Lax algebras and topology

Ruben Van Belle

November 2020

Ruben	Van	Bel	le
-------	-----	-----	----

・ロト ・日下・ ・ ヨト・

Definition

A concrete category $(\mathcal{C}, U : \mathcal{C} \rightarrow \mathbf{Set})$ is called **algebraic** if U is monadic.

Examples:

- Grp, CH are algebraic.
- Top is not algebraic: the monad induced by the adjunction

$$\mathsf{Set} \xleftarrow[U]{D}{\longrightarrow} \mathsf{Top}$$

is the identity monad.

Question: Can we find a weaker notion of monads and algebras, such that **Top** can be expressed as a category of algebras?

イロト イヨト イヨト イヨト

Lax extensions of monads

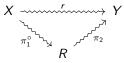
- Barr extension
- ② Canonical extension
- S Extensions to V-Rel

2 Lax algebras

< □ > < □ > < □ > < □ > < □ >

Barr extension

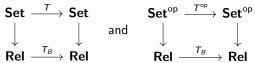
Let (T, μ, η) be a monad in **Set**. We can factorize every relation $r: X \rightsquigarrow Y$ as



Define for every set X and every relation r:

$$T_BX := TX$$
 and $T_B(r) := T\pi_2 \circ (T\pi_1)^\circ$.

This defines a lax functor T_B : **Rel** \rightarrow **Rel** such that the following diagram commute:



イロト イヨト イヨト イヨト

Barr extension

Natural transformations $\eta : 1_{Set} \to T$ and $\mu : TT \to T$, become oplax natural transformations $\eta : 1_{Rel} \to T_B$ and $\mu : T_B T_B \to T_B$, i.e. for all relations $r : X \rightsquigarrow Y$ we have

$$\begin{array}{cccc} X & \xrightarrow{\eta_X} & T_B X & & T_B T_B X & \xrightarrow{\mu_X} & T_B X \\ & & & & & & \\ \downarrow^r & \leq & & \downarrow^{\tau_B r} & \text{and} & & & \downarrow^{\tau_B \tau_B r} \leq & & \downarrow^{\tau_B r} \\ Y & \xrightarrow{\eta_Y} & T_B Y & & & T_B T_B Y & \xrightarrow{\mu_Y} & T_B Y \end{array}$$

Examples:

- Idenity monad: $(1_{Set})_B = 1_{Rel}$
- Powerset monad (P, μ, η) : for a relation $R \subseteq X \times Y$, we find

 $A(P_BR)B \Leftrightarrow \forall a \in A \ \exists b \in B : aRb \text{ and } \forall b \in B \ \exists a \in A : aRb$

• Ultrafilter monad (U, μ, η) : for a relation $R \subseteq X \times Y$, we find

$$u_1(U_BR)u_2 \Leftrightarrow \forall A \in u_1 \ \forall B \in u_2 \ \exists a \in A \ \exists b \in B : aRb$$

イロト 不得 トイヨト イヨト

Flat lax extension of a monad

Definition

A flat lax extension of a monad (\mathcal{T}, μ, η) on Set is a lax functor $\hat{\mathcal{T}} : \text{Rel} \to \text{Rel}$ such that:

۲

commute.

• The natural transformations η and μ , become oplax natural transformations $\eta: 1_{\text{Rel}} \to \hat{T}$ and $\mu: \hat{T}\hat{T} \to \hat{T}$.

Example: Barr extension

Remark: For all the monads in our examples, T_B is in fact a 2-functor.

< □ > < □ > < □ > < □ > < □ >

Lax extension of a monad

Definition

۲

A lax extension of a monad (T, μ, η) on Set is a lax functor \hat{T} : Rel \rightarrow Rel such that:

commute laxly, i.e.

 $\hat{T}X = TX;$ $Tf \leq \hat{T}f$ and $(Tf)^{\circ} \leq \hat{T}f^{\circ}$

• The natural transformations η and μ , become oplax natural transformations $\eta : 1_{\text{Rel}} \to \hat{T}$ and $\mu : \hat{T}\hat{T} \to \hat{T}$.

Remark: Every lax extension induces a dual lax extension via $\check{T}(r) := (\hat{T}(r^{\circ}))^{\circ}$.

Canonical extension

Let (T, μ, η) be a monad in **Set** and suppose that T preserves inverse images. For a subset A of a set X, we can identify TA as a subset of TX. For a relation $R \subseteq X \times Y$ and a subset $A \subseteq X$ define

$$r[A] := \{ y \in Y \mid \exists a \in A : aRy \}$$

We define $p(T_{can}R)q :\Leftrightarrow \forall A \subseteq X : (p \in TA \Rightarrow q \in Tr[A]).$

Proposition ([4])

- If (T, μ, η) is a taut monad, i.e.
 - T preserves inverse images,
 - $\eta_X(x) \in TA \Leftrightarrow x \in A$ and $\mu_X(\chi) \in TA \Leftrightarrow \chi \in TTA$ for all $A \subseteq X$.

Then T_{can} is a lax extensions of (T, μ, η) .

We call this extension the *canonical extension* and its dual extension the *op-canonical extension*.

イロト イヨト イヨト

Canonical extension

Examples: The powerset monad, identity monad and (ultra)filter monad are all taut.

- Identity monad: $(1_{\mathsf{Set}})_{\mathsf{can}} = (1_{\mathsf{Set}})_{\mathsf{op-can}} = (1_{\mathsf{Set}})_B = 1_{\mathsf{Rel}}$
- Powerset monad: for a relation $R \subseteq X \times Y$, we find

$$A(P_{\mathsf{can}}R)B \Leftrightarrow \forall b \in B \exists a \in A : aRb$$

and

$$A(P_{\text{op-can}}R)B \Leftrightarrow \forall a \in A \exists b \in B : aRb.$$

• Filter monad: for a relation $R \subseteq X \times Y$, we find

$$f_1(F_{\mathsf{can}}R)f_2 \Leftrightarrow orall A \in f_1 \ \exists B \in f_2 \ orall b \in B \ \exists a \in A : aRb$$

and

$$f_1(F_{can}R)f_2 \Leftrightarrow \forall B \in f_2 \ \exists A \in f_1 \ \forall a \in A \ \exists b \in B : aRb$$

• Ultrafilter monad: $U_{can} = U_{op-can} = U_B$

Ruben Van Belle

イロト 不得 トイヨト イヨト

V-Rel

- Let V = (L, ⊗, k) be a unital quantale, i.e. a complete lattice L with binary suprema preserving operation ⊗ and neutral element k. Examples: 2 = ({0,1}, ∧, 1) and P₊ = ([0, ∞]^{op}, +, 0)
- The 2-category V-Rel:
 - Objects: Sets
 - ▶ Morphisms: $X \rightsquigarrow Y$ is a map $X \times Y \rightarrow V$ (a V-relation). Composition of $r_1 : X \rightsquigarrow Y$ with $r_2 : Y \rightsquigarrow Z$ is given by

$$r_2 \circ r_1(x,y) := \bigvee_{y \in Y} r_1(x,y) \otimes r_2(y,z).$$

- ▶ 2-morphisms: The order on V, induces an order on V-relations.
- We consider **Set** as a subcategory of *V*-**Rel**.
- For a *V*-relation $r: X \rightsquigarrow Y$, we denote r° for the opposite *V*-relation $Y \rightsquigarrow X$.

イロト イヨト イヨト

Lax extension of a monad to V-Rel

Definition

۲

A lax extension to V-Rel of a monad (T, μ, η) on Set is a lax functor $\hat{T} : V$ -Rel \rightarrow V-Rel such that:

commute laxly, i.e.

$$\hat{T}X = TX;$$
 $Tf \leq \hat{T}f$ and $(Tf)^{\circ} \leq \hat{T}f^{\circ}$

• The natural transformations η and μ , become oplax natural transformations $\eta: 1_{V-\text{Rel}} \to \hat{T}$ and $\mu: \hat{T}\hat{T} \to \hat{T}$.

Remark: Every lax extension induces a dual lax extension via $\check{T}(r) := (\hat{T}(r^{\circ}))^{\circ}$.

< □ > < □ > < □ > < □ > < □ >

Extension to V-Rel

A V-relation $r: X \rightsquigarrow Y$ induces collection of relations

$$(xr_vy:\Leftrightarrow v\leq r(x,y))_{v\in V}$$

For a lax extension \hat{T} : **Rel** \rightarrow **Rel** of a monad (T, μ, η) , we can define

$$\hat{T}^V r(p,q) := \bigvee \{ v \in V \mid p(\hat{T}r_v)q \}$$

Proposition ([2])

Let \hat{T} : **Rel** \rightarrow **Rel** be a lax extension of a monad (T, μ, η) . If V is completely distributive and k = 1, then \hat{T}^{V} : V-**Rel** \rightarrow V-**Rel** is a lax extension to V-**Rel** of the monad (T, μ, η) .

Remark: The extension \hat{T}^2 is equal to \hat{T} .

イロト 不得 トイヨト イヨト

Examples: Note that $P_+ = ([0, \infty]^{op}, +, 0)$ is completely distributive and 0 is the top element of the lattice $[0, \infty]^{op}$.

- Identity monad: $1_{\text{Rel}}^V = 1_{V-\text{Rel}}$.
- Powerset monad: for a P_+ -relation $d : X \rightsquigarrow Y$, we find

$$\mathcal{P}^{\mathcal{P}_+}_B d(A,B) = \inf\{\epsilon \geq 0 \mid A \subseteq B^\epsilon ext{ and } B \subseteq A^\epsilon\},$$

where $B^{\epsilon} = \{x \in X \mid \exists b \in B : d(x, b) \le \epsilon\}$. This is the Hausdorff distance.

• Ultrafilter monad: for a P_+ -relation $d : X \rightsquigarrow Y$, we find

$$U_B^{P_+}(u_1, u_2) = \sup_{A \in u_1, B \in u_2} \inf_{a \in A, b \in B} d(a, b).$$

イロト 不得 トイヨト イヨト

Lax extensions of monads

- Barr extension
- ② Canonical extension
- S Extensions to V-Rel

2 Lax algebras

イロト イヨト イヨト イヨト

Lax algebras

Let (T, μ, η) be a monad in **Set** and let V be a unital quantale. Let $\hat{T} : V$ -**Rel** $\rightarrow V$ -**Rel** be a lax extension to V-**Rel**.

- The category of lax algebras \hat{T} -Alg:
 - Objects: (X, α) , where X is a set and $\alpha : \hat{T}X \rightsquigarrow X$ is a V-relation such that:

$$\begin{array}{cccc} X \xrightarrow{\eta_X} \hat{T}X & TTX \xrightarrow{\hat{T}\alpha} TX \\ \searrow & \leq \\ 1_X & \downarrow^{\alpha} \\ X & TX \xrightarrow{\chi} & \chi \end{array} \xrightarrow{\chi} X \end{array}$$

• Morphisms: A morphism $f : (X, \alpha) \to (Y, \beta)$ is a map $f : X \to Y$ such that

$$\begin{array}{cccc} TX & \stackrel{Tf}{\longrightarrow} & TY \\ & & \downarrow^{\alpha} & \leq & \downarrow^{\beta} \\ X & \stackrel{f}{\longrightarrow} & Y \end{array}$$

• If \hat{T} is flat, then **Set**^T is a full subcategory of \hat{T} -**Alg**.

Ruben Van Belle

< □ > < 同 > < 글 > < 글)

Lax algebras

Examples:

- Identity monad:
 - ► $1_{\text{Rel}}\text{-}\text{Alg} \simeq \text{Ord}$
 - ▶ $1_{P_+\text{-}\text{Rel}}\text{-}\text{Alg} \simeq \text{Met}$: for a $P_+\text{-}\text{relation} d : X \rightsquigarrow X$, we find

$$1_X \ge d \Leftrightarrow d(x,x) = 0 \quad \forall x \in X$$

and

$$d \leq d \circ d \Leftrightarrow d(x, y) \leq \inf_{y} \{ d(x, y) + d(y, z) \} \quad \forall x, z \in X$$

- Powerset monad:
 - ▶ P_{can} -Alg \simeq Clos: For a closure space ($X, c : PX \rightarrow PX$), define the relation

$$ARx : \Leftrightarrow x \in c(A).$$

For an object (X, R) in P_+ -Alg, define $c : PX \to PX$ by

$$c(A) := \{x \in X \mid ARx\}.$$

► $P_{\text{op-can}}$ -Alg \simeq Ord: ARx : $\Leftrightarrow \forall a \in A : a \leq x \text{ and } x \leq y : \Leftrightarrow \{x\}Ry$.

イロト イポト イヨト イヨト

Lax algebras

- Powerset monad:
 - ▶ $P_{can}^{P_+}$ -Alg \simeq Clsn: $(X, c : PX \times X \rightarrow [0, \infty])$ metric counterpart of closure space.
 - $\blacktriangleright P_{\text{op-can}}^{P_+} \text{Alg} \simeq \text{Met}: \ \overline{d}(A, x) := \inf_{a \in A} d(a, x) \text{ and } d(x, y) := \overline{d}(\{x\}, y).$
- Ultrafilter monad:
 - U_B -Alg \simeq Top: For a topological space X, define the relation $UX \rightsquigarrow X$

 $uRx \Leftrightarrow u \to x$

Then (X, R) is an object in U_B -Alg. For an object (X, R) in U_B -Alg, define a map $c : PX \to PX$ by

 $c(A) := \{x \in X \mid \exists u \in UX : A \in u \text{ and } uRx\}$

Then c is a topological closure operator.

- U^{P+}_B-Alg ≃ App: (X, c : PX × X → [0, ∞]) metric counterpart of topological space/topological closure space.
- Filter monad:
 - ► F_{can} -Alg \simeq Clos and F_{op-can} -Alg \simeq Top ► $F_{can}^{P_+}$ -Alg \simeq Clsn and $F_{op-can}^{P_+}$ -Alg \simeq App

イロン イロン イヨン イヨン

Theorem ([3])

- The category \hat{T} -Alg is (co)complete.
- **②** The forgetful functor \hat{T} -Alg \rightarrow Set has a left and right adjoint.
- \hat{T} -Alg is well-(co)powered and has a (co)generator.

・ロト ・日下・ ・ ヨト・

Results about lax algebras

Let \hat{T}_1 be a lax extension to V-**Rel** and \hat{T}_2 a lax extension to W-**Rel** of a monad (T, μ, η) . Every quantale morphism $\varphi : V \to W$ compatible with the extensions, induces a functor

$$B_arphi: \hat{\mathcal{T}}_1 extsf{-}\mathsf{Alg} o \hat{\mathcal{T}}_2 extsf{-}\mathsf{Alg}$$

Example: For $\varphi : 2 \rightarrow P_+$, this gives us functors

Proposition ([3])

If φ has a right adjoint ψ that is compatible with the extensions. Then B_{ψ} is right adjoint to B_{φ} .

Example: The quantale morphism $\varphi : 2 \rightarrow P_+$ has a right adjoint that is compatible with the extensions. Therefore the above functors have right adjoints.

イロト イヨト イヨト イ

Results about lax algebras

Let \hat{T} be a lax extension to *V*-**Rel** of a monad \mathbb{T} and let *S* be a lax extension to *V*-**Rel** of a monad \mathbb{S} . Every monad morphism $\alpha : \mathbb{T} \to \mathbb{S}$, such that $\alpha : T \to S$ becomes an oplax natural transformation, induces a functor

$$A_{\alpha}: S\text{-}\mathsf{Alg} o T\text{-}\mathsf{Alg}$$

Proposition ([3])

The unit $\eta : \mathbf{I} \to (\mathcal{T}, \eta, \mu)$ becomes an oplax natural transformation for all extensions of \mathbf{I} and (\mathcal{T}, η, μ) to V-**Rel**. The induced functor A_{η} has a left adjoint.

Example: If we apply this to the ultrafilter monad. We find functors that have a right adjoint.

イロト イヨト イヨト イヨト

Compact Hausdorff lax algebras

Definition

Let (X, α) be an object in \hat{T} -Alg.

- We call (X, α) compact if $1_{TX} \leq \alpha^{\circ} \circ \alpha$.
- **2** We call (X, α) Hausdorff if $1_X \ge \alpha \circ \alpha^\circ$.

Theorem ([3])

If V is *lean* with k = 1 and \hat{T} is a flat lax extension to V-**Rel** of a monad (T, μ, η) , then **1** \hat{T} -Alg_{CH} \simeq Set^T; **2** \hat{T} -Alg_{CH} $\rightarrow \hat{T}$ -Alg has a left adjoint.

Example: The Barr extension of the ultrafilter monad satisfies the conditions. Therefore

$$\mathsf{CH}\simeq\mathsf{Set}^U o\mathsf{Top}$$

has a left adjoint. This is the Čech-Stone compactification.

Ruben Van Belle

Michael Barr, *Relational algebras*, Reports of the Midwest Category Seminar, IV, Lecture Notes in Mathematics, Vol. 137. Springer, Berlin, 1970, pp. 39–55.

- Maria Manuel Clementino and Dirk Hofmann, *On extensions of lax monads*, Theory Appl. Categ. **13** (2004), No. 3, 41–60.
- Dirk Hofmann, Gavin J. Seal, and Walter Tholen, Monoidal topology: A categorical approach to order, metric, and topology, Encyclopedia of Mathematics and its Applications, Cambridge University Press, 2014.

Gavin J. Seal, *Canonical and op-canonical lax algebras*, Theory Appl. Categ. **14** (2005), No. 10, 221–243.