POLICY GRADIENT METHODS FOR RL IN GENERAL SPACES
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1. Introduction

Our aim is to learn about policy gradient methods for solving reinforcement learning (RL) prob-
lems modelled using the Markov decision problem (MDP) framework with general (possibly con-
tinuous, possibly infinite dimensional) state and action spaces. We will focus mainly on theoretical
convergence of mirror descent with direct parametrisation and natural-gradient descent when em-
ploying log-linear parametrisation. For our purposes solving an RL problem means that we find a
(nearly) optimal policy in a situation where the transition dynamics and costs are unknown but we
can repeatedly interact with some system (or environment simulator).

There are two main approaches to solving RL problems: action-value methods which learn the
state-action value function (the Q-function) and then select actions based on this. Their convergence
is understood Watkins and Dayan [1992], [Sutton and Barto, 2018, Ch. 6] and will not be discussed
here. Policy gradient methods directly update the policy by stepping in the direction of the gradient
of the value function and have a long history for which the reader is referred to [Sutton and Barto,
2018, Ch. 13]. Their convergence is only understood in specific settings, as we will see below. The
focus here is to cover generic (Polish) state and action spaces. We will touch upon the popular
PPO algorithm Schulman et al. [2017] and explain the difficulties arising when trying to prove
convergence of PPO.

Many related and interesting questions will not be covered upon: convergence of actor-critic
methods, convergence in presence of Monte-Carlo errors, regret, off-policy gradient methods, near
continuous time RL.

Large parts of what is presented here in particular on mirror descent and natural-gradient descent
is from Kerimkulov et al. [2025a]. This work was itself inspired by the recent results of Agarwal
et al. [2019], Mei et al. [2020], Lan [2023] and Cayci et al. [2021] that apply mainly to finite MDPs
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2 POLICY GRADIENT METHODS FOR RL IN GENERAL SPACES

though e.g. Agarwal et al. [2019], Lan [2023] already note that natural policy gradient (closely
related to mirror descent) has dimension independent convergence rates.

1.1. Problem formulation and the Bellman principle. In this section, we formulate the
entropy-regularised MDPs with continuous state and action spaces. Let S and A be Polish spaces,’
P e P(S|S x A), ce By(S x A) and v € [0,1). The five-tuple (S, A, P, c,7) determines an infinite
horizon Markov decision model, where S and A represent the state and action spaces, respectively,
P represents the transition probability, ¢ represents the cost function and - represents the discount
factor. Let I = {7 = {mu}nen, : ™ € P(A|H,)} denote the set of (possibly non-Markovian)
stochastic policies, where for each n € Ny, H,, := (S x A)" x S is the space of admissible histories.

Let (Q := (S x A)No, F) denote the canonical sample space, where F = B() is the corresponding
Borel sigma-algebra. Elements of Q are of the form (sg,ag, s1,a1,...) with s, € S and a, € A
denoting the projections and called the state and action variables, at time n € Ny, respectively.
By [?, Proposition 7.28], for any given initial distribution p € P(S) and policy 7 € II, there exists
a unique product probability measure PJ on (Q, F) with expectation denoted E? such that for all
n € No, B € B(S) and C € B(A), P}(so € B) = p(B) and

]P)Z(an € C|hn) = 7Tn(0|hn)a P:)r(er»l € B|hnaa’n) = P(B|5naan)a (1)

where h,, = (s0,a0,-..,50—1,an-1,Sn) € Hy. In particular, if 7 is a Markov stochastic policy (i.e.,
m, € P(A|S) for all n € Ny), then {s;, }nen, is a Markov process with kernel { Py, }nen, € P(S|S5)
given by

Pr(ds'|s / P(ds'|s,a)m,(da|s), Vse€ S,neNg.
For s € S, we denote Ef = Ef , where d; € P(S) denotes the Dirac measure at s € S.

Let u € P(A|S) denote a reference kernel and 7 € [0, 00) denote a regularisation parameter. For
each m = {m, }nen, € Il and s € S, define the following regularised value function:

=E7 € RU{+o0}, (2)

ny (e(sns @n) + T KL(mo () |1:]5)) )

which may be infinite if m, & P,(A|S) for some n € Ny, or if ET [> 07 (" KL(mp(:|hn)|1(:]s))]
diverges. Since c is bounded and H,, X S 3 (hy,s) — KL(m,(-|hn)|u(:|s)) € [0, 00] is non-negative
and measurable, V™ : § — RU {400} is a well-defined measurable function. We define the optimal
value function V* : S — R U {+o0} by

V¥(s) = inf V'(s), VseS, (3)
well
and refer to 7* € II as an optimal policy if V™ (s) = V*(s), for all s € S.

1.2. The unregularized case 7 = 0. By virtue of [Herndndez-Lerma and Lasserre, 2012, Theo-
rem 4.2.3], we have the following dynamic programming principle, as long as certain assumptions
guaranteeing measurable selection hold.

Assumption 1.1. (1) The kernel P € P(S|S x A) is strongly Continuous that is: for every
v € By(S) (bounded and measurable) the function w(s,a) = [4v ds’ |s,a) is bounded
and measurable as a function from S x A to R
(2) The cost function ¢ € By(S x A) is lower semi-continuous and inf-compact on S x A i.e. for
any s € S and any [ € R the set {a € A: ¢(s,a) <1} is compact.

1Complete metric spaces that have a countable dense subset.
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Theorem 1.2 (Dynamic programming principle, 7 = 0). Let Assumption 1.1 hold. Then the
optimal value function V* € By(S) is the unique solution of the Bellman equation

V(s)—mm[ c(s,a +7/V* P(ds'|s,a)| . (4)

Moreover, writing Q*(s,a) = c(s,a)+~ fS V*(s")P(ds'|s, a), there exists a measurable function f* :
S — A called a selector such that f*(s) € argmin,c 4, Q*(s,a) and the induced policy m* € P(A|S)
defined by 7*(dals) = dp«(5)(da) for all s € S satisfies V* = VT,

Lemma 1.3. Let 7 € P(A|S). The value function V{ is the unique bounded solution of the
on-policy Bellman equation:

Vi (s) = / (c(s,a) —i—’y/ VO”(S’)P(ds'\s,a)) m(dals), VseS.
A S
1.3. The entropy regularized case 7 > 0.

Theorem 1.4 (Dynamic programming principle, 7 > 0). Let 7 > 0. The optimal value function
V¥ is the unique bounded solution of the following Bellman equation:

V¥(s) = inf )/A (c(s,a) +7ln ((ii—zl(a) +'y/SV;(s')P(ds'|s,a)> m(da), Vse€S,.

meP(A

Consequently, for all s € S,
vr@>=—wﬂn/?mp(—1Qi@¢w)uwaw»
A T
where Q* € By(S x A) is defined by
Q:(s.0) =clsa) +7 [ V()P ]s,0), V(s,0) € S x A
S

Moreover, there is an optimal policy 7% € P, (A|S) given by

mr(dals) = exp (—(Qr(s,a) — VI (s))/7) p(dals), VseS. (5)
Definition 1.5. Let II,, denote the class of policies 7 = {m,}nen, € II such that there exists
f € By(S x A) and we have m,(da|s) = exp(f(s.a)) u(dals) for all s € S and n € Ng. We

fA exp(f(s,a))p(dals)
identify II,, with the set {mw(f) | f € By(S x A)} C Pu(A]S), where 7 : By(S x A) — P,(A]S) is
defined by
el (s:0)

T T dal]s)
For each m € II,,, we define the Q-function QT € By(S x A) by

7 (f)(dals) =

p(dals), Yfe By(SxA). (6)

@3(s,0) = cls.a) +7 [ V7 ()P(ds]s.0). (7)
s
Proposition 1.6. Let f € By(S x A) and 7 € II,, be such that w(da|s) = T e:)fé{;éag,))u(da,) for all
s€S. Then
dm - 1
In — <2/ fllBysxa)y, Vi lBys) < 7—= (lellBy(sxa) + 271 fll By(sx4)) »
dge|| g, (sx ) L=~

- 1
1Q7 1B, (5x4) < g (llell By sxay + 2m71 fll By (5% 4)) -
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Proof. As n(A) =1, for all g € By(S x A) and s € S,
in [ explg(s,a))n(da’) < In (210 () = gl 5.
A

ln/Aexp(g(s,a’))u(da’) > In (e_”g“Bb(SXA)M(A)> = —|lgllB,(sx ) -

Then, for all (s,a) € S x A, using In §% ~(als) = f(s,a) = In [, exp(f(s,a’))p(da’),

dr
In @(al s)

i (Tln— at|st)>]

t=0
By (2), for all s € S,

<|[f(s,a)l + < 2(IfllBy(sxA)

In /A exp(f (s, a') )(da’)

which implies that

- 2 27[fllB,(sxa)
= 27'||f||Bb(:5*><A) 27 = #
t=0

VZ(s)] <ET | Y Ale(sean)l| + [EF | Y v ( atlé‘t))] '
t=0 t=0
1
< T—+ (llell sy sxa) + 2711 fll By (sxa)) -
Hence, for all (s,a) € S x A, by (7),
- - 1 27'7
Q7 (s,a)| < |lcllB,(sxa) + VIVl Bys) < T HCHB,, (5x4) T 1 ”fHBb(SxA)
This proves the desired bound of Q7. O

Lemma 1.7. Let 7 > 0 and m € 1I,,. The value function V' is the unique bounded solution of the
on-policy Bellman equation:

d
VI(s) = / (c(s,a) +7ln ﬁ(a!s) —i—’y/ VI(s")P(ds'|s, a)) n(dals), VseS.
A S
Note that from this and defn. of the Q-function (7) we have for all 7 € II, and s € S that
d
V() = / <Q7Tr(s',a') +7In £(a'|s')> n(dd'|s"), VseS. (8)
A

Using this in the defn. of the Q-function (7) we have the on policy Q-Bellman equation
QT (s,a) = c(s,a) +’y/ / (Q:(s/, a')+7ln j—w(a/|s')> w(da'|s")P(ds'|s,a), V(s,a) € S x A. (9)
SJA K

2. Policy gradient

2.1. Performance difference. For each m € P(A|S), we define the occupancy kernel d™ € P(S|S)
by

d™(ds'|s ZV"P” (ds'|s (10)

where P} is the n-times product of the kernel Py w1th PY(ds'|s) = d5(ds’) and the convergence is
understood in bM(S|S). For a given initial distribution p € P(S), we define

VE) = [ VE(plas) and dpias) = [ ar(asis)pas). (11)
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The following lemma expresses the resolvent of the transition kernel using the occupancy kernel,
which will be used in proving Lemma 2.2.

Lemma 2.1. Let m € P(A|S) and f,g € By(S) be such that for all s € S,

—7//1“ P(ds'|s, a)r(dals) + g(s) .

Then f(s) = = yfsg )d™(ds'|s) for all s € S.

Proof. Recall that a kernel k 6 b./\/l(S |S) induces a linear operator Ly € L(By(S)) such that for
all h € Bb(S) Lkh fS dSI| ) Since ||Lkh||Bb(S) < ||h||Bb(S)||k||bM(S|S) for all h €
By(S), Lkl By S S ||k||bM(S|S) Consider the kernel vPr € bM(S|S) defined by (vPr)(B) =
v [ 4 P(ds'|s,a)m (da|s) for all B € B(S). Then as P; € P(S|S) and || Prllpam(s1s) = 1,

| Lypell 2By (s)) < IV Prllbrtcsisy = Y Prlloamcsisy = 7 -

The condition on f and g implies that (id —Lp,)f = g, where id is the identity operator on
By(S). As [[Lyp,llcB,(s)) <7 <1, the operator id —L.p, € L(By(S)) is invertible, and the inverse
operator is given by the Neumann series (id —L,p,)~! = > °° Lrp . Thus, f =307, Lp g.
Observe that L;LPW = Lynpr for all n € Ny, where P is the n-times product of the kernel P with
PY(ds'|s) == 65(ds’). Then by the definition (10) of d™ € P(S|S), f =22, Llp 9= La_y)-14r9-
This proves the desired identity. (I

Lemma 2.2 (Performance difference). Let p € P(S). Let 7 > 0. Let m,7" € P(A|S) and if 7 >0
assume further that m,n" € II,,. Then
V7 (p) = V7 (p)
1 -y d?T, ’ / -
— Q7 (s,a) + 7In —(als) | (m — 7')(dals) + 7 KL(7(-[s)|7"(:]s)) | d} (ds) .
T 1-vJsl/a dp
Proof of Lemma 2.2. By (8), for all s € S,

V7 (s) = V7 (s)
= /A (Qf(a|s) +7ln j—;(a|s)> 7(dals) — /A (Q:/(s,a) +7ln i—j(ds)) 7' (dals)
= /A (Q’T’l(s, a)+ 71n i—j(ab)) (m —7')(dals)
+ [ (@07 T als) — Q5 (5.0 — 7 (0l ) mldal).

Hence for all s € S we have

V() - Ve = [ (a4 7o S tals)) (r = )l
oy [ (V) = VE ) Plasls.apeldals) + TRLGCI) ().

where the last equality used (7) and the fact that KL(7(-[s)|7'(-|s)) = [, In 47 47 (als)m(dals). Hence,
by Fubini’s theorem and Lemma 2.1, for all s € S,
VE(s) = V7 (s)
1 ot dr’ / ’ / INIRW, T 1)
— QF (s'ya) + 7ln —(a|s") | (m — 7')(dals") + 7 KL(7w(-|s") |7 (:|s")) | d™ (ds'|s).
T 1-vJsl/a dp
Integratlng both sides with respect to p yields the desired identity. (I
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2.2. First variation, chain rule, policy gradient theorem.

Proposition 2.3. Let m, ' € II,, be such that n(dals) = T e;%{;(ssag,) :l(‘zl)a for all s € S. Then
A

i s v
1Q7 — Q7lIBy(sxa) < TEE (llell B, (sxa) + 271 fllBy(sxa)) T — 7' loatcars)

Ty dn’
In —
1—x dm

Bb(SXA) .
Proof. By Lemma 2.2, for all s € S,

V() = VI (s)| < 7=

o dr’ / ’ N g7
(QT (s'ya) + 7In d—(a|5 )) (m —7")(da|s")d% (ds")

n— (a|s")m(da|s")dE (ds")

d7r
QT 7In — I — 7' lopmas) +
dge || g, (s ) s 1

1 37
dn’

T

Bb(SXA) '
Thus, by (7), for all (s,a) €S xA,

|QF (s.a) = QF(s,a)| < ”Y/S VI (s') = V()| P(ds']s,a) < AIVE = VI pys) -

By Proposition 1.6,

! dn’ 1
Qr +7hngr < = (llellzysxa) + 2771 fllBysx ) + 271 fll B (sx )
dp g, sxay ~ 1=7
1
= 1—~ (HC“Bb(SXA) + 27'||f||Bb(5xA)) .
Combining the above inequalities yields the desired estimate. (Il

Proposition 2.4. Let 7 > 0 and p € P(S). For all m,7' € 11, C P(A|S) (cf. Definition 1.5),
VT“*E)”*”’@) V7o)

lim
N0 (12)
// (Q’r s,a +Tln—(a| ) — V(s )) (7r’—7r)(da|s)d;r(ds).
Proof. Let € = (1—8)7T+67T = m+e(n’ —m) and note that 7 — ¢ = —¢(7’ —7) = e(m —7’). Then
(e v =t [ (@ s |s>) (r — ) (dal ) (ds)
+€1_ KL((l)\W(U)d”(d)

=1 (o7
[ KLl (1) 5 ().

We will now employ the identity which holds for any m, m’ € P(A) for which the quantities in the
identity are finite:

" (a |s>) (r — ) (dals)d7 (ds)

61—’)/

/

KL(m|u) — KL(m/|u) = KL(m|m') + /Aln i (a)(m —m')(da) .




POLICY GRADIENT METHODS FOR RL IN GENERAL SPACES 7

Hence
é(w(p)—v: //Q” s,a)(w — ') (dals)d} (ds)
S [ (KLGClCs) ~ KL (ls) 1) 5 (ds).
Thus
é(VTﬂg(p)—V //Q” s,a)(r" —7)(dals)dy (ds)
= [ (KL C9lntls) - KLn (‘IS)IM(-IS)))dZ(dS)-

The first integral on the right hand side converges to — L [o [4 Q7 (s,a)(x" — m)(dals s)dp(ds) as

€ — 0 due to Proposition 2.3. Moreover, as w,n’ € I, for all s € S, by [Kerimkulov et al., 2025b,
Lemma 3.8],

tim * (KL(x({s)a(1s) ~ KL(x(]s)|u(1s)) = /A 1nj—2<a|s><w’—w><da|s>,

e\o0 &
which along with Proposition 1.6 and the dominated yields the desired limit. ]
For a fixed v € ’P(S) define (-,-), : Bp(S x A) x bM(A|S) — R by
(Z,m), // s,a)ym(dals)v(ds), (Z,m) € By(S x A) x bM(A|S).

As a consequence of Proposmon 2.4, given v € P(S) satisfying dy < v,

(1—e)m+en’ e -
lim V7 (p) =V (p) _ <5VT (p) ’W,_W> ’
e\0 € o v v
with V() 4 A
'rﬂ' P _ ™ —7I' _yT _ P
2 (50) - (@047 (s - 170 ) G20, (13)

where dj € P(S) is the occupancy measure associated with 7. The flat derivative (13) is consistent
with the classical derivative in 7 when dealing with discrete action spaces (see, e.g., [Lan, 2023,
Lemma 1]). It also generalises the notation of the flat derivative applied to probability measures
to encompass probability transition kernels.

Let (H, (-,)m) be a Hilbert space (we will either have H = R? or H = f). If 7 : H — II, i.e.
we parametrize 7 in terms of # € H and we can compute Vymy then a chain rule holds and can be
proved similarly to [Kerimkulov et al., 2025a, Proposition 3.8].

Lemma 2.5 (Chain rule). Let 7 : H — II,, be given. Then 0p, VI (p) = <5L(P) 89.7r9>d }
P

e96(s,a) . where ZG f egg s,a ),u(da )

Theorem 2.6 (Policy gradient theorem). Let d”"( |s) :== Tl

Then
~ 7r0
VOV () = T B | B 5. Vo n ikl ﬂ

1=y~ a~mg(-|s)

Proof. From Lemma 2.5 (chain rule) we have:

VoV (p) = /

Taking the gradient of the logarithm and re-arranging we see that
VoGt (als) = G (als) Vo ln G2 (als) . (14)

5V

T2 (als)u(da) di? (ds)
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VoV (p) = /

We just need to rewrite this in terms of expectation to get the conclusion. O

We can take any b € By(S). Then
/b( )V In 2 (als)mo(dals) = b(s /Vgln %6 (a|s)mg(dals) = b(s /vedﬂe als)u(da)
A
— b(s )w/ ds (1) u(da) = b(s)Vl = 0.
A

Hence

‘W Vo ln G dmg (a| )mg(dals )dwg(ds)

Hence
uy ~dy® U
VoV () = pE | (S )+ 006)) Tt el
We can see that to use this in an algorithm we (at least approximately) need J(s,a) =

Qr(s,a)+7ln %(S, a) — VI (s). Typically, we would have access to a stream of data

(s0, ap, In %(so,ao), o, 81,01, 1n %—?(sl,al),cl, ...,SN, aN,ln (sN,aN) cN),

produced by interacting with the environment using policy my for an ep1sode” of length N. The
most common approach is to use the generalised advantage estimation formula from Schulman et al.
[2015]. Note that this relies on having access to a (separate) approximation of the value function.
An alternative is to have a (separate) function approximation for e.g. the Q function updated from
a Bellman error.

The following observation may be useful later.

Corollary 2.7 (to Policy Gradient Theorem). Let ddilf(a|s) = %, Zo(s) == [, e99(59") 1y(da’).
Then

1 ~dT0 oVTe

1~ a~mo(ls) #(S,a) <V999(57a)_A(Vegg)(s,a,)mg(da'|s)>].

Proof of Corollary 2.7. Noting that

In 72 (als) = go(s,a) — In Zy(s)

and so
(s,a”)
VoIn %f(s,a) = Veogo(s,a) — VoZs(s) 755 = Voga(s.a) — [4(Vogs)(s, a )egzee(s) p(da’) .
Hence we have an expression for gradient of the log-density:

Voln §2(s,a) = Vago(s,a) — [4(Vage) (s, a') G2(a'|s)p(da’) (15)

which concludes the calculation. |

Remark 2.8. If the state and action spaces are finite and we take the direct (tabular) parametriza-
tions so that gg(s,a) := 0(s, a) then

Oo, . 90(s, a) Zagsagg mo(d|s) = Ssa(s,a) = Y ds.a(s,d)m(a'|s) = 0s,a(s, a) — 55(s)m(als)

Do, VI (p) = 1= 3 W (5,0)55(s)0a(a)ma (] s) AT ()~ 1= > %22 (5, 0)8 (s) (@] s) o als)d3e (s) -
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But
SN 2 (s, a)85(s)m(als)m(als) A0 (s) = 3 6(s)m(als) S O (s, a)mp(als)dR? (s) = 0
and so

7|'9 R . R R R
0o, , VT (p) = 755 55— (5,a)me(a] 3)dj* (3) .

This is (for the 7 = 0 case) exactly Lemma C.1 in Agarwal et al. [2019].
If 99(87 a) = (67 ¢(Sa CL))]H[ then aGiQG(Sa a’) = ei(S, a) and so

VoV (p) = ﬁ]EZ:iEB(_'S) [%(5, a) (gb(s,a) — 4 qb(s,a’)m(da’|s))] . (16)

3. Mirror descent

Mirror descent is now a classical approach to first order (gradient-based) methods for optimizing
functions over convex sets, going back to Nemirovskij and Yudin [1983].

3.1. Motivation. There are at least three good reasons to study mirror descent in the context of
RL. First of all, it allows one to consider gradient-like updates without introducing parametrization.
Indeed, even in the finite action space setting an Euclidean gradient step in the convex space of
policies provides no guarantee that after the update step is carried out we still have an element in
the probability simplex.

Second, the lack of convexity of the map 6 — Vi " (p) makes convergence analysis of gradient
descent challenging. The best results for direct parametrization in the finite action space setting
are Mei et al. [2020] which first prove a non-local version of gradient dominance and then show
that along the steps of the gradient descent the constant appearing is lower bounded thus obtaining
convergence rate.

The third and final reason is algorithmic. The classical policy gradient methods update the
policy parametrization using

Oni1 =0, —nVeVi"(p),n=0,1,... ,00 € RP given and 1 > 0 a step size.

Especially when C}%(cﬂs) o €99(5%) with gy a neural network there is no guarantee that small step

size 7 leads to a small update in the space of policies. We can only guarantee improvement with
appropriate L-smoothness and the appropriately small step size or when asymptotically small step
is taken. Indeed, taking 7 — 0 the continuous time version of the above stepping is

%Ht = —VoV, o (p),t>0,0p € RP given.
Then chair rule tells us that
LV (p) = $00- VoV (p) = —[VaV7 " (p)* < 0.

This makes choosing the “right” n > 0 difficult in practice: small values lead to slow convergence
and already somewhat larger values can lead to instability.

How to overcome this? One can think of the classical policy gradient update as something that
arises as follows: we do one step Taylor expansion in § and then add a penalty term to ensure that
we don’t too large a step. Writing V7™ = V% (p) we let

1
Lpc(0) = V™ + VoV - (0 ) + 517101

We can now take

6"t = argmin Lpg(6) .
[4

From the first order condition for optimizing 6 — Lpg(0) we get
0=VoV™n + 5710 —0,)
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which is exactly the policy gradient step. Let us now penalize not in the parameter € but in terms
of policy. Let’s say we have m, = mg,. Fix p € P(S) and write V' = V7 (p). By perf. diff.
Lemma 2.2 we have

VE VR s (M ) ez /S KL () ()5 (ds) .

This is almost a first order expansion except for the terms highlighted. We linearize and penalize
with A > 7 to not move too far

V;ﬂ' ~ VTﬂ'n + <5‘g77zrm , T — 7Tn> =+ ﬁ/‘ KL(’/T"/Tn)(S)dZH (dS) .
PsTn S

We drop the terms that don’t depend on 7 and the (1 —~)~! scaling as they won’t matter if we're
minimizing and define a surrogate objective

I, = (S m—m) 4 /S KL(r|ma) ()d3" (ds)

To see how this could be implemented we do a change of measure and write in terms of expectation

// ( ary (als )) & (a|s)mn (dals)dyr (ds)
—anrg (Is)[(w (5,a) + Mn £ (als >) —(als >}

This is a quantity which can be estimated by collecting samples under the current policy 7,. The
mirror descent update step is 7,41 = argmin, L7 . If the policy is parametrized by ¢ then the
proposed update in parameter space is: 6,41 € argming L79 .

3.2. Convergence of mirror descent with approximate advantage. We will first show that
if we have access to the exact advantage function then the mirror descent updates guarantee im-
provement. Let

A1(]s) = arg min/ 5‘(5/’% (5, a)(m(da) — 7"(dals)) + AKL(m|z"(-|s)). (17)
meP(A) JA OT

For this exact scheme we have policy improvement.

Lemma 3.1 (Policy improvement). Let V" := V" forn € N and n" € 11, given by (17). If 7 < A

then for any p € P(S) we have V" 1(p) < V2 (p).

Proof. From the performance difference lemma, see Lemma (2.2), we see that
1 oV

(VTn+1 — V™) (p) = ﬁ s ( A 57; (s,a)(w”+1 —7")(dals) + TKL(Wn+1|7Tn)(3)) dy, (ds)

1 ovr
< - T n+l _ _n n+l| _n T
<15 S(  on (s,a)(m ") (dals) + AKL(7" " 7") (s ))d

n+1

From the mirror descent update (17) we have, for all 7 € II, and s € S that
6V”

(5 a)(m —n")(dals) + AKL(w|7")(s)

7 — 7™ (dals) + AKL(x" T |7™)(s) .

57r

This with 7 = 7™ allows us to conclude that for all s € S we have
6;/7 (s,a)(7" T — ™) (dals) + AKL(7" " |7™)(s) < 0. (19)
A s
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This with (18) concludes the proof. O
Mgfrrn =A" +71ln ddL: =QIn —VIn 41 ln . In practice updates can only be

made with an approximation of A™ say A,(s,a) = A™ (s, a) —|— En(s,a). We consider the scheme
7" (da|s) = arg min/ (A (s,a) +7In 4" (a| )) (m(da) — 7" (dals)) + AKL(m|z"(-|s). (20)
meP(A) JA

What can we say about convergence of such a scheme, provided we can control the errors? We
want to use the classical tools for analysis of mirror descent: 3-point lemma, convexity (substituted
by performance difference) and L- smoothness (derived from performance difference).

Let M, = {m e P(A) | 5~ dm exists and In 9 € B,(A)} and notice this is a convex subset of P(A).

Lemma 3.2 (Three point lemma / Bregman proximal inequality). Let G : M,, — R be convex. For
allm' € M, let

m* = arl"ngelil/[in {G(m) +KL(m|m")} . (21)

Then, for all m € M,,, we have
G(m) + KL(m|m') > G(m*) + KL(m|m*) + KL(m*|m/). (22)

The proof of Lemma 3.2 can be found e.g., in Aubin-Frankowski et al. [2022] noting that the flat
derivative of KL is well defined on M, see e.g. [Kerimkulov et al., 2025b, Lemma 3.8].
We will also need the following crucial observation with a trivial proof.
Lemma 3.3. Let F': S — R be such that F < 0. Then for any m and any s € S
1
—— [ F(s)dZ(ds') < F(s). (23)
I—7Js
Proof. From (10) and the fact that P2(ds’|s) = d,(ds’) we have for all s € S that

. s)dT(ds") = sYPY(ds'|s 3 FE(SPF(ds'|s
[Pz = [ )P |)+;/57 F(s)P(ds'})

S
< / F(s")és(ds') = F(s).
S
This concludes the proof. O

Let 7™ be generated by inductive application of the approximate mirror descent step (20). Let
V.= V™" for n € N. We begin with an application of Bregman proximal inequality, see Lemma 3.2.
Fix s € S and " € 11, and define G : M,, — R by

=3 / (s,a)+7In dz (a|8)) (m(da) — 7" (dals)) .
It is linear and thus clearly convex and hence due to the mirror descent update (20) is equivalent
to (21) and so we have, for all 7 € II,, s € S and n € N that
1 )
X/ (An(s.a) + 71092 (als)) (x — 7")(dals) + KL(x|x")(s)
A

> %/A (z‘i (S (L) —|—7’1Il (a| )) (ﬂ.n-H —ﬂ")(da|s) +KL(7T|7T”+1)(3) +KL(7T”+1|71'")(5) ‘
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Re-arranging this leads to

KL(r|x"")(s) — KL(r|7")(s)

< %/A (Ans.a) + 710 9 (als) ) (x — 7")(dals) (25)
- % /A (A (s,a) +7In 4 (als ))(w"*l — 7™)(da|s) — KL(z"7™)(s).
From the performace difference, Lemma 2.2, we have
n+l _ yn _ L A dnr™ n+l _  n n+1 a1
V=V = = . (/A (An En+7In du)(s,a)(ﬂ 7™ (dals) + 7 KL(x"+7") (s ))d (ds).

Note that (20), together with A\ > 7 guarantees that
0> /A (A (s,a) + 710 9" (a]s ))(w”“ — 7™)(da|s) + T KL(x"1x™)(s) =: F(s)
for all s € S. Thus we may apply Lemma 3.3 and get
(V= V) (o) < F(s) ~ 7= /S [ Euls.)m = ) dals) ™ ).

Assume that ||€]|p,(sx4) = dn < 00. Then we have the following approximate L-smoothness:

20,

(VI = V2)(s) < F(s) 4 7o s € 5.
Applying this in (25) and taking we thus have, for all s € S, that
KL(m* 7" ) (s) — KL(x}|x") )\ / (s,a) + 7ln d”ﬂ (a|s))(7r;"_ —7")(dals)
95 (26)
- Vn+1 _ VTL _ “¥n )
SO V)0 +
Summing up over n =0,1,..., N — 1 we see (spotting the telescoping sums) that for all s € 5,

KL (7% |7V (s) — KL(7*|x)( Z / (s,a) —f—Tln (a| ))(7‘(‘:—7[‘”)(da|5)

N-1

1 2
UG Chd ey PILE

We wish to apply performance difference in due course and so we observe that the above is equivalent
to

KL (7% |7V (s) — KL(7*|7°)( Z / T (s,a)+7ln u(a|s))(7r;’f—7r")(da|s)

o 1 o )
+35 ] Euts. ez = 7" (dals) = SOV < VI o) + 5 b

Notice that VV(s) > V*(s) and so (VN — V9)(s) > (V¥ — V9)(s) for all N € N. Let

"= ™ ™ (ds) and o := — *— VO (s)dr (ds
y .—/SKme )($)d% (ds) and /SWT V) (s)d™ (ds)
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so that, after integrating (27) over dz: and using [|€]| g, (5x4) = dn < 00 We have

N-1 N-1

Using the performance difference lemma, see Lemma 2.2, and upper bounding the approximation
error terms we get

N

,_.

0 o T “ln - o 4
_y VT Y p——/KLWTW sdes]+—+4 5.
<3 [ 0§ [ a] + 5+ gy 5
Since since KL(+|-) > 0 we get that
1—7 N « 4 =
N_ 0~y 1 k o : ™ b
y y =N A (VT (p) n:O,III,l.I.?N—l‘/; (p))+)\+(1—7))\ nzzoén'
Hence
11—~ N . a 4y =
N7 i ™) =V (p)) < 2 2 N5,
3 amoin V7 0) = V) < 504 (s 00
and so

N
, N . La+Xx 1 4
< v/ o 7TT < . - .
0< min  VI(p) =V (p) NI ;) On

— T T _N]._'y

3.3. Natural policy gradient is mirror descent. Natural policy gradient (NPG) leads to the
same updates as mirror descent and we’ll show this for log-linear policies. NPG in RL is due

to Kakade [2001] but the argument connecting to mirror descent updates is closer to Agarwal et al.
[2019].

Let d7;f( als) = egzgg(:s;) Zg(s) = [, e (5:4) y(da’) with gg(s,a) = (8, d(s,a))u. Let us defined
the Fisher information matrix

:// Voln 52 ® Vo In 2 (als)mg(dals)dy’ (dals) ,
S

where for 0,60" € H we have (6 ® 0');, = 6;0;. Let
bry = P(s,0) — / o(s,a’)me(da'|s) .

Recalling (15) we have that Vg In %—Z’(a| ) = Voga(s,a)— [4(Vogo)(s, a)%u( Is)p(da') = ¢ry(s,a).
Hence

F(0) = /S/A¢7r9 ® by (S, a)we(da|s)dg9 (da|s) .
Natural policy gradient (NPG) updates are
Oni1 = 0n —nF(0)VoVT" (p), n=0,1,..., 6° € H given. (28)

Here, for M € L(H, H) we use M to denote the Moore-Penrose pseudo-inverse (which coincides
with M1 for invertible M).

Proposition 3.4. If given 6 € H we take In ﬂ"" (als) = (0, pg)m and thus obtain my, corresponding
to 0, then mg, ., with 011 given by the NPG update (28) is equal to ™"+ given by

g, (-|s) = arg min/ (w(en) + 700, Or,, (5 a))H(m(da) — mp, (dals)) + NKL(m|mg, (+|s))
meP(A) JA
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which is the mirror descent update (17) where the flat derivative is replaced by its approximation

Ay = (0(0) + 76, pry -
Proof. To see the connection between (28) and the mirror descent updates, let?
£ow) = 5 [ [ 142 (5.0) = (0.0, (5.0 Proldal )3 (). (29)
where AT (s,a) = QT%(s,a) — V%(s). Notice that
VL™ (w / / (AT (5, 0) — (1, oy (5, @))i)omy (5, @) mo(dal ) 3 (dis)
and so the first order condition for any minimizer w of (29) is
// W, Pry (8, a) ) HPr, (8, a)mg(da|s)dr? (ds) = //A’“‘) 8,a) P, (8, a)mg(dals)dy? (ds) .

Moreover, for any w € H we have F(0)w = [¢ [, (w, ¢z, (5, a))u¢r, (s, a)mg(dals)d}? (ds). Noting
also that the minimizer above depends on 6 we have

F(0)w(9) = / / AT (s,a)bry(s,a)ma(dals)d? (ds) .
Note that the Moore—Penrose pseudos—infferse provides the smallest norm solution to this i.e.
W(0) = F(O)f /S /A AT (5, @) by (5, a)p (dal)d™ (ds).
This, together with (16) leads to
POV (p) = 5 FOES (A7 (5,0) + 710 952 (als) )y (5, )

1—
If F(0) is invertible then F(6)~'VaV/ ™ (p) = ﬁ(d}(@) + 76). So the NPG stepping scheme (28)
becomes
Oni1 =0, — %(m(en) + THn) , n=0,1,..., 0y € H given

(Ont1,0)u = (bn, O)m — 5 (W(0n) + 70, B(5,))y -

) = (6n - ( s 4 (-, a’)mg,, (dd’|- ))H and collecting all the terms constant in

(a

|s
a in some b b(s) we then have

01 (a]s) = In T (als) — L (0(00) + 700, Dy, (5.@)) 5 + bs)

€ P(A|S). Hence

Since ln

In

with b chosen such that g,

In _ddﬂ::gﬂ (als) = =L (0(0,) + T0n, dry (5.0))y + b(s) .
And so
dm R
Tt (als) = exp (= 3 (@(0.) + 700: b, (5,)) 5+ b(s)) -

Due to Dupuis and Ellis [1997], Lemma 1.4.3 we know that

T, (-]8) = argmin/ (12)(9”) + 70n, Py, (5, a))H(m(da) — mp, (dals)) + AKL(m|m, (-|s)) -
meP(A) JA

2As you see we are not including the In (;L: term. The reason is that as it’s just an additive term we can trivially

d‘rrg

see that [In T2 — (y, ¢x,)u|” is minimized by y = 6.
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This is the mirror descent update (17) where the flat derivative is replaced by its approximation
An = ((8) + 76, 6y )i 0
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Appendix A. Proofs for results in Section 1

Proof of Lemma 1.3. For u € By(S) let

(Lu)(s) := / (c(s,a) —I—'y/ u(s')P(d8'|s,a)> m(dals), VseS.
A S
Then
[(Lu)(s)] < /A |c(s, )l +’Y/S u(s")[P(ds'|s, a)m(dals) < [lc]lp,(s) + VIlullB,s) -
Hence L : By(S) — By(s) is well defined. Moreover for u,v € By(s) we have

|(Lu = Lo)(s)| = ‘/A’Y/S(U(Sl) —v(s))P(ds'|s, a)m(dals)

Hence || Lu — Lv||g,(s) < 7llu — vl B,(s) and so L : By(S) — By(s) is a contraction on the Banach
space of bounded functions and there is a unique solution V € By(S) to the equation

Vis) = /A (c(s, a) + 'y/S V(s')P(ds'|s,a)> m(dals), VseS. (30)

It remains to show that V = V(. Iterating (30) and using (1), we get that for all N € N,

< vllu =l Bys) -

N-1
V(s)=E Z Ye(8py an) + ’yN/ PNV (s, a)n(dals),
A

n=0

where POY) € L(By(S), By(S x A)) is the operator induced by the N-step transition kernel. Since
PW) has an operator norm less than one, we have [4 PNV (s,a)r(da|s) < IV B,s), and hence
by Lebesgue’s dominated convergence theorem, for all s € S,

V(s) =BT > 7 c(sn, an) = V' (s),
n=0

where the last identity used the definition of V{7 in (2). This proves the desired identity. U

Proof of Theorem 1.4. This proof can mostly be seen as a special case of the proof of the DPP for
generic Borel state and action spaces (e.g., [Herndndez-Lerma and Lasserre, 2012, Theorem 4.2.3])
once one enriches the action space to P(A) and understands the entropy /KL as an additional cost.
Here, we present a self-contained proof for the reader’s convenience.

Let 7 > 0 be fixed. For each u € By(S) and each s € S, define

Tou(s) = inf /A [c(s,a) + Tln‘;—’Z(a\s) 4y /S u(s’)P(ds’\s,a)] m(da)

_ ian) [r‘l/AQH(S,a)m(da)+KL(m|M('|3))] ;

meP(

where Q(s,a) := c(s,a) + [gu(s')P(ds'|s,a) . Since ||QullB,(sxa) < llellB,(sxa) +VIullB,(s) > by
[Dupuis and Ellis, 1997, Proposition 1.4.2], for each s € S, we have

Tru(s) = —Tln/Aexp (—T_lQu(s,a)) u(dals),

where the infimum is uniquely attained at m, € P,(A|S) given by

exp (—T_lQu(s,a))

) = e (s, ) (@)

p(dals).
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It is clear that Tru : S — R is measurable by Fubini’s theorem. Moreover, since the natural
logarithm is increasing, for all s € S, we have

|Tru(s)| <7

In /A exp (| Qullmysx)) 1(dals)| < llellzy s +Mulsys)

Thus, the Bellman operator T’ : By(S) — By(.5) is well defined.
We will now show that 77 is a contraction on the Banach space By(.S5), following the proof in
Haarnoja et al. [2017]. Let u,v € By(S) be fixed. Note that for all (s,a) € S x A, we have

Qu(5:0) = Qu(s.0) =7 [ (o) = u(s)) P(d'15.0) < 7llu— vl
Using that the natural logarithm is increasing, for all s € S, we get

—Tru(s) = Tln/Aexp(T_le(s,a) — 77 Qu(s,a) — 771Qyu(s,a))u(dals)

<7t (e (L= vlgs) [ exo (-r7'Quls.0) utdals))
T A
— lu = vllpys) ~ Trols).

and hence Trv(s) — Tru(s) < v[lu — v||g,(s) - Swapping the roles of u and v in the above, we find
Tru — Trv < 7yllu — v g,(s), and thus

| Tru — Trol | Bysy < Vllw—2llB,(s)

Since y € [0,1), Ty : By(S) — By(S) is a contraction, and there is a unique fixed point V' € By(S)
such that 7,V = V. In particular, for all s € S,

Vi) = mei%f(A)/A [C(S’a) + Tlni_TZ(GB) + ’Y/SV(SI)P(dS'!s,a)} m(da) (31)
:/A [C(S,CL)+Tln3—2(a‘8)+'}’/SV(8I)P(dS/’8,a)] 7(dals), (32)

where the the unique infimum is attained at 7 € P,(A|S) given by

exp (—7'Qyp(s,a))
[ exp (= 1Qp (s, @) p(da’ls)
Thus, we have proved that V is the unique bounded solution of the Bellman equation (32).

It remains to show that V(s) = V*(s) for all s € S. We will first show V(s) > V*(s) for all
s € S. Tterating (32) and using (1), we get that for all N € N,

Ew27 < c(sp,an) +7In gu(an]sn)> +7N/P(N)V(s,a)7_r(da|3),
A

where POY) € L(By(S), By(S x A)) is the operator induced by the N-step transition kernel. Since
PW) has operator norm less than one, we have I4 PNV (s,a)7(da|s) < IV B,(s)» and hence by
Lebesgue’s dominated convergence theorem, for all s € S,

7(dals) = u(dals) .

dm
EWZW ( c(Sn, an +71n@(an|sn)> > VZ*(s).

We will now show that V' (s) < V/(s) for all 7 € Il and s € S, which then implies that V' (s) < V*(s)
for all s € S. Let m = {mp }nen, € II, so that for each n € Ny, m, € P(A|H,,). Let s € S denote an
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arbitrary fixed initial state. Without loss of generality, we assume m, € P,(A|H,) for all n € Ny,
since otherwise V™ (s) = co. For each n € N, applying (1) and adding and subtracting, we find

FHEL [V (sl a] =9 [ V(PGS s00)

dm _ dmr
= A" { (Sp,apn) + 7ln dlu(an]h n) + /V(s’)P(ds’]sn,an)] —" ( (Sn,an) + 7ln du(an’h ))
By the tower property of conditional expectations,
’YnJrlEg [V(Sn+1)|hn] = ’Yn+1E7T [Eﬂ [V(Sn+1)|hman] |hn]

= "7 [clsns ) + 10 S anl) 7 [ VP 50 ]
g

d _
= "ET [ / (c(sn,a) 710 L (alhy) + 5 / V(s’)P(ds’|sn,a)> 7 (dalhy)
A dp s
where we have used (1) in the last identity.

Applying (31) (with m = 7w, (dalhy,)),

/A (c(sn,a) +7ln S—Z(alhn) +’Y/S‘_/(8/)P(ds/|sn,a)> Tn(dalhn) > V(sn),

dmr
—~"ET [ (Sp,an) + 71n

g (@)

s

—"EY [ (Sn,an) +7'1nd (an|hn)|h

dp

and hence

_ dm
V' ET [V (sn41)lhn] 2 YET[V ()] — 7"ET [ (8n,an) +71n dM(anlh n)|h

|

Rearranging the inequality, applying the expectation operator E™, and using a telescoping sum
argument, we get

> V(s) = 7VET [V(sw)] -

dm
Z’y ( c(Sn,an +Tlndﬂ(an|sn)>

Letting N — oo and using that V' € By(S), we find V™(s) > V(s) for all s € S, which gives
V(s) < V7*(s) for all s € S, and finally V' = V*. This completes the proof. O

Proof of Lemma 1.7. For each u € By(S), m € II,, and s € S, define

Lru(s) = /A <c(s,a) +Tln3—Z(a|s) 4y /S u(s')P(ds'ys,a)) (dals)

which is well-defined as 7 € II,, and H Jsu(s")P(ds']s, -

HBb(A) < |lullg,(s)- Recalling that = = 7 (f)

for some f € By(S x A), and thus by Prop081t10n 1.6,
dm dm
c+7ln < lell,(sxa) + T In—> < llellBysxay + 271 fll B (sxA) -
I By(Sx A) 1By (SxA)

Thus for all u € By(S), Lyu € By(S) and

I L7ull B, sy < llellBy(sxay + 271 fll Bysxa) + YIlullz,s)

Moreover, for all u,v € By(S), we have

|E7u — Lol S)—vH [ [ts) = e pas'apntaal)

<Allu — vl Bys) -

By(s)
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Since v € [0,1), the map L : By(S) — By(S) is a contraction, and thus there is a unique V' € By(S)
such that for all s € S,

Vis) = /A <c(s, a)+7ln S—Z(a|s) + ’y/SV(s')P(ds'|s,a)> m(dals) . (33)

To verify V = V[, iterating (33) and using (1), we get that for all N € N,

]E”ny < (8, an +Tlnju(an|sn)>+’y /P V(s,a)r(dals),

where POY) € L(By(S), By(S x A)) is the operator induced by the N-step transition kernel. Since
PW) has an operator norm less than one, we have [4 PNV (s,a)m(dals) < IV g,s), and hence
by Lebesgue’s dominated convergence theorem, for all s € S,

dm
=E; Z’V ( c(sn,an) + 7n @(aﬂsn)) =V7(s),
where the last identity used the definition of V7 in (2). This proves the desired identity. g
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