V“,/V such that for any 1° € VY,
lims_s00 pg(Pspt®, u*) = 0. Then
i) We have J°(u*) < oo and I° = {u*}. In other words, u™* is the only
control which satisfies the first order condition in (6).

ii) The unique minimizer of J° is pu*.
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Proof outline for Theorem 14 part i):
Since p* is invariant dsus, = 0 and so for t € [0, T]

0=V,- <((va§—'-'(‘))(-7u*) + %Z(Vau))ut + §V3u§> ) (13)

om
This implies that u* € Z°.

Consider now some v € Z°. Then from (6) we get that
1 - % P ) ~ 2 M e
vi(a) = Zi e o2 am 2Vy(a)  Z = /e o2 Fm YRy (3)da .

From this we see that almost all t € [0, T] and w" € Q" we have that v,
solves (13).



Proof outline for Theorem 14 part ii):
Let 4 € VYV sit. J7(u°) < J7(p*). By assumption lims_yoe Pspi® = p1*.
From this and Theorem 11 and from lower semi-continuity of J° we get

J7 () = J7 (1) <liminf J7(Pop®) — J7 (%)
5— 00

= _|i5nngf/05EW /OT [/‘(V%imo) (a, (Ps°)e)

<0

’ (Psuo)t(da)] dt ds

which is a contradiction so p* is (locally) optimal.

Any other (locally) optimal control v* € V3 we have for any v € V3V, due to
Theorem 4 that

OSEW[/OT/%(aw*)(ut—I/t*)(da) dt| .

Due to Corollary 5 this implies that v* € Z°. But part i) says Z° = {u*}.

29 /37



Structural Assumptions for Convergence to Inv. Meas.

Assumption 3
Let V,U be Lipschitz continuous in a, let there be k > 0 such that:

(V.U(3') = VaU(a)) - (3 — a) > k|’ — a*, a,a’ € R”.

Assumption 4

Assume that there exists 1,1 € R, 7j € LY2(Q" x (0, T); R) and
E:VY x V)Y —[0,00) s. t. forany a € RP, any yu € V¥

SH? 2 2 -
(va 5m )(Q:M)a > 771|a| - 77251’(/'6760) — M, t€ [07 T]

and for all ju,ji' € V¥ we have EV [fOT Ex(p, ') dt] < pglp, 1),

Assumption 5
There exists n1,m2 € R and £ : V) x V¥ — [0,00) s. t. for all t € [0, T}, for
all a,a" and for all ju, ' € V)¥ we have EW[IOT Ee(p, p')? dt] < pq(p, p')? and

29,550 1)~ (7.5 ) o)) o — 2) 2 il = o = o



Lemma 15 (Existence and uniqueness)

Let Assumptions 3, 4 and 5 hold. If ¢ (°k +m1) > O then there is a unique
solution to (11)-(12) for any s > 0. Moreover if X := § (# +m— 772) >0
then there is ¢ = T ,q,0,x,m,7 SUch that for any s > 0 we have

T T s
/ E[|6s,¢|%] dt < e*“/ E[|6°)9] dt+c/ e Mgy, (14)
0 0 0

For u, ' - Q% — VIV let
1/q
palins ') = (B W] (1)) )

Theorem 16 (Exponential convergence to invariant measure)

Let Assumptions 3 and 5 hold. Moreover, assume that
=4 (0’ +m —m2) > 0. Then there is u* € Vy" such that for any s > 0 we

have Psp* = pi* and p* is unique. For any 1i° € V¥ we have that

* —1lxs *
pa(Pepi®, 1) < €7 ™ pg(u, ") . (15)
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Proof outline for Lemma 15: Show that (V(‘,/V,pq) is a complete metric space.
Use Banach's Fixed point theorem on the linearised solution map W given by
= {L00s (1) | W(w™)) 1w € QY. s € I} with

2

.100) = = (V500050 ) + 5 (FU)(0a(0) ) s + 0 . (16

To get contraction apply It6's formula:
(€100 = 056 )I) = € [N — B ()
— 2 (Oeeln) = 05(11)) (rf [(V20)(Oe(1)) = (V2 U) (0]

42 (7500l ) = (T N0, )| ) 0nl) = 0.6

Assumption 5 is needed. Get

s
eASPq(w(H)S:w(Hl)S)q < qun,mmmz/o e)‘qu(,us”u;‘)qu. (17)
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Lemma 17
Let Assumptions 3 and 5 hold. If X = 4 (o°k +m1 —m2) > 0 and if
10, m° € VIV then for all s > 0 we have
— —1xs _
pa(Pspt®, PSfi®) < e pg(1°, %) . (18)

Proof outline: similar calculation with It formula and using Assumption 5 as
above.
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Proof outline for Theorem 16 (unique invariant measure exists and we have
exponential convergence):

_1 . .
Choose sg > 0 such that e g Ao < 1. Then Py : VE',/V — V“{V is a contraction

due to Lemma 17. By Banach'’s fixed point theorem there is a (unique)
fi € V¥ such that Psji = fi.
Let u* := foso Psjids. Take an arbitrary r > 0 and show that

Py =u*.

Consider v* # p* such that P,v* = v* for any r > 0. Then from Lemma 17
we have, for any r > sp, that

Lxr

pa(p" V") = pa(Prp”, Prv™) < e” 3™ pg(p”,v7)
which is a contradiction as e < 1.



When are Structural Conditions Met

Example:

Xe(p) = € + /O &, (X (1), i) dr +T We, t€[0,T].

The BSDE is (no dependence on Z in driver)

dYe(n) = —(VH)(Xe(w), Ye(u), pe) dt + Ze(p) dWe, t € [0, T],
Y1(1) = (V<g)(X7 (1)) -

Objective
S (v,€) :=E" [/OT |:I:;t(Xt(y),l/t) + Fe(ve) + —Ent(ut)} dt + g(Xr(v (xo

with F strictly convex.

-
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Lemma 18
Assume sufficient regularity and bounds on coefficients. Let T > s >t > 0.

Then there exists constant cq,7 > 0 such that

B0~ X" 171 cor (10600 = X0 + [ B [Wauw))* | 7] o )

Lemma 19 (BSDE Estimates)

Assume sufficient regularity and bounds on coefficients. Then

sup sup_[|Yi(p)lloc < o00.
ueV){V telo,T]

Furthermore, there exists a constant ¢ > 0 such that

Vi) — Vi)l + < cE[\xT(u) ~ Xr(v)
(19)

+f " W) + 10— X, (0] | 7 ).
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