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The (classical) bifunctor theorem

Theorem

Suppose we have functors LC : B → D and MB : C → D for each

B ∈ B and C ∈ C and that LC (B) = MB(C ).

There is a bifunctor P : B × C → D such that LC = P(−,C ) and

MB = P(B,−) if and only if for f : B1 → B2 and g : C1 → C2 we have

LC2(f )MB1(g) = MB2(g)LC1(f ).

In this case, P(B,C ) = LC (B) = MB(C ) and P(f , g) = MB2(g)LC1(f ).
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A 2-dimensional analogue

Theorem

Consider pseudofunctors LC : B → D and MB : C → D for each B ∈ B
and C ∈ C and that LC (B) = MB(C ). Suppose we have an invertible

2-cell σf ,g : LC2(f )MB1(g)→ MB2(g)LC1(f ) for each f : B1 → B2 and

g : C1 → C2 and suppose these satisfy certain coherence conditions.

Then there is a pseudo-bifunctor P : B × C → D and canonical

isomorphisms MB
∼= P(B,−) and LC ∼= P(−,C ).

Furthermore, every pseudofunctor P ′ : B × C → D is pseudonaturally

isomorphic to one of this form (for an essentially unique choice of L’s,

M’s and σ’s).

In fact, there is also a similar construction for lax functors.
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Crash course on string diagrams: basics

In string diagrams for 2-categories:

• 2-morphisms are represented by vertices,

• 1-morphisms are represented by wires,

• objects are represented by regions.

Our diagrams are read from bottom to top and from left to right.

For instance, if f , f ′ : A→ B then α : f → f ′ would be represented as

follows.

f

f ′

α

A B
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Crash course on string diagrams: composition

Placing 2-morphisms on top of each other denotes vertical composition

and putting them side by side denotes horizontal composition.

For example, let f , f ′, f ′′ : A→ B , α : f → f ′ and α′ : f ′ → f ′′. And let

g , g ′, g ′′ : B → C , β : g → g ′ and β′ : g ′ → g ′′.

The following string diagram depicts the composite (α′α) ∗ (β′β).

f

f ′′

g

g ′′

α

α′

β

β′

Unit 1-morphisms and 2-morphisms are omitted. Perturbing the dots up

and down leaves the meaning unchanged due to the interchange law.
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An example: monads

Recall that (T , µ, η) is a monad in a 2-category if T is an

endomorphism on an object X and µ : T 2 → T and η : IdX → T

satisfy associativity and unit axioms.

We can express the axioms in string diagrams as follows.

µ

µ

=
µ

µ

µ

η

= =
µ

η
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An example: distributive laws

Given two monads (T , µT , ηT ) and (S , µS , ηS) on the same object we

might ask for a monad structure on the composite TS . We will use a

map σ : ST → TS (called a distributive law) satisfying four axioms.

It is easiest to understand these using string diagrams, where we write

the 2-morphism σ as a crossing of the S wire over the T wire.

= =

= =
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An example: distributive laws

Below are the multiplication and unit of the composite monad TS .

Let’s prove that these satisfy the one of the unit laws.

= = =
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Lax functors

Let C and D be 2-categories. A lax functor F : C → D consists of

• a function F sending objects in C to objects in D,

• a functor F : Hom(C1,C2)→ Hom(F(C1),F(C2)) for each pair

of objects C1,C2 ∈ C,

• a 2-morphism γg ,f : F(g) ◦ F(f )→ F(g ◦ f ) called the compositor

for each each pair of composable 1-morphisms (f , g) in C,

• a 2-morphism ιC : idF(C) → F(idC ) called the unitor for each for

each object C in C.

We say a lax functor is a pseudofunctor if its unitors and compositors

are invertible.

9
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Lax functors

The data of a lax functor should satisfy the following three conditions.

γg2,f2

F(g2f2)

F(α)

F(f1)

F(β)

F(g1)

= γg1,f1

F(β ∗ α)

F(g2f2)

F(f1) F(g1)

(1)
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Lax functors

The data of a lax functor should satisfy the following three conditions.

γh,gf

F(hgf )

γg ,f

F(g)F(f ) F(h)

=

γhg ,f

F(hgf )

γh,g

F(h)F(g)F(f )

(2)
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Lax functors

The data of a lax functor should satisfy the following three conditions.

γf ,idX

F(f )

ιX

F(f )

=

F(f )

F(f )

=

γidY ,f

F(f )

ιY

F(f )

(3)
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Constructing lax bifunctors from families

Suppose we have lax functors LC : B → D and MB : C → D for each

B ∈ B and C ∈ C and that LC (B) = MB(C ). Furthermore, suppose we

have a 2-morphism σf ,g : LC2(f )MB1(g)→ MB2(g)LC1(f ) for each

f : B1 → B2 and g : C1 → C2.

Under certain assumptions on this data, we will construct a lax

bifunctor P : B × C → D as follows.

• P(B,C ) := LC (B) = MB(C ) on objects,

• P(f , g) := MB2(g)LC1(f ) on 1-morphisms,

• P(α, β) := MB2(β) ∗ LC1(α) on 2-morphisms,

• the unitor ιB,C is ιBC ∗ ιCB ,

• the compositor γ(f2,g2),(f1,g1) is given by(
γB3
g2,g1
∗ γC1

f2,f1

)
◦
(
MB3(g2)σf2,g1LC1(f1)

)
for f1 : B1 → B2, f2 : B2 → B3, g1 : C1 → C2, g2 : C2 → C3.
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Constructing lax bifunctors from families: the compositor

The compositor can be better expressed using string diagrams.

To exhibit the structure of the diagram we use

• red wires for morphisms an ‘L’ lax functor has been applied to,

• blue wires for morphisms an ‘M’ lax functor has been applied to,

• crossings of a red wire over a blue wire for ‘σ’ 2-morphisms.

MB3(g
′g)

MB3(g
′)MB2(g)

LC1(f
′f )

LC2(f
′)LC1(f )
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The coherence conditions

γB2
g2,g1

MB2
(g2g1)LC1

(f1)

MB1
(g2) LC3

(f1)MB1
(g1)

=
γB1
g2,g1

MB2
(g2g1)LC1

(f1)

MB1
(g2) LC3

(f1)MB1
(g1)

(D1)

γC1
f2,f1

LC1
(f2f1) MB3

(g1)

LC2
(f1)MB1

(g1) LC2
(f2)

=
γC2
f2,f1

LC1
(f2f1) MB3

(g1)

LC2
(f1)MB1

(g1) LC2
(f2)

(D2)
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The coherence conditions

MB2
(idC )

ιB1
C

LC (f )

LC (f )

=

MB2
(idC )

ιB2
C

LC (f )

LC (f )

(D3)

LC1
(idB)

ιC2
B

MB(g)

MB(g)

=

LC1
(idB)

ιC1
B

MB(g)

MB(g)

(D4)
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The coherence conditions

MB2
(g ′)

MB1
(β)

MB1
(g)

LC1
(f )

LC2
(f )

=

MB2
(β)

MB2
(g ′)

MB1
(g)

LC1
(f )

LC2
(f )

(D5)

LC1
(f ′)

LC2
(α)

LC2
(f )

MB2
(g)

MB1
(g)

=

LC1
(α)

LC1
(f ′)

LC2
(f )

MB2
(g)

MB1
(g)

(D6)
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Pseudo-bifunctor theorem

Theorem

Consider pseudofunctors LC : B → D and MB : C → D for each B ∈ B
and C ∈ C and that LC (B) = MB(C ). Suppose we have an invertible

2-cell σf ,g : LC2(f )MB1(g)→ MB2(g)LC1(f ) for each f : B1 → B2 and

g : C1 → C2 and these satisfy the aforementioned coherence conditions.

Then there is a pseudo-bifunctor P : B × C → D constructed as above

and canonical isomorphisms MB
∼= P(B,−) and LC ∼= P(−,C ).

Furthermore, every pseudofunctor P ′ : B × C → D is pseudonaturally

isomorphic to one of this form (for an essentially unique choice of L’s,

M’s and σ’s).
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Unit conditions are superfluous for pseudofunctor result

In fact, in the context of the pseudo-bifunctor theorem we only need to

assume conditions D1, D2, D5, D6.

This is because when σ is invertible, D3 and D4 follow from D1 and D2.

= =

= = = =
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Application: distributive laws of monads

Monads in D are lax functors from the terminal 2-category into D.

In this case our data reduces to two monads S = L(id) and T = M(id)

on the same object X = L(∗) = M(∗) and a single 2-cell σ : ST → TS .

The conditions D1–D4 are precisely the axioms of a distributive law.

Conditions D5 and D6 are automatic, since the only 2-cell in the

terminal 2-category is the identity.

Now since 1× 1 ∼= 1, the construction of the bifunctor yields another

monad, which is precisely the monad structure on TS obtained from the

distributive law.
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Application: braidings

A monoidal category A can be thought of as a 1-object bicategory.

Consider the pseudo-bifunctor result for B = C = D = A and

L = M = IdA. Then σX ,Y is an isomorphism from X ⊗ Y to Y ⊗ X .

Conditions D5 and D6 mean that σ is natural in X and Y . Conditions

D1 and D2 are then precisely what we need for σ to be a braiding on A.

The resulting bifunctor is then a strong monoidal functor from

A×A → A whose underlying functor is ⊗.

In particular, we have that A admits a braiding if and only if ⊗ admits

the structure of a strong monoidal functor.
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Functoriality and further results

It is also possible to relate families of (op)lax transformations between

the families of lax functors to (op)lax transformations between the

resulting lax bifunctors, and similarly for modifications.

We obtain a 2-category of ‘generalised distributive laws of lax functors’

Dist(B, C,D) and a 2-functor Dist(B, C,D)→ Lax(B × C,D).

This restricts to an equivalence between the distributive laws of

pseudofunctors and Hom(B × C,D).

Moreover, we have an equivalence Dist(B, C,D) ∼= Lax(B,Lax(C,D)).

This generalises the result that distributive laws of monads in D are

monads in the 2-category of monads in D.
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Thanks for listening!

More details can be found in our paper on the arXiv:

https://arxiv.org/abs/2010.07926.
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