Feedback loops without coproducts

- Haghverdi E. (2000) "Unique decomposition categories, Geometry of Interaction and combinatory logic" Math. Struct. in Comp. Science.
- Hoshino N. (2012) "A representation theorem for unique decomposition categories" Electronic Notes in Theoretical Computer Science.

Motivation

Consider a category of "processes". In it, every morphism $\int |f| dx dx = 1$ has a matrix decomposition.

$$1 = \begin{pmatrix} 1_{CA} & 1_{CB} \\ 1_{DA} & 1_{DB} \end{pmatrix}$$

$$\frac{A}{A} \qquad 1_{DB} \qquad \frac{A}{A} \qquad 1_{DB} \qquad A_{CA} (x)$$

In this situation, it is reasonable to add feedback loops to morphisms:

Under certain conditions, this operation on morphisms is called a categorical trace.

- Let's look into concrete examples:

Substant sets and substochastic maps Plnj sets and partial injections

- Essentially, a Unique Decomposition Category (UDC) is a symmetric monoidal category such that it has
 - 1. a (unique) matrix decomposition of morphisms,
 - 2. a (partial) addition on morphisms, such that composition distributes over it,
 - 3. some mild conditions on the symmetric monoidal structure.

Proposition: In a UDC, if the execution formula is always defined, it is a categorical trace.

Naturality on X

Dinaturality

Naturality on Y

Vanishing II

Vanishing I

Yanking

Superposing

Defining partial addition abstractly (through enrichment)

Definition 3.1 A Σ -monoid is a non-empty set X with a partial map Σ : $X^* \rightharpoonup X$ subject to the following axioms:

- If I is a singleton $\{n\}$, then $\Sigma\{x_i\}_{i\in I} \simeq x_n$.
- If $\{I_j\}_{j\in J}$ is a countable partition of a countable subset $I\subset \mathbb{N}$, then for every countable family $\{x_i\}_{i\in I}$ on X, we have $\Sigma\{x_i\}_{i\in I}\simeq \Sigma\{\Sigma\{x_i\}_{i\in I_j}\}_{j\in J}$.
- Every **হ**-monoid has a zero element. *(*7 = *∑* ⊭
- We say that a family $\{4_i\}_{\underline{I}}$ is summable iff $\sum_{i \in \underline{I}} \{4_i\}$ is defined.

 In $P \subseteq \mathbb{N}_{\underline{I}}$, a family is summable iff all domains and codomains are disjoint.
 - In $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}$

Defining partial addition abstractly (through enrichment)

We define a category \mathbf{M} of Σ -monoids: objects are Σ -monoids, and a morphism $f: X \to Y$ is a map $f: X \to Y$ such that for each summable countable family $\{x_i\}_{i\in I}$ on X, the summation $\sum_{i\in I} fx_i$ is defined to be $f(\sum_{i\in I} x_i)$.

- Any UDC \mathcal{C} is, by definition, an M-enriched category. This means that hom-sets $\mathcal{C}(A,B)$ are objects in M with composition $\mathcal{C}(B,C) \otimes \mathcal{C}(A,B) \longrightarrow \mathcal{C}(A,C)$ and $f \circ (f \circ h) = f \circ h$ identities $f \circ h \circ h = f \circ h$ given by morphisms in M.

- We need a symmetric monoidal structure on M so that the above morphisms may be defined.

$$T = \{-\} = \{0\}$$
 $f(-) = i\lambda = 0$
 $T = \{0, -\}$

Defining partial addition abstractly (through enrichment)

We define a category \mathbf{M} of Σ -monoids: objects are Σ -monoids, and a morphism $f: X \to Y$ is a map $f: X \to Y$ such that for each summable countable family $\{x_i\}_{i\in I}$ on X, the summation $\sum_{i\in I} fx_i$ is defined to be $f(\sum_{i\in I} x_i)$.

Definition 4.1 A unique decomposition category is a symmetric monoidal M-category such that for all $i \in I$, there are morphisms called quasi projections $\rho_i : \bigotimes_{i \in I} X_i \to X_i$ and quasi injections $\iota_i : X_i \to \bigotimes_{i \in I} X_i$ subject to the following axioms:

$$\rho_i \circ \iota_j = \begin{cases} \operatorname{id}_{X_i} & (i = j) \\ 0_{X_j, X_i} & (\text{otherwise}), \end{cases} \sum_{i \in I} \iota_i \circ \rho_i \simeq \operatorname{id}_{\bigotimes_{i \in I} X_i}.$$

- Matricial representation is defined to be

- Define each component of $1: \bigotimes_{i \in I} X_i \longrightarrow \bigotimes_{j \in J} Y_j$ as $1: F_j \neq C_i$.

Proposition: If the execution formula is defined for all morphisms, then the category is traced.

$$T_{\mathbf{f}}(9) = 9_{\gamma_{\mathbf{f}}} + \sum_{k=2}^{\infty} 9_{\gamma_{\mathbf{f}}} (9_{\gamma_{\mathbf{f}}}) = 9_{\gamma_{\mathbf{f}}} + \sum_{k=2}^{\infty} 9_{\gamma_{\mathbf{$$

Naturality on X

Dinaturality

Naturality on Y

Vanishing II

Vanishing I

Yanking

Superposing

Definition 4.2 A strong unique decomposition category C is a symmetric monoidal M-category C such that

- The identity on the unit I is equal to $0_{I,I}$.
- $id_X \otimes 0_{Y,Y} + 0_{X,X} \otimes id_Y$ is defined to be $id_{X \otimes Y}$.

$$\begin{array}{l} \rho_{X,Y} := X \otimes Y \xrightarrow{\operatorname{id}_X \otimes 0_{Y,\mathbf{I}}} X \otimes \mathbf{I} \xrightarrow{\cong} X \\ \iota_{X,Y} := X \xrightarrow{\cong} X \otimes \mathbf{I} \xrightarrow{\operatorname{id}_X \otimes 0_{\mathbf{I},Y}} X \otimes Y \end{array}$$

$$199 = \begin{pmatrix} 199 \\ 99 \end{pmatrix}$$

Proposition: If the execution formula is defined for all morphisms, then the category is traced.

$$T_{r}(g) = g_{rx} + \sum_{n=0}^{\infty} g_{yu}(g_{uu})^{r}g_{ux}$$

Related work

- Manes and Arbib (1986) defined partially additive categories (PAC). Essentially, these are UDCs with:
 - countable coproducts and
 Σ-monoids satisfying the limit axiom.
 - Proposition: the execution formula is always defined in PACs.

- Hoshino (2012) proves that every strong UDC is partially traced.