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AN ADVENTURE IN APPLIED CATEGORY THEORY
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GRAPH TRAVERSALS?

A graph traversal is a way of visiting the vertices in a graph in a way that respects
graph structure.

•

• •

• • • •

Every graph search or pathfinding algorithm implements some form of
traversal. It is also used in, e.g., proof search in logic and logic programming,
where the choice of traversal is often crucial to the success of the algorithm.
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GRAPHS

Finite directed graphs: (G,→).

• • •

• •

• •

A path in a graph is a finite sequence of vertices v1, v2, . . . , vn such that
vi → vi+1 for all natural 1 ≤ i < n. Write v1 ⇝ vn for (the existence of ) a
path from v1 to vn.

The neighbourhood of a vertex u in G is N(u) = {v ∈ G | u → v}.
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GRAPH HOMOMORPHISMS

• • • •

⇒ • •

• • • •

A graph homomorphism G
h−→ H is a function G → H satisfying u → v implies

h(u) → h(v) for all u, v ∈ G.
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TRAVERSALS

• • •

• •

• •

A traversal is a linear order of vertices < satisfying that for all v ∈ G, v is least
or there exists u ∈ G such that u → v and u < v.

In other words, a traversal is a vertex order that respects the graph structure.
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DEPTH­FIRST TRAVERSAL

Given a linear order on the vertices of a graph, we can perform the depth­first
traversal starting from a vertex v as follows:

1. Initialise an empty list A for visited vertices.

2. Add v to A.
3. Repeat:

3.1 Compute v0 = min(N(v) \A).
3.1.1 If no unvisited neighbour is found, backtrack and go back to 3.
3.1.2 If no backtracking is possible, terminate and return A.

3.2 Add v0 to the end of A.
3.3 Move to v0.
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DEPTH­FIRST TRAVERSAL: EXAMPLE

• • •
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CATEGORIFYING TRAVERSALS

A motivation for studying depth­first traversals categorically came from the
following observations:

1. Any (ordered) graph (with a distinguished vertex) has a depth­first
traversal.

2. Doing the depth­first traversal algorithm twice is the same as doing it once.

What does that have to do with category theory? Well...

1. G → T (G).

2. T (T (G)) → T (G).
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THAT LOOKS LIKE AN IDEMPOTENT MONAD!

There’s just one tiny problem…

It doesn’t work.

Any reasonable notion of graph homomorphism of vertex­ordered graphs must
be monotone on vertices. But the homomorphism G → T (G) needn’t be:

1 1

2 4 3 2 3 4

But even if it did, it doesn’t answer the question of whether this arises from any
interesting adjunction.
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IF AT FIRST YOU DON’T SUCCEED…

Insight: Ordering edges, specifically edges with the same source, gives better
results.

Instead of requiring that vertices be linearly ordered, require that all edges with
the same source are linearly ordered:

v1

u

v2

◁

We call this an edge­ordered graph. The natural notion of graph homomorphism
is one that preserves this local order: u → v1 ◁ u → v2 implies
h(u) → h(v1) ◁ h(u) → h(v2).
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THE LEXICOGRAPHIC PATH ORDER

In an edge­ordered graph, define an order ≺ on paths as follows:

• if σ is a prefix of π then σ ≺ π,

• otherwise, consider the first vertex at which they differ: if

• •

• •

• •

σ

π

◁

then σ ≺ π (otherwise π ≺ σ). It can be shown that this defines a linear
order on paths∗ with the same source.
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THE LEXICOGRAPHIC PATH ORDER

In an edge­ordered graph with distinguished vertex v0, this allows us to linearly
order vertices by u <D v iff min(v0 ⇝ u) ≺ min(v0 ⇝ v).

u

v0

v

min

min

<D≺

Theorem: · <D · is precisely the depth­first traversal of G.

To recap, we can obtain the depth­first traversal of G by lexicographically
ordering paths out of v0, and then comparing vertices u and v by comparing
the lexicographically least paths v0 ⇝ u and v0 ⇝ v.

If only there was some sort of way of constructing a graph where edges
correspond to the existence of paths in another graph...
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THE TRANSITIVE CLOSURE

There is: the transitive closure! It even has a universal construction via an
adjunction.

Graph TGraph⊣

13



THE TRANSITIVE CLOSURE

There is: the transitive closure! It even has a universal construction via an
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LEX­GRAPHS

Remember this problem?

1 1

2 4 3 2 3 4
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LEX­GRAPHS

It’s actually still a problem.

• •

• • • • • •

1
3

2 1
2

3

But now we can fix it!

A lex­graph is an edge­ordered graph with a distinguished vertex satisfying that
the edge­order is compatible with the lexicographic order on lexicographically
least paths: u → v1 ◁ u → v2 iff min(u⇝ v1) ≺ min(u⇝ v2).

Note that this precludes the graph on the left!
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THE LEXICOGRAPHIC­TRANSITIVE CLOSURE

In T (G): In G:

u v u v

v1 v1

u u

v2 v2

nontrivial

min

min

◁ ≺
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THE LEXICOGRAPHIC­TRANSITIVE CLOSURE

Graph TGraph

LexGraph TLexGraph
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COMPLETING THE PICTURE

But what if we actually want the depth­first traversal of an arbitrary
edge­ordered graph?

•

• • •

1
3

2

Observation: For the purposes of depth­first traversal, we can safely remove all
edges that do not lie on a lexicographically least path.

This turns out to yield the cofree (finite, edge­ordered, pointed) arborescence of a
(finite, edge­ordered, pointed) graph, which are always lex­graphs.
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COMPLETING THE PICTURE

•

• • •

• •

• • • • • •

1
3

2

1 2

2
31
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CONCLUDING REMARKS

• Other interesting features:
• There is a functor TLexGraph → Loset recovering the depth­first traversal as

the usual vertex order.
• All of this works for the breadth­first traversal as well! You just∗ need to use a

different path order (the short­lex order).

• Open questions:
• Can useful algorithms actually be extracted from a characterisation such as

this?
• What other algorithms (graph or otherwise) can be formalised in this way?

• Preprint available! Email me: robin.kaarsgaard@ed.ac.uk.
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