Policy gradient methods for RL in general spaces

David Siska
Tutorial for Bridging Stochastic Control And Reinforcement Learning

7th November 2025

Slides Notes



@ Reinforcement Learning (RL) and its (entropy regularized) MDP formulation

o Relative entropy and its key properties
e Bellman principle for (entropy regularized) MDPs

Classical Policy Gradient (PG)

o Performance difference lemma and policy gradient theorem
o Difficulty of convergence analysis due to lack of convexity
o Polyak—tojasiewicz (PL) gradient dominance condition

@ Mirror descent

o Role of Performance difference as convexity and L-smoothness
o Convergence rate MDP case with inexact advantage

PPO algorithm
e Convergence of FR-PPO variant



Reinforcement Learning (RL)
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RL Aim: learn to interact with an environment in an optimal (cost minimizing) way.

Data: (s¢, at, Ct, St41, 3t41, - - -)-

Mathematical abstraction: MDP.



MDPs and relaxed, regularized MDPs




Key MDP / RL results

Overview of RL [Sutton and Barto, 2018] and results in discrete state-action spaces

Classical policy gradient [Sutton et al., 1999].
Natural policy gradient [Kakade, 2001].
Actor-critic method [Haarnoja et al., 2018].
Mirror descent method [Tomar et al., 2020].

Convergence of classical PG in tabular setting [Mei et al., 2021].

Continuous state-action spaces: [Doya, 2000], [Van Hasselt, 2012], [Manna et al., 2022].

Entropy regularised: [Haarnoja et al., 2017, Geist et al., 2019].



MDP

Infinite-horizon Markov decision problem (S, A, P, c,~):

@ S is the state space, A is the action space
@ P € P(S]S x A) is the transition probability kernel
@ c € By(S x A) is a cost function, and v discount factor

@ H, = (S x A)" x S is the space of admissible histories

Aim: minimise the objective over policies & = (&n)nen s.t. an : Hy — A measurable:
oo
V() =B S 4 c(sm an) (1)
n=0

with a, := an(hs), ha = (50, a0, .-, Sn—1,3n—1, Sn) and sps1 ~ P(:|sn, an), S0 = s.



formulation of the MDP

Infinite-horizon Markov decision model (S, A, P, c,v):

@ S is the state space, A is the action space,

@ P € P(S|S x A) is the transition probability kernel,

@ c € By(S x A) is a cost function, and v a discount factor,
@ H, = (S x A)" x S is the space of admissible histories,

@ 7 > 0 strenght of entropy regularizer,

o for yi', ju € P(A) define KL(1'|) = [,In “;‘:[ (a)p’(da) if ' < p, and 400 otherwise.

Aim: minimise over relaxed policies 7 = (7p)nen s.t. 7, : H, — P(A) measurable the objective:

— E7 [Z ~ (/c(s,,, ) mo(da) + 7 KL(WH\M))

with 7, := 7,(hn), hn = (S0, @0, - .., Sn—1,8n-1,5n) and spy1 ~ [, P(:|ss, a) ms(da), so = s.

€ RU {400}, (2)




Kullback—Leibler divergence aka relative entropy




Relative entropy - definition and basics

If v, € P(A) and if u(B) =0 = v(B) = 0 for every B € B(A) then we say v is absolutely continuous w.r.t.
p (notation v << p).
For 11 € P(A) define
In 9% v(da) if
P(A) 5 v— KL(v|p) = {fA N v( a-) if v << p,
+oo otherwise.

Plot of s In(s)~s

Note that
0.34
/A(Ing—;)fz/(da):/A(Ing—l’:)f%’:u(da) 5021
0.1
and s — (Ins)™s > 0 is bounded for s > 0, so KL is well defined. 0.0
OrO 0?2 0?4 0t6 0?8 1?0 ltZ
Moreover slns > s — 1 for s > 0 (with equality only if s = 1) Plot of s sin(s) vs. s — 1
and so 31 — sein(s)
Py A sps—1
KL = [ (ng) e > [ (3 - 1)utda) =0, =~
0]

with equality only if j—; =1lie ifv=yp. R T T



Relative entropy - variational formula

Useful identity
KL(v|p) — KL(V|u) = KL(v|v") + /A In %(a)(u —v')(da). 3)
which holds for any v, ' € P(A) for which the quantities in the identity are finite.

Variational formula: for f € By(A):

inf fdv+ KL :—In/e"’ da),
) E'P(A)( [ rav (um)) e u(aa)

dv* ef(a)
(@) = +—=F e
dpu Jae= @ p(da’)

then v* = argmin, cp(a) ([, F dv + KL(v|p)).

and if
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Relative entropy - dual formulation and convexity

Donsker—Varadhan variational formula

KLwi) = s ([ et@rvtaar-n [ & u(aa)

KL(v|i) = sup (/Aw(a) y(da)—ln/AeW) ,L(da)> .

YEBL(A)

and

N.B. for fixed g
(vop1) / £(a) v(da) — In / &) 1(da)

is convex. As a supremum over such g
e P(A) x P(A) > (v, 1) — KL(v|p) is convex, lower-semicontinuous.
Moreover

o For fixed p € P(A) we have
{v € P(A) : KL(v|p) < o0} 5 v +— KL(v|p)

strictly convex, from strict convexity of [0,00) 3 s +— sins € R.

All from [Dupuis and Ellis, 1997, Ch. 1, Sec. 4].



Bellman principle aka Dynamic programming principle (DPP)
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DPP with 7 > 0

Recall H, := (S x A)" x S is the space of admissible histories.

Let V) :S — R be
Vi(s)=inf V](s), VseS, (4)

where infimum is over policies m = (7n)nen s.t. m, : Hy — P(A) is measurable.

Theorem 1 (Dynamic programming principle)

Let T > 0. The optimal value function V} is the unique bounded solution of

* = d_m P /
Vi(s) = men;f(A) ] (c(s,a) +7ln d,u (a) —1—7/5 VS (s")P(ds'|s, a)) m(da), VseS.




DPP consequences for 7 > 0

Forallse€ S,
Vi) = —rin [ e (-1 Q0(5.)) (o)
where Q™ € By(S X A) is defined by
Q;(s,a) = c(s,a) +fy/s Vi (s')P(ds'|s,a), V(s,a) € S xA.
Moreover, there is an optimal policy 75 € P,(A|S) given by

w2 (dals) = exp (~(Q}(s,3) — Vi (s))/7) u(da), Vs € S. 5)

Let
M. ={m € P(AIS) : In T € By(S x A)}.
Then
inff VI = V/(s)= inf V.
™ mely,

Finally, for each 7 € N, we define the Q-function QT € By(S x A) by
Q7 (s.2) = c(5,) + 7 [ VI()P(o]s,2). (6)
s
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DPP consequences for 7 > 0

Proposition 1

Let f € By(S x A) and 7 € I, be such that 7(dals) = W for alls € S. Then

H drm
In —

. 1
i < 2| fllgysxay,  NVF llsys) < i (llcllgysxa) + 271 fllgyisxa)) -

1

Bp(S X A)

Proof. As j1(A) =1, for all g € By(S X A)ands € S,
In /A exp(g(s, a))u(da’) < In (e”g”BbW*‘m(A)) = lgllgysxa) »
in [ explats, o Diate’) > tn (&7 E1BXA ()} = gl (s

Then, for all (s,a) € S X A, using In g—z(a\s) = f(s,a) — In [, exp(f(s, a’))u(da’),

[in 42 (als)| < I7(s.2)| +

n | exp(F(s, A Nu(da)| < 201Flly(s5x ) -

which implies that
27|If | g, (s % A)
1—7 '

oo
t
< 27fllg,sxa) 2 7" =
t=0

{iwf(rln 7(‘3“5‘))]

t=0

The rest follows as usual. [



DPP consequences for 7 > 0

Let 7 > 0 and 7 € IN,. The value function V" is the unique bounded solution of the on-policy Bellman equation:

Vf(s):/A(c(s,a)+7|ng—2(a|s)+7/sVf(s’)P(ds'|s,a))w(da|s), VseS.

Note that from this and defn. of the Q-function (6) we have for all 7 € M1, and s € S that
Vi(s') = / (Q7(s',9) +7in 42 () n(a']s), VseS. )
A
Using this in the defn. of the Q-function (6) we have the on policy Q-Bellman equation

Q7 (s, a) = c(s, a) +7/5/ (Q:(s’,a') +7ln j—;(a’|s')) m(da'|s')P(ds']s, a) , ¥(s, a). (8)



DPP with 7 =0

@ The kernel P € P(S|S x A) is strongly continuous, that is: for every v € Bp(S) (bounded and measurable)
the function w(s,a) = [ v(s")P(ds’|s, a) is bounded and measurable as a function from S x A to R.

@ The cost function ¢ € By(S x A) is lower semi-continuous and inf-compact on S x A i.e. for any s € S and
any | € R the set {a € A: c(s,a) < I} is compact.

Theorem 3 (Dynamic programming principle, 7 = 0)

Let Assumption 2 hold. Then the optimal value function V* € By(S) is the unique solution of the Bellman
equation

Vi(s) = min [c(s,a) —1—7/5 V*(s')P(ds'[s, a)| - (9)

Moreover, writing Q*(s,a) = c(s,a) +~ [ V*(s")P(ds'[s, a), there exists a measurable function f* : S — A
called a selector such that f*(s) € argmin,c, Q*(s, a) and the induced policy 7* € P(A|S) defined by
n*(da|s) = d¢=(s)(da) for all s € S satisfies V* = %

Proof. [Hernandez-Lerma and Lasserre, 2012, Theorem 4.2.3].



Proposition 3

Let w(dals) € P(A|S). Then

lcllB,(sx A)

Ve <
VG llgps) < = —

Proof. Exercise, start with (1) which is definition of V{ .

Let m € P(A|S). The value function V' is the unique bounded solution of the on-policy Bellman equation:

Vi (s) = /A (C(s7 a) —l—'y/s V(s )P(ds|s, a)) m(dals), Vse€S.




What does “solving our RL problem” mean?

We will say we've “solved our RL problem” if we can find a near optimal policy for the MDP under the
assumptions that:

We do not have access to costs ¢ and transitions P € P(5|S x A).

°
@ We choose v >0, 7> 0

@ We have access to a simulator of the environment and we can repeatedly use it cost-free.
°

The simulator will initialise at s ~ p € P(S) of its choice and will run until termination or until we reset it.
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Key meta-algorithms

13:

Policy gradient (PG)

: Initialize environment, parametrized policy 7y,
: for n=0,1,..., Nepisodes doO
Clear memory buffer
for t =0,1,..., Nsteps in episode dO
Observe state s;
Sample action a; ~ 7o, (at|st)
Execute a; in environment, accept cost c,
new state s;i1
Store (st, at, ¢t, log 7o, (at|st), V(st))
t< t+1, st < Seq1 in memory.
end for
Estimate Vo V™ from memory data
Update policy parameters

Oni1 = 0n — VoV .

end for

1

N agrenN

@

10:
11
12:

13:

14:

Q-learning

: Initialize environment, parametrized state-action
value Qp,
: for n=0,1,..., Nepisodes doO
Make space in memory buffer
fort=0,1,..., Nsteps in episode do
Observe state s;
Take a; € argmin, ., Qo(st|a)
Execute a; in environment, accept cost c,
new state st
Store (¢, at, Ct, Se+1) in memory
t<«t+1, st < Seq1
end for
Sample (s, aj, ¢, 5j+1)jN:1
Forj=1,...,N set

v = ¢ +ymin Qo,(s+1,3) .
;

Let L(0) := ZJN:1 lv; — Qo(sj,a;)|* and update
policy parameters

0n+1 = 9,, - UVUL(G) .

end for



Classical policy gradient




Policy gradient (PG) methods

Recall we are minimizing
M,>m— V(p) €R.

A “gradient” update would be
Tat1 = Tn — NV = VI (p).

But even if S and A are of finite cardinality and
Vax V:(P) = (vﬂ(s,a) V:(p))(s,a)ESXA

with (Va(s,avr(p))(s.a)esxa € RV is a gradient in RY*" not in P(A|S) = A(A)"s.



Policy gradient (PG) methods

T =T

Parametrize:

o Direct: dd%(a|s) o g9,
o Log-linear: ddij(a|s) o el?€2) with g: S x A — RP basis.

o Neural-net: ddilf(a|s) o e80(5:2)

Then
0n+1 =0, — nv9 V‘;re (P)

classical gradient descent: [Cauchy, 1847]" seems fine.

@ How to get Vo V7 ?(p) from data?

@ Convergence: e.g. is 0 — V[ ?(p) convex?

'From [Lemaréchal, 2012] Cauchy and the gradient method, Doc. Math. Extra, 251-254.
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Stochastic representation for solutions of certain linear equations

Let
d™(ds'|s) = (1 — v Z*y"P"(ds [s) and dj(ds) —/d” ds|s")p(ds’). (10)

We will refer to d™ as the occupancy kernel.

Let m € P(A|S) and f,g € By(S) such that for all s € S,
Fs) =~ / / F(s')P(ds'|s, a)m(dals) + &(s). (11)
Alts

Then f(s) = 1= [sg(s')d™(ds'|s) for all s € S.
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Proof of stochastic representation for solutions of certain linear equations

Proof. A kernel k € bM(S|S) induces a linear operator L, € L(Bs(S)) by
By(S) 3 h— Lih = [ h(s")k(ds']) .
Since ||Lkhl|g,(s) < I1hllBy(s)l| kllbrss) for all b € Bo(S), Lkl c(ay(s)) < Ikllbrcs)s)-

Consider the kernel P, € bM(S|S) defined by (vPr)(B) = [ [, P(ds'|s, a)w(dals) for all B € B(S). Then
as Pr € P(S5|S) and || Px|lbr(sis) = 1,

ILvpr 25y < 1VPrlloat(sisy = VI Prllbaasisy =7 < 1.

The linear equation (11) that f satisfies g is equivalent to
(id—Lop, )f = g
The operator id —L,p, € L(By(S)) is invertible, and the inverse operator is given by the Neumann series
(id —Lyp, )" = 20 L, -

Thus, f =372 L7p_g. Observe that L}, = Lynpn for all n € No, where P7 is the n-times product of the
kernel P with Po(ds |s) = &s(ds’). Then by the definition (10) of d™ € P(5|S),

f= Y20 L8 = =[5 g(s)d™(ds'].)
which is the desired identity. [

N
G
~
N}



Performance difference

Lemma 6 (Performance difference!)

For all p € P(S) and m,7’ € Ny,

VI(p) = V7 (p) = 1= /5 / (@7 (s.2) + 7In 4 (als) = V' (5)) (m — ) (dals)d (ds)

b / KL(n(]s)l’(-|s))d (d) .

Tabular case [Howard, 1960, Ch. 7, p. 87], re-discovered in RL context [Kakade and Langford, 2002], Polish spaces +
entropy [Kerimkulov et al., 2025a]



Proof. By (7), for all s € S,
VE(s) = VE (s)
:/A(Q:‘(a\s)+~l n 47 (als )) ﬁ(da\s)—/A (Q:'(s,a)+r|n (}g,’(a\s)) ' (dals)
:/A(QZ (5,9) + 7n 9’ (als) ) (x—')(dals)
+/A (07 (s.2) + 710 42 (al5) = QF (5,2) — 7ln 92" (a]s) ) r(dals) .
Hence for all s € S we have

VI(s) — VI (s) = /A (QF'(s,2) + 7In 9z (als)) (= — =) (dals)

1 [ (vEE) = v () Pl aye(cals) + KL (1),
where the last equality used def. of Q. fn (6) and KL identity (3). Hence, by Fubini's theorem and Lemma 5, for all s € S,
V7 (s) = VI (s)
=i [ ] (QF () min 4 als) (7l + 7KLl (1) a7(05)

Integrating both sides with respect to p yields the desired identity. [

N
N
~
N}



Towards PG for general state and action spaces

Let w7, 7' € N, be such that w(da|s) = % for all s € S. Then

7!', s ’Y
|QF — QFlla,(sxa) < e (llcllgysxay + 271 lgysx) Il — 7|l batcals)

+

Ty In drn’
1—¢v dm

Bp(SxA) .

-

Proof. Start by getting the estimate for ||VT“/ — Vg,(s) using Lemma 6 (performance difference).



PG for general state and action spaces

Let 7 >0 and p € P(S). For all m,x' € N, C P(A|S)

wmmﬁu—ww

lim
e (12)
// < ey = orll d—u(a|s) v:(s)> (' — )(dals)d7 (ds).
V.
Proof. Let € = (1 —&)mr +en’ =7 + 6(71" — 7r) and note that m — 7€ = —&(n’ — ) = e(w — 7’). Then
i) - vt / [0 (5.2)+ 71n 555 (als)) (m — =) (<) )
15 K'—( (I9)lm=(-1s))d7 (ds)
// (QF" (s.2) + 71 2" (als)) (x — ') (dals)d} (ds)

- 19))d; (ds).
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Proof of PG theorem for general state and action spaces

From the KL identity (3) we get

Loyr ua -1 ™ (s, a)(m — 7')(da|s)d™ (ds
VI Ve = = [ [ @7 (s ) - ) (dals)d (as)
1 7

el—

- /S (KL(x(Is)l(1s)) = KL(x*(1s)lu(-]s)) ) dF (ds)
Thus

SVE 0 = vie) = 1= [ [ 07 (s ) — m)(esle)a ()

1= [ (KU Cls)lutls) = KLl 12) d (es).

1 s e
The first integral on the right hand side converges to ﬁ Js J4 @F (s, a)(n" — 7)(da|s)d} (ds) as € — O due to
Proposition 4. Moreover, as 7,7’ € M, for all s € S, by [Kerimkulov et al., 2025b, Lemma 3.8],

im 1 € = nd—7r als) (' — w)(dals
J@og(’“(” (19)|1(15)) = KL(x(-19)lu(:1s))) —/AI 3, @9 = m(dals)

which along with Proposition 1 and the dominated yields the desired limit. [J
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First variation and chain rule

For a fixed v € P(S) define (-,-), : Bs(S x A) x bM(A|S) — R by
(Z,m), = ﬁ /S/AZ(57 a)m(dals)v(ds), (Z,m) € Bs(S x A) x bM(AIS).

As a consequence of Proposition 5, given v € P(S) satisfying dj < v,

(1—5)7\'-%—571" oy T
im 7 (p) = VZ(p) _ <5VT (p) o _ﬂ> ’
£\0 € om v 5
with SV (p) d dd”
T \P ™ a ™ P
= - . 1
0 (s10) = (@7(s.2) 4 70 s 2) = VI(9)) SE6) (13)

Let (H, (-, -)u) be a Hilbert space.

Lemma 7 (Chain rule)

Let w: H — M, be given. Then 9y, V7% (p) = <6V:(p) 89,.7ro>d

om
P

Proof. Similar to [Kerimkulov et al., 2025a, Proposition 3.8].



Policy gradient theorem

Theorem 8 (PG for parametrization)

Let d7r9(a|s) = GZ(SS;), where Zy(s) = [, e%(%) 1(da). Then

s~dy 0 @i o
VoV (p) = 2K % {%(5, a)Vpn dd—‘f(a|s)] :

1—v ~a~vmg(-|s)

Proof. From Lemma 7 (chain rule) we have:

Vo Vi (p) = 1 /5 /A VT (5, 2) Vo 4 (a]s)u(da) d7° (ds).

Taking the gradient of the logarithm and re-arranging we see that
Vo e (als) = <72 (als) Ve In <72 (als) (14)

Hence

VoV (o) = o [ 2290 n S (alemocals) i ).

We just need to rewrite this in terms of expectation to get the conclusion. [J



Some remarks of PG

Remark on baseline. We can take any b € B,(S). Then
/b(s)wm 974 (a[)mo(dals) = b(s /v9|ndﬂ(a| Yro(dals) = b(s /ng""(a\s)u(da)
A
— b(s)Vs / 90 (a]5)pu(da) = b(s) Vol = 0.
A

Hence
s~d ™ P
VoVI(p) = VEMZZ( 15) {(%(5, a)+ b(s))Vg In dd—:(a\s)} .
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Some remarks on PG

Remark on estimating the advantage function. First variation:

‘S‘gw (s,a) = QI (s,a) — VI (s)+7In g—;(s, a).

=:AT (s,a) “advantage”
Advantage A7 (s, a) can be estimated from data: (s, a¢, Ct, Se41, 3e41, - - ).
AT = e+ 4V (s1) — V7 (s1),

where V. =~ V*. N.B.
Eap.y wp( s AT = (st 26) +7 / Vo(s')P(dS |50, a) — Vi (s0)

would be equal to A7 (s, a;) if V. = V7 in which case it would be unbiased. Alternative

Z’Y Cttl — t)

Generalised advantage estimation (GAE) formula [Schulman et al., 2015] allows efficient variance vs bias
tradeoffs.
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Some remarks on PG

Corollary 9 (to Policy Gradient Theorem)

Let d7T"(a|s) = GZ(SS;), o(s) == [, %) u(da’). Then

e[SV
VoV (p) = 1 dj {JV

T a~molls) | o

(5:2) (Vogo(s,) = [ (Vogo)(s,aymo(ais))].

Proof. Note that
In d’”’ 2 (als) = go(s,a) — In Zs(s)

and so
Vo ln ddi,f(s, a) = Vogo(s,a) — Vng(s) = Vogo(s,a) — [,(Vogo)(s, a )egze((:> (da').
Hence we have an expression for gradient of the log-density:
Vo In G2(s,a) = Vogo(s, a) — [,(Vogo)(s, a') G (a'|s)u(da) (15)

which concludes the calculation. [J



Some remarks on PG

If the state and action spaces are finite and we take the direct (tabular) parametrizations so that
go(s,a) := 0(s, a) then

e, ;80(s,a) — Zaeg,ggo(S,a/)ﬂe( |s) = 85,3(s, a) Zé s,a’)m(a'|s)
= 0s,4(s,a) — 5 :(s)m(als) = d:(s) (a(a) — 5§(S)7F(3|5)) :

Hence
Bos VI (p) = 1 s(s)da(a)me(als)d;’ (s)
™o R ~
— ﬁ 6?; (s,a)ds(s)m(a|s)me(als)d,? (s) -
But o o
2 (s, a)ds(s)m(a]s)mo (als)d]? (s) = 25 )m(ls) > T ( 5°(s)=0
and so

Do, VI (p) = 12 22 (8, 8)mo(8]8)d]7 (3) .

This is (for the 7 = 0 case) exactly Lemma C.1 in [Agarwal et al., 2019].
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Some remarks on PG

If go(s,a) = (0, ¢(s,a))u then 9o, g0(s, a) = 0i(s, a) and so

VoVIr(p) = T ESD [P (5, 2) (05, ) — [ o5, o )mo(de']s)) | (16)

Summary of PG so far:

@ We have expression for the gradient.
@ It can be estimated from data.

@ For some simple parametrizations it's nice and simple.

Next: what about convergence?
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Lack of convexity in softmax parametrization

Consider minimizing, over w € P(A) the objective

Vo / c(a)r(da).
A
We trivially have, for 7, 7’ € P(A) that
v(176)7r+67r/ < (1 _ E)VW +EV7r/
so P(A) > m— v™ € R is convex.

Consider minimizing, over 6 € R the objective

. /A c(a)mo(da),

()

with 71'0(3) = W.

The map R” 5 0 — v™ € R is not convex [Mei et al., 2020, Propn. 1].
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Performance difference vs convexity

Definition (Convexity)

If for some 7 > 0 we have all m, m’ € P(A) that
F(m) — F(m') > <—5F;;j’> m— m'> + 7 KL(m|m'),

then F is convex (7 = 0) or strongly convex (7 > 0).

Equiv.: 2£(m,-) exists and F((1 —g)m +em’) < (1 —e)F(m) +eF(m') for all m,m’' € P(A), € € [0, 1].

Performance difference

(V7= VI ) = (2 m =)+ 1o [ KL(x|n')(s)d7 (),

Py

where
(h, &) pm i= ﬁ Js Ja h(s,a)rt(dals) dj (ds)

The map My, 37— V] (p) € RU{+o0} is not convex, e.g. [Giegrich et al., 2024, Proposition 2.4] even if
underlying dynamics is linear and costs convex.
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Polyak—t.ojasiewicz condition: Gradient dominance

Continuous time gradient flow

20, = —Vf(0:) = L[f(0:)— F(67)] = —|VF(:).

ds

Non-uniform Polyak—tojasiewicz: there is u : R — (0, 00) s.t. for all
0 e R?
0 < F(0) — £(07) < u(0)|VF(H)]*.

Hence
L[F(0s) — £(07)] = —[VF(O:)]” < —p " (0:) [F(0:) — £(07)]

Gronwall:

0 < £(65) — £8%) < [£(00) — F9")] exo — [ a0 ).

Q: Isinf, u71(0,) > a > 0?
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Convergence of classical PG in MDPs

o Discrete time LQR: Polyak—tojasiewicz (PL) / gradient dominance established and so PG has linear
convergence [Fazel et al., 2018, Bu et al., 2019, Hu et al., 2023].

o In general discrete state-action setting best PL result is non-uniform [Mei et al., 2020] but shown lower
bounded along PG and hence convergence.
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Mirror descent

7



Mirror descent

Static optimization mirror descent:

o Goes back to at least [Nemirovski, 1979].
@ Modern proximal point form [Beck and Teboulle, 2003].

@ For general probability measures [Aubin-Frankowski et al., 2022].
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Mirror descent for MDPs

Discrete space MDPs and constants dependent on |S| and |A]:

o [Cen et al., 2022], entropy regularised, show linear convergence for disc. time. mirror descent

o [Cayci et al., 2021] same setting i.e natural policy gradient, log-linear policies i.e. mirror desc with func.
approx.

@ [Xiao, 2022] and [Khodadadian et al., 2022] achieved linear convergence for unregularised MDPs with
inexact policy evaluation by employing geometrically increasing step sizes in NPG.

Discrete space MDPs and constants independent of of |S| and |A[:

@ [Lan, 2023] linear convergence of policy mirror descent with arbitrary convex regularisers
and [Zhan et al., 2023] convergence rates independent of action space dimension.

MDPs with general S and A:

@ Discrete step mirror descent and Fisher—Rao flow: Exponential convergence for entropy regularized MDPs in
Polish state & action spaces [Kerimkulov et al., 2025a].



Deriving mirror descent

Aim: find
7 (+|s) = argmin V[ (s).

Let's say we have 4. Fix p € P(S) and write V] = V[ (p). By perf. diff., Lemma 6,

T Tof Told T I
V= Vi (B ), o [ KLl (s)d ().

Linearize and penalize with A > 7 to not move too far

Told
L™ = V:"'d —+ <6V" , T — 7'l'0|d>

ST + ﬁ/SKL(W|7roId)(5)dg°|d(dS).

P Told

Mirror descent optimizes m — L™ (x) giving

Tnew(dals) = arg min (v:o‘d n / VM (5 a)(m— 7o) (dals) + A KL(7r|7ro|d)(s)) .
4 A
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Motivation for studying mirror descent

Policy gradient: introduce parametrized densities mg(da, s) o €%9(*);,(da). Step > 0:

enew = aold + nvo v:%ld 5

T, 1 s~d, Oold
VoVr ™ (p) = 15K, .0 (s a)Vy In < °'d (als)] -

arvmg |, (¢]s)
old

Problem: Even if Onew and 6oq are close mg , and m,,, may be very different!
Instead, re-write the mirror descent objective:

9old

Luo®) = (25 m0) A [ K(molmon ) (9105 ™ (o)
7001

B
s, Oold [5‘/

A (7ol m0,)(5)]
SNd‘"eold Oold

=B 0 [25 (5 92 (als) + A KL (molma,,)(s)] -

Step n > 0:
Onew = Oo1a + NV o Lo (foa) -
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Mirror descent policy improvement (with exact update)

Mirror descent update

7" (]s) = ?nregg:Lr)\ Ja %(s, a)(m(da) — =" (dals)) + AKL(m|x"(+|s)) . (17)

From the performance difference lemma, see Lemma (6), we see that

(VI = VD)) = 1 fs ([ 32 (s, a)(x"* — 7")(dals) + ~ KL(x" " [x")(s)) d} "~ (ds)

< 2 fs (fy 52 (s, a) (7™ — 77)(dals) + AKL(z"*[x")(s)) 0" (ds). v
From the mirror descent update (17) we have, for all 7 € I, and s € S that
[a B (s, a)(m — 7")(dals) + AKL(w|x")(s) > [, 52 (s, a)(x""* — 7")(dals) + AKL(x"x")(s) .
This with m = 7" allows us to conclude that for all s € S we have
[ 3 (s, a) (7™ — 77)(dals) + AKL(x"[x")(s) < 0. (19)

From (18) we have
(VI = V) (p) < 0.
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Mirror descent with approximation

n

Recall that 2

vy .y dn" Ky s dn"
T n n __ n
s— =A7"+7In Em = QI VI"+7ln e

Updates can only be made with an approximation A,(s,a) = AZ"(s, a) + En(s, a).

Consider the scheme

7" (dals) = iregm;/A (A,,(s, a)+7ln %(ab)) (m(da) — w"(dals)) + AKL(m|z"(:|s) . (20)
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Towards L-smoothness

This is from [Lan, 2023].

Let F: S — R be such that F < 0. Then for any m and any s € S

1 / s !
m/gF(s)ds (ds') < F(s). (21)

Proof. From (10) and the fact that P2(ds’|s) = d:(ds’) we have for all s € S that

ﬁ SF(S/)d:(dSI)=/SF(s/)Pg(ds'|s)+kz_;/s,ku(s/)P7;:(ds,|s)

< /s F(s')0,(ds") = F(s).

This concludes the proof. []
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Lemma 11 (L-smoothness for exact update)

Let m, 7" € N, satisfy [, %(s, a)(m — n')(da|s) + 7 KL(w|7")(s) < 0 for all s € S. Then for all s € S,

&

(vr - v:’)(s)g[‘5;/; (s, a)(r — 7')(dals) + = KL(x|')(s)..

In particular with ™" = To1q and ™ = Tpew given by the exact update (17) satisfy this.

Proof. From perf. diff. lemma and Lan’s trick:

(VI = VI)S) < 12 [y (L S5 (s a)(m — ') (dals') + 7 KL(l)(s)) b2 (ds')

< [, 2% (s, 2)(r — 7')(dals) + 7 KL(x|')(s)
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Convergence of mirror descent with approximate advantage
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Ingredients for convergence of mirror descent

o Convexity (strong for “linear” rate)
@ L-smoothness

@ Three point lemma

Lemma 12 (Three point lemma / Bregman proximal inequality)

Let G : M,, — R be convex. For all m' € M,, let
m* = a;gerlsln {G(m) + KL(m|m")} . (23)
Then, for all m € M,,, we have
G(m) + KL(m|m") > G(m*) + KL(m|m™) + KL(m"|m’). (24)J

The proof of Lemma 12 can be found e.g., in [Aubin-Frankowski et al., 2022] noting that the flat derivative of
KL is well defined on M,,, see e.g. [Kerimkulov et al., 2025b, Lemma 3.8].



Let m" be generated by inductive application of the approximate mirror descent step (20). Let V! := V;’" for n € N. We
begin with an application of Bregman proximal inequality, see Lemma 12. Fix s € S and 7" € I, and define G : M, =+ R

by
G(m) = %/ (A,,(s a)+7lndx" (a|s))(m(da)f7r”(da\s))

It is linear and thus clearly convex and hence due to the mirror descent update (20) is equivalent to (23) and so we have,
forall m €My, s€ S and neN that

X / An(s, a) +Tln (a\ ))(7r — 7")(dals) + KL(7|7")(s)
> ;/A<A (s,a) +7In 92 (a\s))(w"ﬂ 7")(da|s) + KL(x|x™1)(s) + KL(x™|x")(s).

Re-arranging this leads to

KL(rln")(s) — KL(xlx")(5)

< ! A I ")(d.

<5 [ (Aol + 70 S22 ale)) (= =)o) (25)
1

-3 (A,,(s 2) + 7In 927 (afs) ) (=" = 7")(dals) — KL(x"[x")(s).



From the performace difference, Lemma 6, we have

(Vn+1 —V)(s)

= 1 Js (Ja (Ao = En+ 7In 420) (s, 2)(x"H1 — 77)(dals) + 7 KL(x"H ") (s)) d5 " (ds)
Note that (20), together with A > 7 guarantees that

0> [, (An(s, a) + TIn (a\s))(w’“rl ") (dals) + 7 KL(7"1|7")(s) =: F(s)
for all s € S. Thus we may apply Lemma 10 and get
(VI = VI)(8) < F() — 125 fs faEnls, )+ — n)(dals)dg " (ds)

Assume that ||£||g,(sxa) = dn < co. Then we have the following approximate L-smoothness:

25
(VI = VI)(s) SF(s)+ 7= s€S.
-7
Applying this in (25) and taking we thus have, for all s € S, that

KL(7 |71 (s) — KL(72 |7")(s) < 7fA (A (s, a)+7'|n (a\s))(ﬂ' — ")(dals) (26)

— LVt - vn(s) + 2



Summing up over n =0,1,..., N — 1 we see (spotting the telescoping sums) that for all s € S,

N—1
N - w5 70) (s 1 An(s,a) + 7In L (als) ) (7* — 7")(da|s
KL |)(s) — KL(r )()sgA/A(An(, ) 70 92 (als)) (5 — x7)(dals)

Lovw —ve 2 Nilzs
*X( r = -r)(s)+m§) n-

We wish to apply performance difference in due course and so we observe that the above is equivalent to
N—-1 1
KL(x[mM)(s) — KL(x%[%)(s) < S / (AZ"(s,2) + 7 In 92 (als) ) (w3 — 7")(dals)
n=0 AJa
(27)
N-1 1w . 5 N—1
305 [, Enls e —an)@als) ~ 4 V) + 3



Notice that VN(s) > V*(s) and so (VN — VO)(s) > (V¥ — VO)(s) for all N € N. Let
= [5KL(mzn")(s)d57 (ds) and a 1= — f(Vi — VO)(s)di” (d5)

so that, after integrating (27) over dg* and using ||€]|g,(sxa) = dn < 00 we have

Ny, <Z //A 2 (5,3)(m; — 7")(dals)d (ds) + 25n+ Ao Zan

Using the performance difference lemma, see Lemma 6, and upper bounding the approximation error terms we get
Nl 5 T * @ 4 Nt
N_ o< [;wifv’f” ——/KL x "sdﬁ*ds}+7+7 On -
S )= 3, KL (@) + 54 = 36

Since since KL(+|-) > 0 we get that

N—1
nyyOSNl_TV( (o) - O’FinyNilVfN(ﬂ)>+%+ﬁZ5"'
Hence
Nll( min VI (p) = VIT(p)) < S+ °+LN§6n.
A \n=0,1,..,N—1 7 >\ 1= =
and so
05 min V(o) - V() < SOt ] Zén

~ n=0,1,...,N—1 N 1-—x N (1 —

56 /77



Convergence of mirror descent with approximate advantage

Theorem 13

Given mo € M, let (wn)n be given by

7" (dals) = argmm/ (A (s,a) + 7In 9= (a|s))(m(da) — w"(dals)) + AKL(m|z"(+|s) .

meP(A)

where A,(s,a) = AT (s, a) + En(s, a) and I€]|8,(sxa) = 0n < 00 for all n € N. Then

N—1
g N 1 o —|— )\y 1 4
< Y n,
0s  min, V7 (o)= V() < TNE oy nz:; ’

where o := — [(V — V°)(s)d}™ (ds) and y° := [, KL(w%|7°)(s) dj™ (ds).

This is a small extension of results in [Kerimkulov et al., 2025a], [Lan, 2023].



Natural policy gradient is mirror descent
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Natural policy gradient (NPG)

Let d7T9(a|s) = ez(ss;), Zy(s) = [, 907 i (da’) with gy(s, a) = (6, ¢(s, a))u.
Fisher information matrix
F(0) = s[4 Vo In G2 @ Vo In <7t (als)mo(dals)d; " (dals),
where for 0,6’ € H we have (6 ® 6')jx = 0;0;. Let
Gy = P(s,a) — [, ¢(s,a" )mo(da']s).
Recalling (15) we have that Vg In 972 2 (als) = Vogo(s, a) — [4(Vogs)(s. a ) 8(a'|s)u(da’) = ¢r, (s, a). Hence
F(0) = [s [a bno © ¢ny (s, 2)mo(dals)d;” (dals)

Natural policy gradient (NPG) updates are

Oni1 =0, —nF(0)' VoV (p), n=0,1,..., 6° € H given. (28)

Here, for M € L(H,H) we use M to denote the Moore—Penrose pseudo-inverse (which coincides with M~ for
invertible M).

NPG in RL is due to [Kakade, 2001].



NPG is Mirror descent

If given § € H we take In ””9 (als) = (0, ¢o)u and thus obtain s, corresponding to 0, then mo, , with 0,41

given by the NPG update (28) is equal to ©"*! given by

70,41 (+]5) = argmin/ (W(0n) + T0n, fmy, (5, 2)) ,(m(da) — 7, (dals)) + AKL(m|ms,(-]s))
meP(A) J A

which is the mirror descent update (17) where the flat derivative is replaced by its approximation

An = (W(8) + 76, Py ).

-

Remark: Let?
L™ (w) = 3 [5 [y |AT? (5, 8) — (W, d= (s, 3))u|*mo(dals)d;? (ds), (29)
where A7%(s,a) = Q7%(s,a) — V79(s). So NPG updates are:
Onir = On, L (W(05) + 70,) .

where Ww(6,) is the minimizer for (29).

2We are not including the In 7(9 term. It's just an additive term we can trivially see that | In 470 — (v, ¢W9)H| is minimized by y = 6.
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Proof. Notice that
Vwl™(w) = [ [4(AT (s, a) — (W, by (s, ))a)m (s, a)me(dals)d,” (ds)
and so the first order condition for any minimizer w of (29) is

LA(W,¢WG(S,3))H¢WH(S, a)we(da\s)d;”’(ds):/S/AA:"(s,a)qﬁM(s, a)o(dals)d® (ds).

Moreover, for any w € H we have F(0)w = [ [,(w, ¢r, (s, a))udrq (s, a)mo(dals)d;® (ds). Noting also that the minimizer
above depends on 6 we have

0)i(0) = // (5, @)y (5, a)mg(dals)d (ds) .

Note that the Moore—Penrose pseudo-inverse provides the smallest norm solution to this i.e.
#(0) = FO) [ [ AT (5,2)6r, (s, aymaldals)d7° (d5).
sJa
This, together with (16) leads to

F(0)'VoV7?(p) = 12

arvmg(-ls)

- 11W(W(9)+70).

RO EY [(A7%(5,0) + 710 9572 (als) )y (5, )]
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Have
F(0)tvoVTe(p) = = (W(6) +76).
So the NPG stepping scheme (28) becomes

Ont1 = 0p — %(V\?(Qn)—l—TGn), n=0,1,..., 6 € H given.

Letting A = (1 — ) ™! we have
(On+1,8)r = (O, B)iz — % (W(0n) + 760, 65, 2)) 5 -

dm,
Since In —21.(a|s) = (0n, d)m — (0,,, Ja d)(-,a’)7r9"(da’\~))JHI and collecting all the terms constant in a in some b = b(s)

dp

we then have
71'7(9,1

In 70251 (als) = In T (a[s) — £ ((0) + 700, br (5. )y, + (s).

with b chosen such that mgp ., € P(A|S). Hence

n+1
dm
In #(au) = — L (W(0n) + 70n, by, (5,3)) 5 + () -
And so B
iy
:%e“(ab) = exp ( — %(W(Gn) + 70, by, (s, a))]HI + b(s)) .
Then

79, (s) = argmi"/ (W(0n) + 70, dry, (s, 2)) y(m(da) — 7, (dals)) + AKL(m|mg, (-|s)),
meP(A)JA

due to [Dupuis and Ellis, 1997], Lemma 1.4.3. (I



PPO and FR-PPO




Connection to PPO

Proximal policy optimization (PPO) [Schulman et al., 2017] optimizes:

o, T
s~d. Pold i sv. Pold d
Jopo(6) = % ‘ls)(mln [—gw (s, ) gree-(als),

g
. dm s, Pold
C|Ip(176,1+€ £ (a|s))#(s,a)] .

T dmggy

Proximal policy optimization algorithms ~ De€epSeek-V3 Technical Report

J Schulman, F Wolski, P Dhariwal, A Radford... - arXiv |
... call proximal policy optimization (PPO), have som¢ DeepSeek-Al
Our experiments test PPO on a collection of benchmark
Y¢ Save Y9 Cite Cited by 25072 Related articles

lZG“(min( o0, gy, (Tololld_ 1+E)A-)
G L. 70,0 il P \ g o)’ l

research@deepseek. conm
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TRPO

@ Switch to maximizing in line with [Lascu et al., 2025].

o Ar = Qr — Vi = 27 (objective has 7 = 0 i.e. no KL term).

Theorem 14 ([Achiam et al., 2017])

For all p € P(S) and any policies ©’,m € P(A),

V7 (0) = V() > 1o / / I (s, a)(dals)d (ds)

4'7||r||BbS><A) 0 . e
i /S TV (1s). 7 ))d7 (ds) = J(x').

N.B. J(m) = 0 so max,s J(=') > 0.

So
7’ € argmax J(7')

!

. ’
guarantees improvement: V™ — V7 = max,/ J(7’') > 0.



N.B.
/S TV (1s), 7(-15))d (ds) = / Ik

we can write surrogate loss as

dr’ (]s) — 1‘7r(da\s (ds),

V™ (p) — V™ (p) > 7// 4’ A (s, a)m(da|s)d7 (ds)

_ 2Irllsysxa) S><A
(1—7)3

dr’ (a]s) — (da|s) = J(r).

This is a motivation for PPO’s constraining the probability ratio

%(3‘5) - 1‘ < e, wheree >0is a
hyperparameter.

PPO

Jpo(n) / / min { 47 (a]5) A (s, a), clip}* (i—j(a\s)) Ax(s, a)}w(da|s)d§(ds).
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The challenge of TV geometry

1 dr’ ™ 2vlIr HB (SxA)
)= 1 /5 /A 9 Ar(s, a)m(dals)d (ds) — 2 rleusxn

Seen how to get convergence if penalty satisfies 3-point property (Bregman proxmal inequality).

dr’ (5)s) — 1‘ 7(dals).

Another approach is to go via first order optimality condition. But ...

5TV(;;/W)(5) o { / /

Therefore, the first-order condition for the update rule gives the scheme

ar (5)s) — 1] 7r(da|s)] - sign(‘;—’;(a|s) - 1) dr (5s).
Ax(s,a) — L sign ( "(a]s) — 1) S5 (als) = const in a.
@ Two solutions for %’r/ depending on whether %(a|s) —1 >0 or not.
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Improved lower bound

Theorem 15 (Lower bound on performance difference [Lascu et al., 2025])

For any ', € Px(Al|S), it holds that

V() = V() > / / (als)An(s, a)(dals)d(ds)

8“rIIrII (S . i
- #/STV (7' (-]s), 7(-[s))dj (ds).
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Towards Fisher-Rao PPO

Fix A € M4 (A). Then the squared Fisher-Rao (FR) distance between measures p and p is defined by

2
e A
/A dax ax|

FR*(u, 1) = 4

if i, 1’ < A, and co otherwise.

Cauchy-Schwarz inequality gives

20 1 L 1 20 1 2 2\ g7
[TV s m 1 0s) < g | PRl (1) ),

Corollary 16

For any 7', € PA(A|S), it holds that

V™ (p) = V7(p) = / /

_ 7||r||Bb (5xA)

2(1 _7)3 /SFR (ﬂ-l(.'s) ,ﬂ'(~|s) )d;r(ds)v

(s,a)m(dals)d, (ds)

where 7(-|s)? := (d—") (+|s), for all s € S.
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Fisher-Rao PPO

Consider

71'"“(.|5) = armg;npax [/ Arn(s, a) (a\s) "(dals) — % FRZ(mZ,ﬂ—"(.|s)2):| .

Theorem 17 (Policy improvement [Lascu et al., 2025])

Let V":=V™ . IfL> ”T‘fﬁ% then for any p € P(S) we have

V™ (p) > V"(p) foralln> 0.

Theorem 18 (Sublinear convergence [Lascu et al., 2025])

Let V" := V™. Forall p P(S), L > %gi for any m € P(A|S) and n € Ny,

s n 1 1 2 2\ g 0 s ™
(V"= V0 < s ([ PR mo )7 ) + [ (V0 = VoY) (a9).
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General

@ MDPs can be formulated in very general (Polish) state and action spaces.

o Relaxed MDP with entropy regularization has good mathematical properties (existence and uniqueness of
optimal policy) under minimal assumptions (boundedness and measurability).

Policy gradient

@ We have PG theorem but convergence analysis is hard due to non-convexity (best known results need
non-local Lojasiewicz are in finite state & action spaces or structural assumptions - LQR).

@ Mirror descent (NPG) is much more ameaneable to convergence analysis (with direct parametrization of
linear basis functions for log gensities), key ingredients
o Three point lemma
o L-smoothness (from perf. diff. and Lan’s trick)
e The “replacement-for-convexity-property” (that perf. diff provides)

@ Convergence of popular PG schemes e.g. PPO still not understood.

@ Replacing linear parametrizations (basis functions, NTK, mean-field) with deep networks is ... not
understood even for supervised learning.



Thank you!
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DPP equation for Q;:
* _ . * ! / d_m / / /
Qi(s,a) =c(s,a) + fy/s mel?vf(A) (QT(S ,a)+7(a )) m(da )) P(ds’|s, a) .

Re-write:
0=E37701) [( a)+7(Qi(s, &) + THEES))) - Qits, a)] :

Q-learning:
Qu+1(sk, ak) = Qu(sk, ak) + 0« [C(Sk, ak) + ’Y(Qk(sk+17 akt1) + T%(3k+1|5k+1)) — Qu(sk, 3k):| s

where sii1 ~ P(:|sk, ak), mk(da’|sk) oc exp(—7 " Qi (s, a'))uu(da’), a1 ~ mk(-|sk).

Convergence: like value iteration + stochastic approximation (Robbins—Monro).

7/77



