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Motivation

Definition

A concrete category (C,U : C → Set) is called algebraic if U is monadic.

Examples:

Grp, CH are algebraic.

Top is not algebraic: the monad induced by the adjunction

Set Top
D

U

is the identity monad.

Question: Can we find a weaker notion of monads and algebras, such that Top
can be expressed as a category of algebras?
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Overview

1 Lax extensions of monads
1 Barr extension
2 Canonical extension
3 Extensions to V -Rel
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Barr extension

Let (T , µ, η) be a monad in Set. We can factorize every relation r : X  Y as

X Y

R

r

π◦
1

π2

Define for every set X and every relation r :

TBX := TX and TB(r) := Tπ2 ◦ (Tπ1)◦.

This defines a lax functor TB : Rel→ Rel such that the following diagram
commute:

Set Set

Rel Rel

T

TB

and
Setop Setop

Rel Rel

T op

TB
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Barr extension

Natural transformations η : 1Set → T and µ : TT → T , become oplax natural
transformations η : 1Rel → TB and µ : TBTB → TB , i.e. for all relations
r : X  Y we have

X TBX

Y TBY

ηX

r TB r≤
ηY

and

TBTBX TBX

TBTBY TBY

µX

TBTB r TB r≤
µY

Examples:

Idenity monad: (1Set)B = 1Rel

Powerset monad (P, µ, η): for a relation R ⊆ X × Y , we find

A(PBR)B ⇔ ∀a ∈ A ∃b ∈ B : aRb and ∀b ∈ B ∃a ∈ A : aRb

Ultrafilter monad (U, µ, η): for a relation R ⊆ X × Y , we find

u1(UBR)u2 ⇔ ∀A ∈ u1 ∀B ∈ u2 ∃a ∈ A ∃b ∈ B : aRb
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Flat lax extension of a monad

Definition

A flat lax extension of a monad (T , µ, η) on Set is a lax functor T̂ : Rel→ Rel
such that:

Set Set

Rel Rel

T

T̂

and
Setop Setop

Rel Rel

T op

T̂

commute.

The natural transformations η and µ, become oplax natural transformations
η : 1Rel → T̂ and µ : T̂ T̂ → T̂ .

Example: Barr extension
Remark : For all the monads in our examples, TB is in fact a 2-functor.
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Lax extension of a monad

Definition

A lax extension of a monad (T , µ, η) on Set is a lax functor T̂ : Rel→ Rel such
that:

Set Set

Rel Rel

T

T̂

and
Setop Setop

Rel Rel

T op

T̂

commute laxly, i.e.

T̂X = TX ; Tf ≤ T̂ f and (Tf )◦ ≤ T̂ f ◦

The natural transformations η and µ, become oplax natural transformations
η : 1Rel → T̂ and µ : T̂ T̂ → T̂ .

Remark : Every lax extension induces a dual lax extension via Ť (r) := (T̂ (r◦))◦.
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Canonical extension

Let (T , µ, η) be a monad in Set and suppose that T preserves inverse images.
For a subset A of a set X , we can identify TA as a subset of TX .
For a relation R ⊆ X × Y and a subset A ⊆ X define

r [A] := {y ∈ Y | ∃a ∈ A : aRy}

We define p(TcanR)q :⇔ ∀A ⊆ X : (p ∈ TA⇒ q ∈ Tr [A]).

Proposition ([4])

If (T , µ, η) is a taut monad, i.e.

T preserves inverse images,

ηX (x) ∈ TA⇔ x ∈ A and µX (χ) ∈ TA⇔ χ ∈ TTA for all A ⊆ X .

Then Tcan is a lax extensions of (T , µ, η).

We call this extension the canonical extension and its dual extension the
op-canonical extension.
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Canonical extension

Examples: The powerset monad, identity monad and (ultra)filter monad are all
taut.

Identity monad: (1Set)can = (1Set)op-can = (1Set)B = 1Rel

Powerset monad: for a relation R ⊆ X × Y , we find

A(PcanR)B ⇔ ∀b ∈ B ∃a ∈ A : aRb

and
A(Pop-canR)B ⇔ ∀a ∈ A ∃b ∈ B : aRb.

Filter monad: for a relation R ⊆ X × Y , we find

f1(FcanR)f2 ⇔ ∀A ∈ f1 ∃B ∈ f2 ∀b ∈ B ∃a ∈ A : aRb

and
f1(FcanR)f2 ⇔ ∀B ∈ f2 ∃A ∈ f1 ∀a ∈ A ∃b ∈ B : aRb.

Ultrafilter monad: Ucan = Uop-can = UB
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V -Rel

Let V = (L,⊗, k) be a unital quantale, i.e. a complete lattice L with binary
suprema preserving operation ⊗ and neutral element k.
Examples: 2 = ({0, 1},∧, 1) and P+ = ([0,∞]op,+, 0)

The 2-category V -Rel:
I Objects: Sets
I Morphisms: X  Y is a map X × Y → V (a V -relation). Composition of

r1 : X  Y with r2 : Y  Z is given by

r2 ◦ r1(x , y) :=
∨
y∈Y

r1(x , y)⊗ r2(y , z).

I 2-morphisms: The order on V , induces an order on V -relations.

We consider Set as a subcategory of V -Rel.

For a V -relation r : X  Y , we denote r◦ for the opposite V -relation
Y  X .
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Lax extension of a monad to V -Rel

Definition

A lax extension to V -Rel of a monad (T , µ, η) on Set is a lax functor
T̂ : V -Rel→ V -Rel such that:

Set Set

V -Rel V -Rel

T

T̂

and
Setop Setop

V -Rel V -Rel

T op

T̂

commute laxly, i.e.

T̂X = TX ; Tf ≤ T̂ f and (Tf )◦ ≤ T̂ f ◦

The natural transformations η and µ, become oplax natural transformations
η : 1V -Rel → T̂ and µ : T̂ T̂ → T̂ .

Remark : Every lax extension induces a dual lax extension via Ť (r) := (T̂ (r◦))◦.
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Extension to V -Rel

A V -relation r : X  Y induces collection of relations

(xrvy :⇔ v ≤ r(x , y))v∈V

For a lax extension T̂ : Rel→ Rel of a monad (T , µ, η), we can define

T̂V r(p, q) :=
∨
{v ∈ V | p(T̂ rv )q}

Proposition ([2])

Let T̂ : Rel→ Rel be a lax extension of a monad (T , µ, η). If V is completely
distributive and k = 1, then T̂V : V -Rel→ V -Rel is a lax extension to V -Rel of
the monad (T , µ, η).

Remark : The extension T̂ 2 is equal to T̂ .
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Extension to V -Rel

Examples: Note that P+ = ([0,∞]op,+, 0) is completely distributive and 0 is the
top element of the lattice [0,∞]op.

Identity monad: 1V
Rel = 1V -Rel.

Powerset monad: for a P+-relation d : X  Y , we find

PP+

B d(A,B) = inf{ε ≥ 0 | A ⊆ Bε and B ⊆ Aε},

where Bε = {x ∈ X | ∃b ∈ B : d(x , b) ≤ ε}. This is the Hausdorff distance.

Ultrafilter monad: for a P+-relation d : X  Y , we find

UP+

B (u1, u2) = sup
A∈u1,B∈u2

inf
a∈A,b∈B

d(a, b).
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Lax algebras

Let (T , µ, η) be a monad in Set and let V be a unital quantale. Let
T̂ : V -Rel→ V -Rel be a lax extension to V -Rel.

The category of lax algebras T̂ -Alg:
I Objects: (X , α), where X is a set and α : T̂X  X is a V -relation such that:

X T̂X

X

ηX

1X
α

≤ and

TTX TX

TX X

T̂α

µX α

α

≥

I Morphisms: A morphism f : (X , α)→ (Y , β) is a map f : X → Y such that

TX TY

X Y

Tf

α β

f

≤

If T̂ is flat, then SetT is a full subcategory of T̂ -Alg.
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Lax algebras

Examples:

Identity monad:
I 1Rel-Alg ' Ord
I 1P+-Rel-Alg 'Met: for a P+-relation d : X  X , we find

1X ≥ d ⇔ d(x , x) = 0 ∀x ∈ X

and
d ≤ d ◦ d ⇔ d(x , y) ≤ inf

y
{d(x , y) + d(y , z)} ∀x , z ∈ X

Powerset monad:
I Pcan-Alg ' Clos: For a closure space (X , c : PX → PX ), define the relation

ARx :⇔ x ∈ c(A).

For an object (X ,R) in P+-Alg, define c : PX → PX by

c(A) := {x ∈ X | ARx}.

I Pop-can-Alg ' Ord: ARx :⇔ ∀a ∈ A : a ≤ x and x ≤ y :⇔ {x}Ry .
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Lax algebras

Powerset monad:
I P

P+
can-Alg ' Clsn: (X , c : PX × X → [0,∞]) metric counterpart of closure

space.
I P

P+
op-can-Alg 'Met: d(A, x) := infa∈A d(a, x) and d(x , y) := d({x}, y).

Ultrafilter monad:
I UB-Alg ' Top: For a topological space X , define the relation UX  X

uRx ⇔ u → x

Then (X ,R) is an object in UB-Alg.
For an object (X ,R) in UB-Alg, define a map c : PX → PX by

c(A) := {x ∈ X | ∃u ∈ UX : A ∈ u and uRx}
Then c is a topological closure operator.

I U
P+
B -Alg ' App: (X , c : PX × X → [0,∞]) metric counterpart of topological

space/topological closure space.

Filter monad:
I Fcan-Alg ' Clos and Fop-can-Alg ' Top
I F

P+
can -Alg ' Clsn and F

P+
op-can-Alg ' App
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Results about lax algebras

Theorem ([3])

1 The category T̂ -Alg is (co)complete.

2 The forgetful functor T̂ -Alg→ Set has a left and right adjoint.

3 T̂ -Alg is well-(co)powered and has a (co)generator.
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Results about lax algebras

Let T̂1 be a lax extension to V -Rel and T̂2 a lax extension to W -Rel of a monad
(T , µ, η). Every quantale morphism ϕ : V →W compatible with the extensions,
induces a functor

Bϕ : T̂1-Alg→ T̂2-Alg.

Example: For ϕ : 2→ P+, this gives us functors

Ord Top

Met App

Proposition ([3])

If ϕ has a right adjoint ψ that is compatible with the extensions. Then Bψ is right
adjoint to Bϕ.

Example: The quantale morphism ϕ : 2→ P+ has a right adjoint that is
compatible with the extensions. Therefore the above functors have right adjoints.
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Results about lax algebras

Let T̂ be a lax extension to V -Rel of a monad T and let S be a lax extension to
V -Rel of a monad S. Every monad morphism α : T→ S, such that α : T → S
becomes an oplax natural transformation, induces a functor

Aα : S-Alg→ T -Alg

Proposition ([3])

The unit η : I→ (T , η, µ) becomes an oplax natural transformation for all
extensions of I and (T , η, µ) to V -Rel. The induced functor Aη has a left adjoint.

Example: If we apply this to the ultrafilter monad. We find functors that have a
right adjoint.

Ord Top

Met App
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Compact Hausdorff lax algebras

Definition

Let (X , α) be an object in T̂ -Alg.

1 We call (X , α) compact if 1TX ≤ α◦ ◦ α.

2 We call (X , α) Hausdorff if 1X ≥ α ◦ α◦.

Theorem ([3])

If V is lean with k = 1 and T̂ is a flat lax extension to V -Rel of a monad
(T , µ, η), then

1 T̂ -AlgCH ' SetT ;

2 T̂ -AlgCH → T̂ -Alg has a left adjoint.

Example: The Barr extension of the ultrafilter monad satisfies the conditions.
Therefore

CH ' SetU → Top

has a left adjoint. This is the Čech-Stone compactification.
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