
POLICY GRADIENT METHODS FOR RL IN GENERAL SPACES

Contents

1. Introduction 1
1.1. Problem formulation and the Bellman principle 2
1.2. The unregularized case τ = 0 2
1.3. The entropy regularized case τ > 0 3
2. Policy gradient 4
2.1. Performance difference 4
2.2. First variation, chain rule, policy gradient theorem 6
3. Mirror descent 9
3.1. Motivation 9
3.2. Convergence of mirror descent with approximate advantage 10
3.3. Natural policy gradient is mirror descent 13
Appendix A. Proofs for results in Section 1 16
References 19

1. Introduction

Our aim is to learn about policy gradient methods for solving reinforcement learning (RL) prob-
lems modelled using the Markov decision problem (MDP) framework with general (possibly con-
tinuous, possibly infinite dimensional) state and action spaces. We will focus mainly on theoretical
convergence of mirror descent with direct parametrisation and natural-gradient descent when em-
ploying log-linear parametrisation. For our purposes solving an RL problem means that we find a
(nearly) optimal policy in a situation where the transition dynamics and costs are unknown but we
can repeatedly interact with some system (or environment simulator).

There are two main approaches to solving RL problems: action-value methods which learn the
state-action value function (the Q-function) and then select actions based on this. Their convergence
is understood Watkins and Dayan [1992], [Sutton and Barto, 2018, Ch. 6] and will not be discussed
here. Policy gradient methods directly update the policy by stepping in the direction of the gradient
of the value function and have a long history for which the reader is referred to [Sutton and Barto,
2018, Ch. 13]. Their convergence is only understood in specific settings, as we will see below. The
focus here is to cover generic (Polish) state and action spaces. We will touch upon the popular
PPO algorithm Schulman et al. [2017] and explain the difficulties arising when trying to prove
convergence of PPO.

Many related and interesting questions will not be covered upon: convergence of actor-critic
methods, convergence in presence of Monte-Carlo errors, regret, off-policy gradient methods, near
continuous time RL.

Large parts of what is presented here in particular on mirror descent and natural-gradient descent
is from Kerimkulov et al. [2025a]. This work was itself inspired by the recent results of Agarwal
et al. [2019], Mei et al. [2020], Lan [2023] and Cayci et al. [2021] that apply mainly to finite MDPs
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2 POLICY GRADIENT METHODS FOR RL IN GENERAL SPACES

though e.g. Agarwal et al. [2019], Lan [2023] already note that natural policy gradient (closely
related to mirror descent) has dimension independent convergence rates.

1.1. Problem formulation and the Bellman principle. In this section, we formulate the
entropy-regularised MDPs with continuous state and action spaces. Let S and A be Polish spaces,1

P ∈ P(S|S × A), c ∈ Bb(S × A) and γ ∈ [0, 1). The five-tuple (S,A, P, c, γ) determines an infinite
horizon Markov decision model, where S and A represent the state and action spaces, respectively,
P represents the transition probability, c represents the cost function and γ represents the discount
factor. Let Π = {π = {πn}n∈N0 : πn ∈ P(A|Hn)} denote the set of (possibly non-Markovian)
stochastic policies, where for each n ∈ N0, Hn := (S ×A)n × S is the space of admissible histories.

Let (Ω := (S×A)N0 ,F) denote the canonical sample space, where F = B(Ω) is the corresponding
Borel sigma-algebra. Elements of Ω are of the form (s0, a0, s1, a1, . . .) with sn ∈ S and an ∈ A
denoting the projections and called the state and action variables, at time n ∈ N0, respectively.
By [?, Proposition 7.28], for any given initial distribution ρ ∈ P(S) and policy π ∈ Π, there exists
a unique product probability measure Pπ

ρ on (Ω,F) with expectation denoted Eπ
ρ such that for all

n ∈ N0, B ∈ B(S) and C ∈ B(A), Pπ
ρ (s0 ∈ B) = ρ(B) and

Pπ
ρ (an ∈ C|hn) = πn(C|hn), Pπ

ρ (sn+1 ∈ B|hn, an) = P (B|sn, an) , (1)

where hn = (s0, a0, . . . , sn−1, an−1, sn) ∈ Hn. In particular, if π is a Markov stochastic policy (i.e.,
πn ∈ P(A|S) for all n ∈ N0), then {sn}n∈N0 is a Markov process with kernel {Pπ,n}n∈N0 ∈ P(S|S)
given by

Pπ,n(ds
′|s) =

ˆ

A
P (ds′|s, a)πn(da|s), ∀s ∈ S, n ∈ N0 .

For s ∈ S, we denote Eπ
s = Eπ

δs
, where δs ∈ P(S) denotes the Dirac measure at s ∈ S.

Let µ ∈ P(A|S) denote a reference kernel and τ ∈ [0,∞) denote a regularisation parameter. For
each π = {πn}n∈N0 ∈ Π and s ∈ S, define the following regularised value function:

V π
τ (s) = Eπ

s

󰀥 ∞󰁛

n=0

γn
󰀓
c(sn, an) + τ KL(πn(·|hn)|µ(·|s))

󰀔󰀦
∈ R ∪ {+∞} , (2)

which may be infinite if πn ∕∈ Pµ(A|S) for some n ∈ N0, or if Eπ
s [
󰁓∞

n=0 γ
nKL(πn(·|hn)|µ(·|s))]

diverges. Since c is bounded and Hn × S ∋ (hn, s) 󰀁→ KL(πn(·|hn)|µ(·|s)) ∈ [0,∞] is non-negative
and measurable, V π

τ : S → R∪ {+∞} is a well-defined measurable function. We define the optimal
value function V ∗

τ : S → R ∪ {+∞} by

V ∗
τ (s) = inf

π∈Π
V π
τ (s), ∀s ∈ S , (3)

and refer to π∗ ∈ Π as an optimal policy if V π∗
τ (s) = V ∗

τ (s), for all s ∈ S.

1.2. The unregularized case τ = 0. By virtue of [Hernández-Lerma and Lasserre, 2012, Theo-
rem 4.2.3], we have the following dynamic programming principle, as long as certain assumptions
guaranteeing measurable selection hold.

Assumption 1.1. (1) The kernel P ∈ P(S|S × A) is strongly continuous, that is: for every
v ∈ Bb(S) (bounded and measurable) the function w(s, a) =

´

S v(s′)P (ds′|s, a) is bounded
and measurable as a function from S ×A to R.

(2) The cost function c ∈ Bb(S×A) is lower semi-continuous and inf-compact on S×A i.e. for
any s ∈ S and any l ∈ R the set {a ∈ A : c(s, a) ≤ l} is compact.

1Complete metric spaces that have a countable dense subset.
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Theorem 1.2 (Dynamic programming principle, τ = 0). Let Assumption 1.1 hold. Then the
optimal value function V ∗ ∈ Bb(S) is the unique solution of the Bellman equation

V ∗(s) = min
a∈A

󰀗
c(s, a) + γ

ˆ

S
V ∗(s′)P (ds′|s, a)

󰀘
. (4)

Moreover, writing Q∗(s, a) = c(s, a)+γ
´

S V ∗(s′)P (ds′|s, a), there exists a measurable function f∗ :
S → A called a selector such that f∗(s) ∈ argmina∈AQ∗(s, a) and the induced policy π∗ ∈ P(A|S)
defined by π∗(da|s) = δf∗(s)(da) for all s ∈ S satisfies V ∗ = V π∗

.

Lemma 1.3. Let π ∈ P(A|S). The value function V π
0 is the unique bounded solution of the

on-policy Bellman equation:

V π
0 (s) =

ˆ

A

󰀕
c(s, a) + γ

ˆ

S
V π
0 (s′)P (ds′|s, a)

󰀖
π(da|s), ∀s ∈ S .

1.3. The entropy regularized case τ > 0.

Theorem 1.4 (Dynamic programming principle, τ > 0). Let τ > 0. The optimal value function
V ∗
τ is the unique bounded solution of the following Bellman equation:

V ∗
τ (s) = inf

m∈P(A)

ˆ

A

󰀕
c(s, a) + τ ln

dm

dµ
(a) + γ

ˆ

S
V ∗
τ (s

′)P (ds′|s, a)
󰀖
m(da), ∀s ∈ S, .

Consequently, for all s ∈ S,

V ∗
τ (s) = −τ ln

ˆ

A
exp

󰀕
−1

τ
Q∗

τ (s, a)

󰀖
µ(da|s),

where Q∗ ∈ Bb(S ×A) is defined by

Q∗
τ (s, a) = c(s, a) + γ

ˆ

S
V ∗
τ (s

′)P (ds′|s, a) , ∀(s, a) ∈ S ×A.

Moreover, there is an optimal policy π∗
τ ∈ Pµ(A|S) given by

π∗
τ (da|s) = exp (−(Q∗

τ (s, a)− V ∗
τ (s))/τ)µ(da|s) , ∀s ∈ S. (5)

Definition 1.5. Let Πµ denote the class of policies π = {πn}n∈N0 ∈ Π such that there exists

f ∈ Bb(S × A) and we have πn(da|s) = exp(f(s,a))
´

A exp(f(s,a))µ(da|s)µ(da|s) for all s ∈ S and n ∈ N0. We

identify Πµ with the set {π(f) | f ∈ Bb(S × A)} ⊂ Pµ(A|S), where π : Bb(S × A) → Pµ(A|S) is
defined by

π(f)(da|s) = ef(s,a)
´

A ef(s,a′)µ(da′|s)
µ(da|s), ∀f ∈ Bb(S ×A) . (6)

For each π ∈ Πµ, we define the Q-function Qπ
τ ∈ Bb(S ×A) by

Qπ
τ (s, a) = c(s, a) + γ

ˆ

S
V π
τ (s′)P (ds′|s, a) . (7)

Proposition 1.6. Let f ∈ Bb(S ×A) and π ∈ Πµ be such that π(da|s) = exp(f(s,a))µ(da)
´

A exp(f(s,a′))µ(da′)
for all

s ∈ S. Then
󰀐󰀐󰀐󰀐ln

dπ

dµ

󰀐󰀐󰀐󰀐
Bb(S×A)

≤ 2󰀂f󰀂Bb(S×A) , 󰀂V π
τ 󰀂Bb(S) ≤

1

1− γ

󰀃
󰀂c󰀂Bb(S×A) + 2τ󰀂f󰀂Bb(S×A)

󰀄
,

󰀂Qπ
τ 󰀂Bb(S×A) ≤

1

1− γ

󰀃
󰀂c󰀂Bb(S×A) + 2τγ󰀂f󰀂Bb(S×A)

󰀄
.
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Proof. As µ(A) = 1, for all g ∈ Bb(S ×A) and s ∈ S,

ln

ˆ

A
exp(g(s, a′))µ(da′) ≤ ln

󰀓
e󰀂g󰀂Bb(S×A)µ(A)

󰀔
= 󰀂g󰀂Bb(S×A) ,

ln

ˆ

A
exp(g(s, a′))µ(da′) ≥ ln

󰀓
e−󰀂g󰀂Bb(S×A)µ(A)

󰀔
= −󰀂g󰀂Bb(S×A) .

Then, for all (s, a) ∈ S ×A, using ln dπ
dµ(a|s) = f(s, a)− ln

´

A exp(f(s, a′))µ(da′),
󰀏󰀏󰀏󰀏ln

dπ

dµ
(a|s)

󰀏󰀏󰀏󰀏 ≤ |f(s, a)|+
󰀏󰀏󰀏󰀏ln
ˆ

A
exp(f(s, a′))µ(da′)

󰀏󰀏󰀏󰀏 ≤ 2󰀂f󰀂Bb(S×A) ,

which implies that
󰀏󰀏󰀏󰀏󰀏E

π
s

󰀥 ∞󰁛

t=0

γt
󰀕
τ ln

dπ

dµ
(at|st)

󰀖󰀦󰀏󰀏󰀏󰀏󰀏 ≤ 2τ󰀂f󰀂Bb(S×A)

∞󰁛

t=0

γt =
2τ󰀂f󰀂Bb(S×A)

1− γ
.

By (2), for all s ∈ S,

|V π
τ (s)| ≤ Eπ

s

󰀥 ∞󰁛

t=0

γt|c(st, at)|
󰀦
+

󰀏󰀏󰀏󰀏󰀏E
π
s

󰀥 ∞󰁛

t=0

γt
󰀕
τ ln

dπ

dµ
(at|st)

󰀖󰀦󰀏󰀏󰀏󰀏󰀏

≤ 1

1− γ

󰀃
󰀂c󰀂Bb(S×A) + 2τ󰀂f󰀂Bb(S×A)

󰀄
.

Hence, for all (s, a) ∈ S ×A, by (7),

|Qπ
τ (s, a)| ≤ 󰀂c󰀂Bb(S×A) + γ󰀂V π

τ 󰀂Bb(S) ≤
1

1− γ
󰀂c󰀂Bb(S×A) +

2τγ

1− γ
󰀂f󰀂Bb(S×A) .

This proves the desired bound of Qπ
τ . □

Lemma 1.7. Let τ > 0 and π ∈ Πµ. The value function V π
τ is the unique bounded solution of the

on-policy Bellman equation:

V π
τ (s) =

ˆ

A

󰀕
c(s, a) + τ ln

dπ

dµ
(a|s) + γ

ˆ

S
V π
τ (s′)P (ds′|s, a)

󰀖
π(da|s), ∀s ∈ S .

Note that from this and defn. of the Q-function (7) we have for all π ∈ Πµ and s ∈ S that

V π
τ (s′) =

ˆ

A

󰀕
Qπ

τ (s
′, a′) + τ ln

dπ

dµ
(a′|s′)

󰀖
π(da′|s′), ∀s ∈ S . (8)

Using this in the defn. of the Q-function (7) we have the on policy Q-Bellman equation

Qπ
τ (s, a) = c(s, a) + γ

ˆ

S

ˆ

A

󰀕
Qπ

τ (s
′, a′) + τ ln

dπ

dµ
(a′|s′)

󰀖
π(da′|s′)P (ds′|s, a) , ∀(s, a) ∈ S ×A . (9)

2. Policy gradient

2.1. Performance difference. For each π ∈ P(A|S), we define the occupancy kernel dπ ∈ P(S|S)
by

dπ(ds′|s) = (1− γ)

∞󰁛

n=0

γnPn
π (ds

′|s) , (10)

where Pn
π is the n-times product of the kernel Pπ with P 0

π (ds
′|s) := δs(ds

′) and the convergence is
understood in bM(S|S). For a given initial distribution ρ ∈ P(S), we define

V π
τ (ρ) =

ˆ

S
V π
τ (s)ρ(ds) and dπρ (ds) =

ˆ

S
dπ(ds|s′)ρ(ds′) . (11)



POLICY GRADIENT METHODS FOR RL IN GENERAL SPACES 5

The following lemma expresses the resolvent of the transition kernel using the occupancy kernel,
which will be used in proving Lemma 2.2.

Lemma 2.1. Let π ∈ P(A|S) and f, g ∈ Bb(S) be such that for all s ∈ S,

f(s) = γ

ˆ

S

ˆ

A
f(s)P (ds′|s, a)π(da|s) + g(s) .

Then f(s) = 1
1−γ

´

S g(s′)dπ(ds′|s) for all s ∈ S.

Proof. Recall that a kernel k ∈ bM(S|S) induces a linear operator Lk ∈ L(Bb(S)) such that for
all h ∈ Bb(S), Lkh(s) =

´

S h(s′)k(ds′|s). Since 󰀂Lkh󰀂Bb(S) ≤ 󰀂h󰀂Bb(S)󰀂k󰀂bM(S|S) for all h ∈
Bb(S), 󰀂Lk󰀂L(Bb(S)) ≤ 󰀂k󰀂bM(S|S). Consider the kernel γPπ ∈ bM(S|S) defined by (γPπ)(B) =

γ
´

B

´

A P (ds′|s, a)π(da|s) for all B ∈ B(S). Then as Pπ ∈ P(S|S) and 󰀂Pπ󰀂bM(S|S) = 1,

󰀂LγPπ󰀂L(Bb(S)) ≤ 󰀂γPπ󰀂bM(S|S) = γ󰀂Pπ󰀂bM(S|S) = γ .

The condition on f and g implies that (id−LγPπ)f = g, where id is the identity operator on
Bb(S). As 󰀂LγPπ󰀂L(Bb(S)) ≤ γ < 1, the operator id−LγPπ ∈ L(Bb(S)) is invertible, and the inverse

operator is given by the Neumann series (id−LγPπ)
−1 =

󰁓∞
n=0 L

n
γPπ

. Thus, f =
󰁓∞

n=0 L
n
γPπ

g.
Observe that Ln

γPπ
= LγnPn

π
for all n ∈ N0, where Pn

π is the n-times product of the kernel Pπ with

P 0
π (ds

′|s) := δs(ds
′). Then by the definition (10) of dπ ∈ P(S|S), f =

󰁓∞
n=0 L

n
γPπ

g = L(1−γ)−1dπg.
This proves the desired identity. □
Lemma 2.2 (Performance difference). Let ρ ∈ P(S). Let τ ≥ 0. Let π,π′ ∈ P(A|S) and if τ > 0
assume further that π,π′ ∈ Πµ. Then

V π
τ (ρ)− V π′

τ (ρ)

=
1

1− γ

ˆ

S

󰀗
ˆ

A

󰀕
Qπ′

τ (s, a) + τ ln
dπ′

dµ
(a|s)

󰀖
(π − π′)(da|s) + τ KL(π(·|s)|π′(·|s))

󰀘
dπρ (ds) .

Proof of Lemma 2.2. By (8), for all s ∈ S,

V π
τ (s)− V π′

τ (s)

=

ˆ

A

󰀕
Qπ

τ (a|s) + τ ln
dπ

dµ
(a|s)

󰀖
π(da|s)−

ˆ

A

󰀕
Qπ′

τ (s, a) + τ ln
dπ′

dµ
(a|s)

󰀖
π′(da|s)

=

ˆ

A

󰀕
Qπ′

τ (s, a) + τ ln
dπ′

dµ
(a|s)

󰀖
(π − π′)(da|s)

+

ˆ

A

󰀕
Qπ

τ (s, a) + τ ln
dπ

dµ
(a|s)−Qπ′

τ (s, a)− τ ln
dπ′

dµ
(a|s)

󰀖
π(da|s) .

Hence for all s ∈ S we have

V π
τ (s)− V π′

τ (s) =

ˆ

A

󰀕
Qπ′

τ (s, a) + τ ln
dπ′

dµ
(a|s)

󰀖
(π − π′)(da|s)

+ γ

ˆ

A

ˆ

S

󰀓
V π
τ (s′)− V π′

τ (s′)
󰀔
P (ds′|s, a)π(da|s) + τ KL(π(·|s)|π′(·|s)) ,

where the last equality used (7) and the fact that KL(π(·|s)|π′(·|s)) =
´

A ln dπ
dπ′ (a|s)π(da|s). Hence,

by Fubini’s theorem and Lemma 2.1, for all s ∈ S,

V π
τ (s)− V π′

τ (s)

=
1

1− γ

ˆ

S

󰀗
ˆ

A

󰀕
Qπ′

τ (s′, a) + τ ln
dπ′

dµ
(a|s′)

󰀖
(π − π′)(da|s′) + τ KL(π(·|s′)|π′(·|s′))

󰀘
dπ(ds′|s).

Integrating both sides with respect to ρ yields the desired identity. □
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2.2. First variation, chain rule, policy gradient theorem.

Proposition 2.3. Let π,π′ ∈ Πµ be such that π(da|s) = exp(f(s,a))µ(da)
´

A exp(f(s,a′))µ(da′)
for all s ∈ S. Then

󰀂Qπ′
τ −Qπ

τ 󰀂Bb(S×A) ≤
γ

(1− γ)2
󰀃
󰀂c󰀂Bb(S×A) + 2τ󰀂f󰀂Bb(S×A)

󰀄
󰀂π − π′󰀂bM(A|S)

+
τγ

1− γ

󰀐󰀐󰀐󰀐ln
dπ′

dπ

󰀐󰀐󰀐󰀐
Bb(S×A)

.

Proof. By Lemma 2.2, for all s ∈ S,

|V π
τ (s)− V π′

τ (s)| ≤ 1

1− γ

󰀏󰀏󰀏󰀏
ˆ

S

ˆ

A

󰀕
Qπ′

τ (s′, a) + τ ln
dπ′

dµ
(a|s′)

󰀖
(π − π′)(da|s′)dπs (ds′)

󰀏󰀏󰀏󰀏

+
τ

1− γ

ˆ

S

ˆ

A
ln

dπ

dπ′ (a|s
′)π(da|s′)dπs (ds′)

≤ 1

1− γ

󰀐󰀐󰀐󰀐Q
π′
τ + τ ln

dπ′

dµ

󰀐󰀐󰀐󰀐
Bb(S×A)

󰀂π − π′󰀂bM(A|S) +
τ

1− γ

󰀐󰀐󰀐󰀐ln
dπ

dπ′

󰀐󰀐󰀐󰀐
Bb(S×A)

.

Thus, by (7), for all (s, a) ∈ S ×A,

|Qπ′
τ (s, a)−Qπ

τ (s, a)| ≤ γ

ˆ

S
|V π′

τ (s′)− V π
τ (s′)|P (ds′|s, a) ≤ γ󰀂V π′

τ − V π
τ 󰀂Bb(S) .

By Proposition 1.6,
󰀐󰀐󰀐󰀐Q

π′
τ + τ ln

dπ′

dµ

󰀐󰀐󰀐󰀐
Bb(S×A)

≤ 1

1− γ

󰀃
󰀂c󰀂Bb(S×A) + 2τγ󰀂f󰀂Bb(S×A)

󰀄
+ 2τ󰀂f󰀂Bb(S×A)

≤ 1

1− γ

󰀃
󰀂c󰀂Bb(S×A) + 2τ󰀂f󰀂Bb(S×A)

󰀄
.

Combining the above inequalities yields the desired estimate. □

Proposition 2.4. Let τ ≥ 0 and ρ ∈ P(S). For all π,π′ ∈ Πµ ⊂ P(A|S) (cf. Definition 1.5),

lim
ε↘0

V
(1−ε)π+επ′
τ (ρ)− V π

τ (ρ)

ε

=
1

1− γ

ˆ

S

ˆ

A

󰀕
Qπ

τ (s, a) + τ ln
dπ

dµ
(a|s)− V π

τ (s)

󰀖
(π′ − π)(da|s)dπρ (ds) .

(12)

Proof. Let πε = (1− ε)π+ επ′ = π+ ε(π′−π) and note that π−πε = −ε(π′−π) = ε(π−π′). Then

1

ε
(V π

τ (ρ)− V πε

τ (ρ)) =
1

ε

1

1− γ

ˆ

S

ˆ

A

󰀕
Qπε

τ (s, a) + τ ln
dπε

dµ
(a|s)

󰀖
(π − πε)(da|s)dπρ (ds)

+
1

ε

τ

1− γ

ˆ

S
KL(π(·|s)|πε(·|s))dπρ (ds)

=
1

1− γ

ˆ

S

ˆ

A

󰀕
Qπε

τ (s, a) + τ ln
dπε

dµ
(a|s)

󰀖
(π − π′)(da|s)dπρ (ds)

+
1

ε

τ

1− γ

ˆ

S
KL(π(·|s)|πε(·|s))dπρ (ds) .

We will now employ the identity which holds for any m,m′ ∈ P(A) for which the quantities in the
identity are finite:

KL(m|µ)−KL(m′|µ) = KL(m|m′) +

ˆ

A
ln dm′

dµ (a)(m−m′)(da) .
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Hence
1

ε
(V π

τ (ρ)− V πε

τ (ρ)) =
1

1− γ

ˆ

S

ˆ

A
Qπε

τ (s, a)(π − π′)(da|s)dπρ (ds)

+
1

ε

τ

1− γ

ˆ

S

󰀓
KL(π(·|s)|µ(·|s))−KL(πε(·|s)|µ(·|s))

󰀔
dπρ (ds) .

Thus
1

ε
(V πε

τ (ρ)− V π
τ (ρ)) =

1

1− γ

ˆ

S

ˆ

A
Qπε

τ (s, a)(π′ − π)(da|s)dπρ (ds)

+
τ

1− γ

ˆ

S

1

ε

󰀓
KL(πε(·|s)|µ(·|s))−KL(π(·|s)|µ(·|s))

󰀔
dπρ (ds) .

The first integral on the right hand side converges to 1
1−γ

´

S

´

AQπ
τ (s, a)(π

′ − π)(da|s)dπρ (ds) as

ε → 0 due to Proposition 2.3. Moreover, as π,π′ ∈ Πµ, for all s ∈ S, by [Kerimkulov et al., 2025b,
Lemma 3.8],

lim
ε↘0

1

ε

󰀓
KL(πε(·|s)|µ(·|s))−KL(π(·|s)|µ(·|s))

󰀔
=

ˆ

A
ln

dπ

dµ
(a|s)(π′ − π)(da|s) ,

which along with Proposition 1.6 and the dominated yields the desired limit. □
For a fixed ν ∈ P(S) define 〈·, ·〉ν : Bb(S ×A)× bM(A|S) → R by

〈Z,m〉ν =
1

1− γ

ˆ

S

ˆ

A
Z(s, a)m(da|s)ν(ds) , (Z,m) ∈ Bb(S ×A)× bM(A|S).

As a consequence of Proposition 2.4, given ν ∈ P(S) satisfying dπρ ≪ ν,

lim
ε↘0

V
(1−ε)π+επ′
τ (ρ)− V π

τ (ρ)

ε
=

󰀟
δV π

τ (ρ)

δπ

󰀏󰀏󰀏
ν
,π′ − π

󰀠

ν

,

with
δV π

τ (ρ)

δπ

󰀏󰀏󰀏󰀏
ν

(s, a) =

󰀕
Qπ

τ (s, a) + τ ln
dπ

dµ
(s, a)− V π

τ (s)

󰀖
ddπρ
dν

(s) , (13)

where dπρ ∈ P(S) is the occupancy measure associated with π. The flat derivative (13) is consistent
with the classical derivative in π when dealing with discrete action spaces (see, e.g., [Lan, 2023,
Lemma 1]). It also generalises the notation of the flat derivative applied to probability measures
to encompass probability transition kernels.

Let (H, (·, ·)H) be a Hilbert space (we will either have H = Rp or H = ℓ2). If π : H → Πµ i.e.
we parametrize π in terms of θ ∈ H and we can compute ∇θπθ then a chain rule holds and can be
proved similarly to [Kerimkulov et al., 2025a, Proposition 3.8].

Lemma 2.5 (Chain rule). Let π : H → Πµ be given. Then ∂θiV
πθ
τ (ρ) =

󰁇
δV π

τ (ρ)
δπ , ∂θiπθ

󰁈

dπρ
.

Theorem 2.6 (Policy gradient theorem). Let dπθ
dµ (a|s) := egθ(s,a)

Zθ(s)
, where Zθ(s) :=

´

A egθ(s,a
′)µ(da′).

Then

∇θV
πθ
τ (ρ) = 1

1−γE
s∼d

πθ
ρ

a∼πθ(·|s)

󰀗
δV

πθ
τ
δπ (s, a)∇θ ln

dπθ
dµ (a|s)

󰀘
.

Proof. From Lemma 2.5 (chain rule) we have:

∇θV
πθ
τ (ρ) = 1

1−γ

ˆ

S

ˆ

A

δV
πθ
τ
δπ (s, a)∇θ

dπθ
dµ (a|s)µ(da) dπθ

ρ (ds) .

Taking the gradient of the logarithm and re-arranging we see that

∇θ
dπθ
dµ (a|s) = dπθ

dµ (a|s)∇θ ln
dπθ
dµ (a|s) . (14)
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Hence

∇θV
πθ
τ (ρ) = 1

1−γ

ˆ

S

ˆ

A

δV
πθ
τ
δπ (s, a)∇θ ln

dπθ
dµ (a|s)πθ(da|s) dπθ

ρ (ds) .

We just need to rewrite this in terms of expectation to get the conclusion. □

We can take any b ∈ Bb(S). Then
ˆ

A
b(s)∇θ ln

dπθ
dµ (a|s)πθ(da|s) = b(s)

ˆ

A
∇θ ln

dπθ
dµ (a|s)πθ(da|s) = b(s)

ˆ

A
∇θ

dπθ
dµ (a|s)µ(da)

= b(s)∇θ

ˆ

A

dπθ
dµ (a|s)µ(da) = b(s)∇θ1 = 0 .

Hence

∇θV
πθ
τ (ρ) = 1

1−γE
s∼d

πθ
ρ

a∼πθ(·|s)

󰀗󰀓
δV

πθ
τ
δπ (s, a) + b(s)

󰀔
∇θ ln

dπθ
dµ (a|s)

󰀘
.

We can see that to use this in an algorithm we (at least approximately) need δV
πθ
τ (ρ)
δπ (s, a) =

Qπθ
τ (s, a) + τ ln dπθ

dµ (s, a)− V πθ
τ (s). Typically, we would have access to a stream of data

(s0, a0, ln
dπθ
dµ (s0, a0), c0, s1, a1, ln

dπθ
dµ (s1, a1), c1, . . . , sN , aN , ln dπθ

dµ (sN , aN ), cN ) ,

produced by interacting with the environment using policy πθ for an “episode” of length N . The
most common approach is to use the generalised advantage estimation formula from Schulman et al.
[2015]. Note that this relies on having access to a (separate) approximation of the value function.
An alternative is to have a (separate) function approximation for e.g. the Q function updated from
a Bellman error.

The following observation may be useful later.

Corollary 2.7 (to Policy Gradient Theorem). Let dπθ
dµ (a|s) := egθ(s,a)

Zθ(s)
, Zθ(s) :=

´

A egθ(s,a
′)µ(da′).

Then

∇θV
πθ
τ (ρ) =

1

1− γ
Es∼d

πθ
ρ

a∼πθ(·|s)

󰀗
δV πθ

τ

δπ
(s, a)

󰀕
∇θgθ(s, a)−

ˆ

A
(∇θgθ)(s, a

′)πθ(da
′|s)

󰀖󰀘
.

Proof of Corollary 2.7. Noting that

ln dπθ
dµ (a|s) = gθ(s, a)− lnZθ(s)

and so

∇θ ln
dπθ
dµ (s, a) = ∇θgθ(s, a)−∇θZθ(s)

1
Zθ(s)

= ∇θgθ(s, a)−
´

A(∇θgθ)(s, a
′) e

gθ(s,a
′)

Zθ(s)
µ(da′) .

Hence we have an expression for gradient of the log-density:

∇θ ln
dπθ
dµ (s, a) = ∇θgθ(s, a)−

´

A(∇θgθ)(s, a
′)dπθ

dµ (a′|s)µ(da′) (15)

which concludes the calculation. □

Remark 2.8. If the state and action spaces are finite and we take the direct (tabular) parametriza-
tions so that gθ(s, a) := θ(s, a) then

∂θŝ,âgθ(s, a)−
󰁛

a′

∂θŝ,âgθ(s, a
′)πθ(a

′|s) = δŝ,â(s, a)−
󰁛

a′

δŝ,â(s, a
′)π(a′|s) = δŝ,â(s, a)− δŝ(s)π(â|s)

= δŝ(s)
󰀃
δâ(a)− δŝ(s)π(â|s)

󰀄
.

Hence

∂θŝ,âV
πθ
τ (ρ) = 1

1−γ

󰁛

s,a

δV
πθ
τ
δπ (s, a)δŝ(s)δâ(a)πθ(a|s)dπθ

ρ (s)− 1
1−γ

󰁛

s,a

δV
πθ
τ
δπ (s, a)δŝ(s)π(â|s)πθ(a|s)dπθ

ρ (s) .
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But
󰁛

s

󰁛

a

δV
πθ
τ
δπ (s, a)δŝ(s)π(â|s)πθ(a|s)dπθ

ρ (s) =
󰁛

s

δŝ(s)π(â|s)
󰁛

a

δV
πθ
τ
δπ (s, a)πθ(a|s)dπθ

ρ (s) = 0

and so

∂θŝ,âV
πθ
τ (ρ) = 1

1−γ
δV

πθ
τ
δπ (ŝ, â)πθ(â|ŝ)dπθ

ρ (ŝ) .

This is (for the τ = 0 case) exactly Lemma C.1 in Agarwal et al. [2019].
If gθ(s, a) = (θ,φ(s, a))H then ∂θigθ(s, a) = θi(s, a) and so

∇θV
πθ
τ (ρ) = 1

1−γE
s∼d

πθ
ρ

a∼πθ(·|s)

󰁫
δV

πθ
τ
δπ (s, a)

󰀓
φ(s, a)−

´

A φ(s, a′)πθ(da
′|s)

󰀔󰁬
. (16)

3. Mirror descent

Mirror descent is now a classical approach to first order (gradient-based) methods for optimizing
functions over convex sets, going back to Nemirovskij and Yudin [1983].

3.1. Motivation. There are at least three good reasons to study mirror descent in the context of
RL. First of all, it allows one to consider gradient-like updates without introducing parametrization.
Indeed, even in the finite action space setting an Euclidean gradient step in the convex space of
policies provides no guarantee that after the update step is carried out we still have an element in
the probability simplex.

Second, the lack of convexity of the map θ 󰀁→ V
πθn
τ (ρ) makes convergence analysis of gradient

descent challenging. The best results for direct parametrization in the finite action space setting
are Mei et al. [2020] which first prove a non-local version of gradient dominance and then show
that along the steps of the gradient descent the constant appearing is lower bounded thus obtaining
convergence rate.

The third and final reason is algorithmic. The classical policy gradient methods update the
policy parametrization using

θn+1 = θn − η∇θV
πθn
τ (ρ) , n = 0, 1, . . . , θ0 ∈ Rp given and η > 0 a step size.

Especially when dπθ
dµ (a|s) ∝ egθ(s,a) with gθ a neural network there is no guarantee that small step

size η leads to a small update in the space of policies. We can only guarantee improvement with
appropriate L-smoothness and the appropriately small step size or when asymptotically small step
is taken. Indeed, taking η → 0 the continuous time version of the above stepping is

d
dtθt = −∇θV

πθt
τ (ρ) , t > 0 , θ0 ∈ Rp given.

Then chair rule tells us that

d
dtV

πt
τ (ρ) = d

dtθt ·∇θV
πθt
τ (ρ) = −|∇θV

πθt
τ (ρ)|2 ≤ 0 .

This makes choosing the “right” η > 0 difficult in practice: small values lead to slow convergence
and already somewhat larger values can lead to instability.

How to overcome this? One can think of the classical policy gradient update as something that
arises as follows: we do one step Taylor expansion in θ and then add a penalty term to ensure that
we don’t too large a step. Writing V πθn = V

πθn
τ (ρ) we let

LPG(θ) := V πθn +∇θV
πθn · (θ − θn) +

1

2
η−1|θ|2 .

We can now take

θn+1 = argmin
θ

LPG(θ) .

From the first order condition for optimizing θ 󰀁→ LPG(θ) we get

0 = ∇θV
πθn + η−1(θ − θn)
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which is exactly the policy gradient step. Let us now penalize not in the parameter θ but in terms
of policy. Let’s say we have πn = πθn . Fix ρ ∈ P(S) and write V π

τ = V π
τ (ρ). By perf. diff.

Lemma 2.2 we have

V π
τ = V πn

τ +
󰀍
δV πn

τ
δπ ,π − πn

󰀎
ρ,π

+ τ
1−γ

ˆ

S
KL(π|πn)(s)dπρ (ds) .

This is almost a first order expansion except for the terms highlighted. We linearize and penalize
with λ ≥ τ to not move too far

V π
τ ≈ V πn

τ +
󰁇
δV πn

τ
δπ ,π − πn

󰁈

ρ,πn

+ λ
1−γ

ˆ

S
KL(π|πn)(s)dπn

ρ (ds) .

We drop the terms that don’t depend on π and the (1− γ)−1 scaling as they won’t matter if we’re
minimizing and define a surrogate objective

Lπ
πn

:=
󰁇
δV πn

τ
δπ ,π − πn

󰁈

ρ,πn

+ λ

ˆ

S
KL(π|πn)(s)dπn

ρ (ds)

To see how this could be implemented we do a change of measure and write in terms of expectation

Lπ
πn

=

ˆ

S

ˆ

A

󰀕
δV πn

τ
δπ (s, a) + λ ln dπ

dπn
(a|s)

󰀖
dπ
dπn

(a|s)πn(da|s)dπn
ρ (ds)

= Es∼dπnρ
a∼πθn (·|s)

󰁫󰀓
δV πn

τ
δπ (s, a) + λ ln dπ

dπn
(a|s)

󰀔
dπ
dπn

(a|s)
󰁬
.

This is a quantity which can be estimated by collecting samples under the current policy πn. The
mirror descent update step is πn+1 = argminπ L

π
πn
. If the policy is parametrized by θ then the

proposed update in parameter space is: θn+1 ∈ argminθ L
πθ
πθn

.

3.2. Convergence of mirror descent with approximate advantage. We will first show that
if we have access to the exact advantage function then the mirror descent updates guarantee im-
provement. Let

πn+1(·|s) = argmin
m∈P(A)

ˆ

A

δV πn
τ

δπ
(s, a)(m(da)− πn(da|s)) + λKL(m|πn(·|s)) . (17)

For this exact scheme we have policy improvement.

Lemma 3.1 (Policy improvement). Let V n
τ := V πn

τ for n ∈ N and πn ∈ Πµ given by (17). If τ ≤ λ
then for any ρ ∈ P(S) we have V n+1

τ (ρ) ≤ V n
τ (ρ).

Proof. From the performance difference lemma, see Lemma (2.2), we see that

(V n+1
τ − V n

τ )(ρ) =
1

1− γ

ˆ

S

󰀕
ˆ

A

δV n
τ

δπ
(s, a)(πn+1 − πn)(da|s) + τ KL(πn+1|πn)(s)

󰀖
dπ

n+1

ρ (ds)

≤ 1

1− γ

ˆ

S

󰀕
ˆ

A

δV n
τ

δπ
(s, a)(πn+1 − πn)(da|s) + λKL(πn+1|πn)(s)

󰀖
dπ

n+1

ρ (ds) .

(18)

From the mirror descent update (17) we have, for all π ∈ Πµ and s ∈ S that
ˆ

A

δV n
τ

δπ
(s, a)(π − πn)(da|s) + λKL(π|πn)(s)

≥
ˆ

A

δV n
τ

δπ
(s, a)(πn+1 − πn)(da|s) + λKL(πn+1|πn)(s) .

This with π = πn allows us to conclude that for all s ∈ S we have
ˆ

A

δV n
τ

δπ
(s, a)(πn+1 − πn)(da|s) + λKL(πn+1|πn)(s) ≤ 0 . (19)
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This with (18) concludes the proof. □

Now recall that δV πn
τ
δπ = Aπn

τ + τ ln dπn

dµ = Qπn
τ − V πn

τ + τ ln dπn

dµ . In practice updates can only be

made with an approximation of Aπn
τ , say Ân(s, a) = Aπn

τ (s, a) + En(s, a). We consider the scheme

πn+1(da|s) = argmin
m∈P(A)

ˆ

A

󰀓
Ân(s, a) + τ ln dπn

dµ (a|s)
󰀔
(m(da)− πn(da|s)) + λKL(m|πn(·|s) . (20)

What can we say about convergence of such a scheme, provided we can control the errors? We
want to use the classical tools for analysis of mirror descent: 3-point lemma, convexity (substituted
by performance difference) and L-smoothness (derived from performance difference).

Let Mµ = {m ∈ P(A) | dmdµ exists and ln dm
dµ ∈ Bb(A)} and notice this is a convex subset of P(A).

Lemma 3.2 (Three point lemma/Bregman proximal inequality). Let G : Mµ → R be convex. For
all m′ ∈ Mµ let

m∗ = argmin
m∈Mµ

󰀋
G(m) + KL(m|m′)

󰀌
. (21)

Then, for all m ∈ Mµ, we have

G(m) + KL(m|m′) ≥ G(m∗) + KL(m|m∗) + KL(m∗|m′) . (22)

The proof of Lemma 3.2 can be found e.g., in Aubin-Frankowski et al. [2022] noting that the flat
derivative of KL is well defined on Mµ, see e.g. [Kerimkulov et al., 2025b, Lemma 3.8].

We will also need the following crucial observation with a trivial proof.

Lemma 3.3. Let F : S → R be such that F ≤ 0. Then for any π and any s ∈ S

1

1− γ

ˆ

S
F (s′) dπs (ds

′) ≤ F (s) . (23)

Proof. From (10) and the fact that P 0
π (ds

′|s) = δs(ds
′) we have for all s ∈ S that

1

1− γ

ˆ

S
F (s′) dπs (ds

′) =

ˆ

S
F (s′)P 0

π (ds
′|s) +

∞󰁛

k=1

ˆ

S
γkF (s′)P k

π (ds
′|s)

≤
ˆ

S
F (s′)δs(ds

′) = F (s) .

(24)

This concludes the proof. □

Let πn be generated by inductive application of the approximate mirror descent step (20). Let
V n
τ := V πn

τ for n ∈ N. We begin with an application of Bregman proximal inequality, see Lemma 3.2.
Fix s ∈ S and πn ∈ Πµ and define G : Mµ → R by

G(m) =
1

λ

ˆ

A

󰀓
Ân(s, a) + τ ln dπn

dµ (a|s)
󰀔
(m(da)− πn(da|s)) .

It is linear and thus clearly convex and hence due to the mirror descent update (20) is equivalent
to (21) and so we have, for all π ∈ Πµ, s ∈ S and n ∈ N that

1

λ

ˆ

A

󰀓
Ân(s, a) + τ ln dπn

dµ (a|s)
󰀔
(π − πn)(da|s) + KL(π|πn)(s)

≥ 1

λ

ˆ

A

󰀓
Ân(s, a) + τ ln dπn

dµ (a|s)
󰀔
(πn+1 − πn)(da|s) + KL(π|πn+1)(s) + KL(πn+1|πn)(s) .
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Re-arranging this leads to

KL(π|πn+1)(s)−KL(π|πn)(s)

≤ 1

λ

ˆ

A

󰀓
Ân(s, a) + τ ln dπn

dµ (a|s)
󰀔
(π − πn)(da|s)

− 1

λ

ˆ

A

󰀓
Ân(s, a) + τ ln dπn

dµ (a|s)
󰀔
(πn+1 − πn)(da|s)−KL(πn+1|πn)(s) .

(25)

From the performace difference, Lemma 2.2, we have

(V n+1
τ − V n

τ )(s) =
1

1− γ

ˆ

S

󰀕
ˆ

A

󰀓
Ân − En + τ ln dπn

dµ

󰀔
(s, a)(πn+1 − πn)(da|s) + τ KL(πn+1|πn)(s)

󰀖
dπ

n+1

ρ (ds) .

Note that (20), together with λ ≥ τ guarantees that

0 ≥
ˆ

A

󰀓
Ân(s, a) + τ ln dπn

dµ (a|s)
󰀔
(πn+1 − πn)(da|s) + τ KL(πn+1|πn)(s) =: F (s)

for all s ∈ S. Thus we may apply Lemma 3.3 and get

(V n+1
τ − V n

τ )(s) ≤ F (s)− 1

1− γ

ˆ

S

ˆ

A
En(s, a)(πn+1 − πn)(da|s)dπn+1

ρ (ds) .

Assume that 󰀂E󰀂Bb(S×A) = δn < ∞. Then we have the following approximate L-smoothness:

(V n+1
τ − V n

τ )(s) ≤ F (s) +
2δn
1− γ

, s ∈ S.

Applying this in (25) and taking we thus have, for all s ∈ S, that

KL(π∗
τ |πn+1)(s)−KL(π∗

τ |πn)(s) ≤ 1

λ

ˆ

A

󰀓
Ân(s, a) + τ ln dπn

dµ (a|s)
󰀔
(π∗

τ − πn)(da|s)

− 1

λ
(V n+1

τ − V n
τ )(s) +

2δn
(1− γ)λ

.

(26)

Summing up over n = 0, 1, . . . , N − 1 we see (spotting the telescoping sums) that for all s ∈ S,

KL(π∗
τ |πN )(s)−KL(π∗

τ |π0)(s) ≤
N−1󰁛

n=0

1

λ

ˆ

A

󰀓
Ân(s, a) + τ ln dπn

dµ (a|s)
󰀔
(π∗

τ − πn)(da|s)

− 1

λ
(V N

τ − V 0
τ )(s) +

2

(1− γ)λ

N−1󰁛

n=0

δn .

We wish to apply performance difference in due course and so we observe that the above is equivalent
to

KL(π∗
τ |πN )(s)−KL(π∗

τ |π0)(s) ≤
N−1󰁛

n=0

1

λ

ˆ

A

󰀓
Aπn

τ (s, a) + τ ln dπn

dµ (a|s)
󰀔
(π∗

τ − πn)(da|s)

+

N−1󰁛

n=0

1

λ

ˆ

A
En(s, a)(π∗

τ − πn)(da|s)− 1

λ
(V N

τ − V 0
τ )(s) +

2

(1− γ)λ

N−1󰁛

n=0

δn .

(27)

Notice that V N
τ (s) ≥ V ∗

τ (s) and so (V N
τ − V 0

τ )(s) ≥ (V ∗
τ − V 0

τ )(s) for all N ∈ N. Let

yn :=

ˆ

S
KL(π∗

τ |πn)(s)dπ
∗
τ

ρ (ds) and α := −
ˆ

S
(V ∗

τ − V 0)(s)dπ
∗
τ

ρ (ds)
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so that, after integrating (27) over d
π∗
τ

ρ and using 󰀂E󰀂Bb(S×A) = δn < ∞ we have

yN − y0 ≤
N−1󰁛

n=0

1

λ

ˆ

S

ˆ

A

δV n
τ

δπ
(s, a)(π∗

τ − πn)(da|s)dπ∗
τ

ρ (ds) +
2

λ

N−1󰁛

n=0

δn +
α

λ
+

2

(1− γ)λ

N−1󰁛

n=0

δn .

Using the performance difference lemma, see Lemma 2.2, and upper bounding the approximation
error terms we get

yN − y0 ≤
N−1󰁛

n=0

󰀗
1− γ

λ
(V π∗

τ − V πn
)(ρ)− τ

λ

ˆ

S
KL(π∗

τ |πn)(s)dπ
∗
τ

ρ (ds)

󰀘
+

α

λ
+

4

(1− γ)λ

N−1󰁛

n=0

δn .

Since since KL(·|·) ≥ 0 we get that

yN − y0 ≤ N
1− γ

λ

󰀓
V π∗

τ
τ (ρ)− min

n=0,1,...,N−1
V πN

τ (ρ)
󰀔
+

α

λ
+

4

(1− γ)λ

N−1󰁛

n=0

δn .

Hence

N
1− γ

λ

󰀓
min

n=0,1,...,N−1
V πN

τ (ρ)− V π∗
τ

τ (ρ)
󰀔
≤ α

λ
+ y0 +

4

(1− γ)λ

N−1󰁛

n=0

δn .

and so

0 ≤ min
n=0,1,...,N−1

V πN

τ (ρ)− V π∗
τ

τ (ρ) ≤ 1

N

α+ λy0

1− γ
+

1

N

4

(1− γ)2

N−1󰁛

n=0

δn .

3.3. Natural policy gradient is mirror descent. Natural policy gradient (NPG) leads to the
same updates as mirror descent and we’ll show this for log-linear policies. NPG in RL is due
to Kakade [2001] but the argument connecting to mirror descent updates is closer to Agarwal et al.
[2019].

Let dπθ
dµ (a|s) := egθ(s,a)

Zθ(s)
, Zθ(s) :=

´

A egθ(s,a
′)µ(da′) with gθ(s, a) = (θ,φ(s, a))H. Let us defined

the Fisher information matrix

F (θ) :=

ˆ

S

ˆ

A
∇θ ln

dπθ
dµ ⊗∇θ ln

dπθ
dµ (a|s)πθ(da|s)dπθ

ρ (da|s) ,

where for θ, θ′ ∈ H we have (θ ⊗ θ′)jk = θjθ
′
k. Let

φπθ
:= φ(s, a)−

ˆ

A
φ(s, a′)πθ(da

′|s) .

Recalling (15) we have that ∇θ ln
dπθ
dµ (a|s) = ∇θgθ(s, a)−

´

A(∇θgθ)(s, a
′)dπθ

dµ (a′|s)µ(da′) = φπθ
(s, a).

Hence

F (θ) =

ˆ

S

ˆ

A
φπθ

⊗ φπθ
(s, a)πθ(da|s)dπθ

ρ (da|s) .

Natural policy gradient (NPG) updates are

θn+1 = θn − ηF (θ)†∇θV
πθn
τ (ρ) , n = 0, 1, . . . , θ0 ∈ H given. (28)

Here, for M ∈ L(H,H) we use M † to denote the Moore–Penrose pseudo-inverse (which coincides
with M−1 for invertible M).

Proposition 3.4. If given θ ∈ H we take ln
dππθ
dµ (a|s) = (θ,φθ)H and thus obtain πθn corresponding

to θn then πθn+1 with θn+1 given by the NPG update (28) is equal to πn+1 given by

πθn+1(·|s) = argmin
m∈P(A)

ˆ

A

󰀃
ŵ(θn) + τθn,φπθn

(s, a)
󰀄
H(m(da)− πθn(da|s)) + λKL(m|πθn(·|s))
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which is the mirror descent update (17) where the flat derivative is replaced by its approximation

Ân = (ŵ(θ) + τθ,φπθ
)H.

Proof. To see the connection between (28) and the mirror descent updates, let2

Lπθ(w) :=
1

2

ˆ

S

ˆ

A
|Aπθ

τ (s, a)− (w,φπθ
(s, a))H|2πθ(da|s)dπθ

ρ (ds) , (29)

where Aπθ
τ (s, a) = Qπθ

τ (s, a)− V πθ
τ (s). Notice that

∇wL
πθ(w) =

ˆ

S

ˆ

A
(Aπθ

τ (s, a)− (w,φπθ
(s, a))H)φπθ

(s, a)πθ(da|s)dπθ
ρ (ds)

and so the first order condition for any minimizer ŵ of (29) is
ˆ

S

ˆ

A
(ŵ,φπθ

(s, a))Hφπθ
(s, a)πθ(da|s)dπθ

ρ (ds) =

ˆ

S

ˆ

A
Aπθ

τ (s, a)φπθ
(s, a)πθ(da|s)dπθ

ρ (ds) .

Moreover, for any w ∈ H we have F (θ)w =
´

S

´

A(w,φπθ
(s, a))Hφπθ

(s, a)πθ(da|s)dπθ
ρ (ds). Noting

also that the minimizer above depends on θ we have

F (θ)ŵ(θ) =

ˆ

S

ˆ

A
Aπθ

τ (s, a)φπθ
(s, a)πθ(da|s)dπθ

ρ (ds) .

Note that the Moore–Penrose pseudo-inverse provides the smallest norm solution to this i.e.

ŵ(θ) = F (θ)†
ˆ

S

ˆ

A
Aπθ

τ (s, a)φπθ
(s, a)πθ(da|s)dπθ

ρ (ds) .

This, together with (16) leads to

F (θ)†∇θV
πθ
τ (ρ) = 1

1−γF (θ)†Es∼d
πθ
ρ

a∼πθ(·|s)

󰁫󰀓
Aπθ

τ (s, a) + τ ln dπθ
dµ (a|s)

󰀔
φπθ

(s, a)
󰁬

= 1
1−γ

󰀃
ŵ(θ) + τθ

󰀄
.

If F (θ) is invertible then F (θ)−1∇θV
πθ
τ (ρ) = 1

1−γ

󰀃
ŵ(θ) + τθ

󰀄
. So the NPG stepping scheme (28)

becomes
θn+1 = θn − η

1−γ

󰀃
ŵ(θn) + τθn

󰀄
, n = 0, 1, . . . , θ0 ∈ H given.

Letting λ = η(1− γ)−1 we have

(θn+1,φ)H = (θn,φ)H − 1
λ

󰀃
ŵ(θn) + τθn,φ(s, a)

󰀄
H .

Since ln
dππθn
dµ (a|s) = (θn,φ)H −

󰀓
θn,
´

A φ(·, a′)πθn(da′|·)
󰀔

H
and collecting all the terms constant in

a in some b = b(s) we then have

ln
dπθn+1

dµ (a|s) = ln
dππθn
dµ (a|s)− 1

λ

󰀃
ŵ(θn) + τθn,φπθn

(s, a)
󰀄
H + b(s) ,

with b chosen such that πθn+1 ∈ P(A|S). Hence

ln
dπθn+1

dππθn

(a|s) = − 1
λ

󰀃
ŵ(θn) + τθn,φπθn

(s, a)
󰀄
H + b(s) .

And so
dπθn+1

dππθn

(a|s) = exp
󰀓
− 1

λ

󰀃
ŵ(θn) + τθn,φπθn

(s, a)
󰀄
H + b(s)

󰀔
.

Due to Dupuis and Ellis [1997], Lemma 1.4.3 we know that

πθn+1(·|s) = argmin
m∈P(A)

ˆ

A

󰀃
ŵ(θn) + τθn,φπθn

(s, a)
󰀄
H(m(da)− πθn(da|s)) + λKL(m|πθn(·|s)) .

2As you see we are not including the ln dπθ
dµ

term. The reason is that as it’s just an additive term we can trivially

see that | ln dπθ
dµ

− (y,φπθ )H|2 is minimized by y = θ.
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This is the mirror descent update (17) where the flat derivative is replaced by its approximation

Ân = (ŵ(θ) + τθ,φπθ
)H. □
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Appendix A. Proofs for results in Section 1

Proof of Lemma 1.3. For u ∈ Bb(S) let

(Lu)(s) :=

ˆ

A

󰀕
c(s, a) + γ

ˆ

S
u(s′)P (ds′|s, a)

󰀖
π(da|s), ∀s ∈ S .

Then

|(Lu)(s)| ≤
ˆ

A
|c(s, a)|+ γ

ˆ

S
|u(s′)|P (ds′|s, a)π(da|s) ≤ 󰀂c󰀂Bb(S) + γ󰀂u󰀂Bb(S) .

Hence L : Bb(S) → Bb(s) is well defined. Moreover for u, v ∈ Bb(s) we have

|(Lu− Lv)(s)| =
󰀏󰀏󰀏󰀏
ˆ

A
γ

ˆ

S
(u(s′)− v(s′))P (ds′|s, a)π(da|s)

󰀏󰀏󰀏󰀏 ≤ γ󰀂u− v󰀂Bb(S) .

Hence 󰀂Lu − Lv󰀂Bb(S) ≤ γ󰀂u − v󰀂Bb(S) and so L : Bb(S) → Bb(s) is a contraction on the Banach

space of bounded functions and there is a unique solution V̄ ∈ Bb(S) to the equation

V̄ (s) =

ˆ

A

󰀕
c(s, a) + γ

ˆ

S
V̄ (s′)P (ds′|s, a)

󰀖
π(da|s), ∀s ∈ S . (30)

It remains to show that V̄ = V π
0 . Iterating (30) and using (1), we get that for all N ∈ N,

V̄ (s) = Eπ
s

N−1󰁛

n=0

γnc(sn, an) + γN
ˆ

A
P (N)V̄ (s, a)π(da|s),

where P (N) ∈ L(Bb(S), Bb(S × A)) is the operator induced by the N -step transition kernel. Since

P (N) has an operator norm less than one, we have
´

A P (N)V̄ (s, a)π(da|s) ≤ 󰀂V̄ 󰀂Bb(S) , and hence
by Lebesgue’s dominated convergence theorem, for all s ∈ S,

V̄ (s) = Eπ
s

∞󰁛

n=0

γnc(sn, an) = V π
0 (s),

where the last identity used the definition of V π
0 in (2). This proves the desired identity. □

Proof of Theorem 1.4. This proof can mostly be seen as a special case of the proof of the DPP for
generic Borel state and action spaces (e.g., [Hernández-Lerma and Lasserre, 2012, Theorem 4.2.3])
once one enriches the action space to P(A) and understands the entropy/KL as an additional cost.
Here, we present a self-contained proof for the reader’s convenience.

Let τ > 0 be fixed. For each u ∈ Bb(S) and each s ∈ S, define

Tτu(s) = inf
m∈P(A)

ˆ

A

󰀗
c(s, a) + τ ln

dm

dµ
(a|s) + γ

ˆ

S
u(s′)P (ds′|s, a)

󰀘
m(da)

= τ inf
m∈P(A)

󰀗
τ−1

ˆ

A
Qu(s, a)m(da) + KL(m|µ(·|s))

󰀘
,

where Qu(s, a) := c(s, a) + γ
´

S u(s′)P (ds′|s, a) . Since 󰀂Qu󰀂Bb(S×A) ≤ 󰀂c󰀂Bb(S×A) + γ󰀂u󰀂Bb(S) , by
[Dupuis and Ellis, 1997, Proposition 1.4.2], for each s ∈ S, we have

Tτu(s) = −τ ln

ˆ

A
exp

󰀃
−τ−1Qu(s, a)

󰀄
µ(da|s) ,

where the infimum is uniquely attained at πu ∈ Pµ(A|S) given by

πu(da|s) =
exp

󰀃
−τ−1Qu(s, a)

󰀄
´

A exp (−τ−1Qu(s, a′))µ(da′|s)
µ(da|s).
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It is clear that Tτu : S → R is measurable by Fubini’s theorem. Moreover, since the natural
logarithm is increasing, for all s ∈ S, we have

|Tτu(s)| ≤ τ

󰀏󰀏󰀏󰀏ln
ˆ

A
exp

󰀃
τ−1󰀂Qu󰀂Bb(S×A)

󰀄
µ(da|s)

󰀏󰀏󰀏󰀏 ≤ 󰀂c󰀂Bb(S×A) + γ󰀂u󰀂Bb(S) .

Thus, the Bellman operator Tτ : Bb(S) → Bb(S) is well defined.
We will now show that Tτ is a contraction on the Banach space Bb(S), following the proof in

Haarnoja et al. [2017]. Let u, v ∈ Bb(S) be fixed. Note that for all (s, a) ∈ S ×A, we have

Qv(s, a)−Qu(s, a) = γ

ˆ

S

󰀃
v(s′)− u(s′)

󰀄
P (ds′|s, a) ≤ γ󰀂u− v󰀂Bb(S) .

Using that the natural logarithm is increasing, for all s ∈ S, we get

−Tτu(s) = τ ln

ˆ

A
exp(τ−1Qv(s, a)− τ−1Qu(s, a)− τ−1Qv(s, a))µ(da|s)

≤ τ ln

󰀕
exp

󰀓γ
τ
󰀂u− v󰀂Bb(S)

󰀔 ˆ

A
exp

󰀃
−τ−1Qv(s, a)

󰀄
µ(da|s)

󰀖

= γ󰀂u− v󰀂Bb(S) − Tτv(s) ,

and hence Tτv(s) − Tτu(s) ≤ γ󰀂u − v󰀂Bb(S) . Swapping the roles of u and v in the above, we find
Tτu− Tτv ≤ γ󰀂u− v󰀂Bb(S), and thus

󰀂Tτu− Tτv󰀂Bb(S) ≤ γ󰀂u− v󰀂Bb(S) .

Since γ ∈ [0, 1), Tτ : Bb(S) → Bb(S) is a contraction, and there is a unique fixed point V̄ ∈ Bb(S)
such that Tτ V̄ = V̄ . In particular, for all s ∈ S,

V̄ (s) = inf
m∈P(A)

ˆ

A

󰀗
c(s, a) + τ ln

dm

dµ
(a|s) + γ

ˆ

S
V̄ (s′)P (ds′|s, a)

󰀘
m(da) (31)

=

ˆ

A

󰀗
c(s, a) + τ ln

dπ̄

dµ
(a|s) + γ

ˆ

S
V̄ (s′)P (ds′|s, a)

󰀘
π̄(da|s), (32)

where the the unique infimum is attained at π̄ ∈ Pµ(A|S) given by

π̄(da|s) =
exp

󰀃
−τ−1QV̄ (s, a)

󰀄
´

A exp (−τ−1QV̄ (s, a
′))µ(da′|s)

µ(da|s) .

Thus, we have proved that V̄ is the unique bounded solution of the Bellman equation (32).
It remains to show that V̄ (s) = V ∗

τ (s) for all s ∈ S. We will first show V̄ (s) ≥ V ∗
τ (s) for all

s ∈ S. Iterating (32) and using (1), we get that for all N ∈ N,

V̄ (s) = Eπ̄
s

N−1󰁛

n=0

γn
󰀕
c(sn, an) + τ ln

dπ̄

dµ
(an|sn)

󰀖
+ γN

ˆ

A
P (N)V̄ (s, a)π̄(da|s),

where P (N) ∈ L(Bb(S), Bb(S × A)) is the operator induced by the N -step transition kernel. Since

P (N) has operator norm less than one, we have
´

A P (N)V̄ (s, a)π̄(da|s) ≤ 󰀂V̄ 󰀂Bb(S) , and hence by
Lebesgue’s dominated convergence theorem, for all s ∈ S,

V̄ (s) = Eπ̄
s

∞󰁛

n=0

γn
󰀕
c(sn, an) + τ ln

dπ̄

dµ
(an|sn)

󰀖
≥ V ∗

τ (s).

We will now show that V̄ (s) ≤ V π
τ (s) for all π ∈ Π and s ∈ S, which then implies that V̄ (s) ≤ V ∗(s)

for all s ∈ S. Let π = {πn}n∈N0 ∈ Π, so that for each n ∈ N0, πn ∈ P(A|Hn). Let s ∈ S denote an
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arbitrary fixed initial state. Without loss of generality, we assume πn ∈ Pµ(A|Hn) for all n ∈ N0,
since otherwise V π(s) = ∞. For each n ∈ N, applying (1) and adding and subtracting, we find

γn+1Eπ
s

󰀅
V̄ (sn+1)|hn, an

󰀆
= γn+1

ˆ

S
V̄ (s′)P (ds′|sn, an)

= γn
󰀗
c(sn, an) + τ ln

dπ

dµ
(an|hn) + γ

ˆ

S
V̄ (s′)P (ds′|sn, an)

󰀘
− γn

󰀕
c(sn, an) + τ ln

dπ

dµ
(an|hn)

󰀖
.

By the tower property of conditional expectations,

γn+1Eπ
s

󰀅
V̄ (sn+1)|hn

󰀆
= γn+1Eπ

s

󰀅
Eπ
s

󰀅
V̄ (sn+1)|hn, an

󰀆
|hn

󰀆

= γnEπ
s

󰀗
c(sn, an) + τ ln

dπ

dµ
(an|hn) + γ

ˆ

S
V̄ (s′)P (ds′|sn, an)

󰀏󰀏󰀏󰀏hn
󰀘

− γnEπ
s

󰀗
c(sn, an) + τ ln

dπ

dµ
(an|hn)

󰀏󰀏󰀏󰀏hn
󰀘

= γnEπ
s

󰀗
ˆ

A

󰀕
c(sn, a) + τ ln

dπ

dµ
(a|hn) + γ

ˆ

S
V̄ (s′)P (ds′|sn, a)

󰀖
πn(da|hn)

󰀏󰀏󰀏󰀏hn
󰀘

− γnEπ
s

󰀗
c(sn, an) + τ ln

dπ

dµ
(an|hn)

󰀏󰀏󰀏󰀏hn
󰀘
,

where we have used (1) in the last identity.
Applying (31) (with m = πn(da|hn)),

ˆ

A

󰀕
c(sn, a) + τ ln

dπ

dµ
(a|hn) + γ

ˆ

S
V̄ (s′)P (ds′|sn, a)

󰀖
πn(da|hn) ≥ V̄ (sn),

and hence

γn+1Eπ
s

󰀅
V̄ (sn+1)|hn

󰀆
≥ γnEπ

s [V̄ (sn)|hn]− γnEπ
s

󰀗
c(sn, an) + τ ln

dπ

dµ
(an|hn)

󰀏󰀏󰀏󰀏hn
󰀘
.

Rearranging the inequality, applying the expectation operator Eπ, and using a telescoping sum
argument, we get

Eπ
s

󰀥
N−1󰁛

n=0

γn
󰀕
c(sn, an) + τ ln

dπ

dµ
(an|sn)

󰀖󰀦
≥ V̄ (s)− γNEπ

s

󰀅
V̄ (sN )

󰀆
.

Letting N → ∞ and using that V̄ ∈ Bb(S), we find V π(s) ≥ V̄ (s) for all s ∈ S, which gives
V̄ (s) ≤ V ∗

τ (s) for all s ∈ S, and finally V̄ ≡ V ∗
τ . This completes the proof. □

Proof of Lemma 1.7. For each u ∈ Bb(S), π ∈ Πµ, and s ∈ S, define

Lπ
τ u(s) =

ˆ

A

󰀕
c(s, a) + τ ln

dπ

dµ
(a|s) + γ

ˆ

S
u(s′)P (ds′|s, a)

󰀖
π(da|s) ,

which is well-defined as π ∈ Πµ and
󰀐󰀐´

S u(s′)P (ds′|s, ·)
󰀐󰀐
Bb(A)

≤ 󰀂u󰀂Bb(S). Recalling that π = π(f)

for some f ∈ Bb(S ×A), and thus by Proposition 1.6,
󰀐󰀐󰀐󰀐c+ τ ln

dπ

dµ

󰀐󰀐󰀐󰀐
Bb(S×A)

≤ 󰀂c󰀂Bb(S×A) + τ

󰀐󰀐󰀐󰀐ln
dπ

dµ

󰀐󰀐󰀐󰀐
Bb(S×A)

≤ 󰀂c󰀂Bb(S×A) + 2τ󰀂f󰀂Bb(S×A) .

Thus for all u ∈ Bb(S), Lτu ∈ Bb(S) and

󰀂Lπ
τ u󰀂Bb(S) ≤ 󰀂c󰀂Bb(S×A) + 2τ󰀂f󰀂Bb(S×A) + γ󰀂u󰀂Bb(S) .

Moreover, for all u, v ∈ Bb(S), we have

󰀂Lπ
τ u− Lπ

τ v󰀂Bb(S)
= γ

󰀐󰀐󰀐󰀐
ˆ

A

ˆ

S
(u(s′)− v(s′))P (ds′|·, a)π(da|·)

󰀐󰀐󰀐󰀐
Bb(s)

≤ γ󰀂u− v󰀂Bb(S) .
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Since γ ∈ [0, 1), the map Lτ : Bb(S) → Bb(S) is a contraction, and thus there is a unique V ∈ Bb(S)
such that for all s ∈ S,

V (s) =

ˆ

A

󰀕
c(s, a) + τ ln

dπ

dµ
(a|s) + γ

ˆ

S
V (s′)P (ds′|s, a)

󰀖
π(da|s) . (33)

To verify V = V π
τ , iterating (33) and using (1), we get that for all N ∈ N,

V (s) = Eπ
s

N−1󰁛

n=0

γn
󰀕
c(sn, an) + τ ln

dπ

dµ
(an|sn)

󰀖
+ γN

ˆ

A
P (N)V (s, a)π(da|s),

where P (N) ∈ L(Bb(S), Bb(S × A)) is the operator induced by the N -step transition kernel. Since

P (N) has an operator norm less than one, we have
´

A P (N)V (s, a)π(da|s) ≤ 󰀂V 󰀂Bb(S) , and hence
by Lebesgue’s dominated convergence theorem, for all s ∈ S,

V (s) = Eπ
s

∞󰁛

n=0

γn
󰀕
c(sn, an) + τ ln

dπ

dµ
(an|sn)

󰀖
= V π

τ (s),

where the last identity used the definition of V π
τ in (2). This proves the desired identity. □
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smoothness in measure spaces, with application to Sinkhorn and EM. Advances in Neural Infor-
mation Processing Systems, 35:17263–17275, 2022.

Semih Cayci, Niao He, and R Srikant. Linear convergence of entropy-regularized natural policy
gradient with linear function approximation. arXiv preprint arXiv:2106.04096, 2021.

Paul Dupuis and Richard S. Ellis. A weak convergence approach to the theory of large deviations.
John Wiley & Sons, Inc., New York, 1997.

Tuomas Haarnoja, Haoran Tang, Pieter Abbeel, and Sergey Levine. Reinforcement learning with
deep energy-based policies. In International Conference on Machine Learning, pages 1352–1361.
PMLR, 2017.
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