Probability monads as codensity monads

Ruben Van Belle

August 2021

• • • • • • • • • • • •

What is a probability distribution?

• A probability distribution on a **finite set** A:

$$p:A
ightarrow [0,1]$$
 such that $\sum_{a\in A}p(a)=1.$

Example: a fair coin.

イロト イヨト イヨト イヨト

What is a probability distribution?

• A probability distribution on a finite set A:

$$p:A
ightarrow [0,1]$$
 such that $\sum_{a\in A}p(a)=1.$

Example: a fair coin.

• A probability distribution on a **countable set** A:

$$p:A
ightarrow [0,1]$$
 such that $\sum_{a\in A}p(a)=1.$

Example: the Poisson distribution.

< □ > < 同 > < 回 > < 回 >

What is a probability distribution?

• A probability distribution on a **finite set** A:

$$ho: A
ightarrow [0,1]$$
 such that $\sum_{a \in A} p(a) = 1.$

Example: a fair coin.

• A probability distribution on a **countable set** A:

$$p:A
ightarrow [0,1]$$
 such that $\displaystyle{\sum_{a\in A}p(a)=1}.$

Example: the Poisson distribution.

- Probability distributions on other sets such as \mathbb{R} or $\mathcal{C}([0,\infty),\mathbb{R})$.
 - \rightarrow We need to use measure theory.

Idea: Using category theory we will construct probability measures as an extension of probability measures on finite or countable spaces.

< □ > < 同 > < 回 > < 回 >

Codensity monads

A monad on a category C is given by:

- an endofunctor $T: C \rightarrow C$,
- a natural transformation $\eta: 1_{\mathcal{C}} \to \mathcal{T}$ (the **unit**),
- a natural transformation $\mu : TT \rightarrow T$ (the **multiplication**)

such that the following diagrams commute:

イロト イヨト イヨト イヨト

Suppose we have a functor $R: D \to C$ that has a left adjoint. The adjunction $C \xleftarrow[]{R} D$ induces a monad on C:

- Endofunctor: RL,
- Unit: $\eta : 1_C \rightarrow RL$,
- Multiplication: $R\epsilon_L : RLRL \rightarrow RL$.

Suppose we have a functor $G : D \to C$ such that the right Kan extension along itself exists. Then G induces a monad (the **codensity monad of** G):

• Endofunctor: $T^G := \operatorname{Ran}_G G$

• Unit:

• Multiplication:

イロト イヨト イヨト イヨト

Examples:

- Let $C \xrightarrow[R]{L} D$ be adjoint functors. The codensity monad of R is the monad induced by the adjunction.
- The codensity monad of the inclusion functor $\mathbf{Set}_f \to \mathbf{Set}$ is the ultrafilter monad.

イロト イヨト イヨト イヨト

Let X be a measurable space.

Define

 $\mathcal{G}X := \{\mathbb{P} \mid \mathbb{P} \text{ is a probability measure on } X\}$ $\Sigma_{\mathcal{G}X} := \sigma(\text{ev}_A \mid A \text{ is a measurable subset of } X).$ Here $\text{ev}_A : \mathcal{G}X \to [0, 1]$ is defined by $\mathbb{P} \mapsto \mathbb{P}(A)$. Let $f : X \to Y$ be a measurable map. There is a measurable map $\mathcal{G}f : \mathcal{G}X \to \mathcal{G}Y$ defined by

 $\mathbb{P} \mapsto \mathbb{P} \circ f^{-1}.$

 \rightarrow We obtain a functor \mathcal{G} : **Mble** \rightarrow **Mble**.

• There is a measurable map $\eta_X : X \to \mathcal{G}X$ defined by

$$x \mapsto \delta_x$$
.

- \rightarrow This induces a natural transformation $\eta: 1_{\text{Mble}} \rightarrow \mathcal{G}.$
- There is a measurable map $\mu_X : \mathcal{GGX} \to \mathcal{GX}$ defined by

$$\mu_X(\mathbf{P})(A) := \int_{\mathcal{G}X} \lambda(A) \mathbf{P}(\mathsf{d}\lambda)$$

for all $\mathbf{P} \in \mathcal{GGX}$ and measurable subsets A of X. \rightarrow This induces a natural transformation $\mu : \mathcal{GG} \rightarrow \mathcal{G}$.

Proposition (Giry)

The triple (\mathcal{G}, η, μ) is a monad (the **Giry monad)**.

Let A be a countable set. The measurable subspace

$$\{(p_a)_a \in [0,1]^A \mid \sum_{a \in A} p_a = 1\} \subseteq [0,1]^A$$

is denoted by GA.

Every map of countable sets $f : A \rightarrow B$ induces a measurable map $Gf : GA \rightarrow GB$ defined by

$$(p_a)_a \mapsto \left(\sum_{a \in f^{-1}(b)} p_a\right)_b.$$

This gives us a functor $G : \mathbf{Set}_c \to \mathbf{Mble}$.

< □ > < 同 > < 回 > < 回 >

The codensity monad of G is the Giry monad.

Proof.

We will show that

$$\mathcal{G}X \cong (\operatorname{Ran}_G G)(X) \cong \lim(X \downarrow G \xrightarrow{U} \operatorname{Set}_c \xrightarrow{G} \operatorname{Mble}).$$

For a measurable map $f: X \to GA$ define $p_f: \mathcal{G}X \to GA$ by

$$\mathbb{P}\mapsto \left(\int_X f_a \mathsf{d}\mathbb{P}\right)_a.$$

Then $(\mathcal{G}X, (p_f)_f)$ forms a cone over the diagram.

The codensity monad of G is the Giry monad.

Proof.

Suppose we have another cone $(Y, (q_f)_f)$ over the diagram.

- For $f \in \mathbf{Mble}(X, [0, 1])$ define $\hat{f} : X \to G\mathbf{2}$ by $\hat{f}(x) := (1 f(x), f(x))$.
- For $y \in Y$ define $I_y : \mathbf{Mble}(X, [0, 1]) \to [0, 1]$ by

$$f\mapsto q_{\hat{f}}(y)_1$$

イロト イヨト イヨト イヨト

The codensity monad of G is the Giry monad.

Proof.

Let a countable collection $(f_a)_{a \in A}$ such that $f := \sum_{a \in A} f_a \leq 1$. Claim: $I_y(f) = \sum_{a \in A} I_y(f_a)$ Define the following:

- $B := A \cup \{*\}$
- Let $s: B \to \mathbf{2}$ be the map such that s(b) = 0 if and only if b = *.
- For $a \in A$ let $s_a : B \to \mathbf{2}$ be the map such that s(b) = 1 if and only if b = a.
- Let $h: X \to GB$ be the map such that $h(x)_a = f_a(x)$ for all $a \in A$ and $h(x)_* = 1 f(x)$.

The codensity monad of G is the Giry monad.

Proof.

We have commutative diagrams:

For every a in A we have the commutative diagrams:

The codensity monad of G is the Giry monad.

Proof.

We find that

$$I_y(f) = q_{\hat{f}}(y)_1 = (Gs \circ q_h(y))_1 = \sum_{a \in A} q_h(y)_a$$

and

$$I_{y}(f_{a}) = q_{\hat{f}_{a}}(y)_{1} = (Gs_{a} \circ q_{h}(y))_{1} = q_{h}(y)_{a}.$$

Therefore it follows that $I_y(f) = \sum_{a \in A} I_y(f_a)$.

The codensity monad of G is the Giry monad.

Proof.

The map I_{y} has the following properties:

• For a countable collection $(f_a)_a$ such that $f := \sum_{a \in A} f_a \leq 1$ we have that

$$I_y(f) = \sum_{a \in A} I_y(f_a).$$

• We have that $I_y(1) = 1$.

This implies that there exists a unique probability measure \mathbb{P}_y on X such that $l_y(f) = \int_X f d\mathbb{P}_y$ for all $f \in \mathbf{Mble}(X, [0, 1])$. The assignment $y \mapsto \mathbb{P}_y$ defines a measurable map $q : Y \to \mathcal{G}X$. This is morphism of cones and every other morphism of cones has to be equal q.

- Let *i* : Set_f → Set_c be the inclusion functor. The codensity monad of Gi is a probability monad of finitely additive probability measures.
- Integration operators vs. probability measures:

 \rightarrow In the proof we can see that $\operatorname{Ran}_G G(X)$ is the space of all integration operators on X, which we then identified with probability measures. \rightarrow Let $j : \operatorname{Set}_c \rightarrow \operatorname{Mble}$ be the functor that sends a countable set A to the measurable space $(A, \mathcal{P}(A))$. Then $\operatorname{Ran}_j G(X)$ would be a more direct construction of the space of probability measures on X.

• The Giry monad is the codensity monad of the inclusion of the category of convex sets in **Mble** (Avery).

Radon monad

Let X be a compact Hausdorff space. A Borel probability measure \mathbb{P} on X is called a Radon probability measure if for every Borel measurable subset A we have that $\mathbb{P}(A) = \sup{\mathbb{P}(K) \mid K \subseteq A \text{ and } K \text{ is compact}}.$

Radon monad

Let X be a compact Hausdorff space. A Borel probability measure \mathbb{P} on X is called a Radon probability measure if for every Borel measurable subset A we have that $\mathbb{P}(A) = \sup{\mathbb{P}(K) | K \subseteq A \text{ and } K \text{ is compact}}.$

Define

 $\mathcal{R}X := \{\mathbb{P} \mid \mathbb{P} \text{ is a Radon probability measure on } X\}$ $\mathcal{T}_{\mathcal{R}X} := \tau(\mathsf{ev}_f \mid f \in \mathbf{CH}(X, [0, 1]))$ Here $\mathsf{ev}_f : \mathcal{R}X \to [0, 1]$ is defined by $\mathbb{P} \mapsto \int_X f \, \mathrm{d}\mathbb{P}$.

This defines a functor $\mathcal{R} : \mathbf{CH} \to \mathbf{CH}$.

Radon monad

Let X be a compact Hausdorff space. A Borel probability measure \mathbb{P} on X is called a Radon probability measure if for every Borel measurable subset A we have that $\mathbb{P}(A) = \sup{\mathbb{P}(K) | K \subseteq A \text{ and } K \text{ is compact}}.$

Define

 $\mathcal{R}X := \{\mathbb{P} \mid \mathbb{P} \text{ is a Radon probability measure on } X\}$

 $\mathcal{T}_{\mathcal{R}X} := \tau(\mathsf{ev}_f \mid f \in \mathbf{CH}(X, [0, 1]))$

Here $\operatorname{ev}_f : \mathcal{R}X \to [0, 1]$ is defined by $\mathbb{P} \mapsto \int_X f d\mathbb{P}$. This defines a functor $\mathcal{R} : \mathbf{CH} \to \mathbf{CH}$. Remarks:

 \rightarrow It can be shown that $\mathcal{R}X$ is a compact Hausdorff space.

 \rightarrow The pushforward of a Radon probability measure along a continuous function is again a Radon probabiliy measure.

 \rightarrow Note that $\mathcal{T}_{\mathcal{R}X}$ is the topology of weak convergence of probability measures.

イロン イロン イヨン イヨン

- The assignment $x \mapsto \delta_x$ defines a natural transformation $\eta : 1_{CH} \to \mathcal{R}$.
- For $\mathbf{P} \in \mathcal{RRX}$ we have that

$$\mu_X(\mathbf{P}) := \int_{\mathcal{R}X} \lambda(\cdot) \mathbf{P}(\mathsf{d}\lambda)$$

is a Radon probability measure on X. The assignment $\mathbf{P} \mapsto \mu_X(\mathbf{P})$ defines a natural transformation $\mu : \mathcal{RR} \to \mathcal{R}$.

- The assignment $x \mapsto \delta_x$ defines a natural transformation $\eta : 1_{CH} \to \mathcal{R}$.
- For $\mathbf{P} \in \mathcal{RRX}$ we have that

$$\mu_X(\mathbf{P}) := \int_{\mathcal{R}X} \lambda(\cdot) \mathbf{P}(\mathsf{d}\lambda)$$

is a Radon probability measure on X. The assignment $\mathbf{P} \mapsto \mu_X(\mathbf{P})$ defines a natural transformation $\mu : \mathcal{RR} \to \mathcal{R}$.

Proposition (Swirszcz)

The triple (\mathcal{R}, η, μ) is a monad (the **Radon monad)**.

Radon monad as codensity monad

Let A be a finite set. The (compact) subspace

$$\{(p_a)_a\in [0,1]^A\mid \sum_{a\in A}p_a=1\}\subseteq [0,1]^A$$

is denoted by GA. This gives us a functor $G : \mathbf{Set}_f \to \mathbf{CH}$.

イロト イヨト イヨト イヨト

Radon monad as codensity monad

Let A be a finite set. The (compact) subspace

$$\{(p_{a})_{a}\in [0,1]^{\mathcal{A}}\mid \sum_{a\in\mathcal{A}}p_{a}=1\}\subseteq [0,1]^{\mathcal{A}}$$

is denoted by GA. This gives us a functor $G : \mathbf{Set}_f \to \mathbf{CH}$.

Theorem

The codensity monad of G is the Radon monad.

Proof.

Let X be a compact Hausdorff space.

$$T^{G}(X) \cong \{I : \mathbf{CH}(X, [0, 1]) \to [0, 1] \mid I(f + g) = I(f) + I(g) \text{ and } I(1) = 1\}$$
$$\cong \{I : \mathbf{CH}(X, \mathbb{R}) \to \mathbb{R} \mid I \text{ is positive and linear and } I(1) = 1\}$$
$$\cong \mathcal{R}X$$

In the last step we used the Riesz-Markov representation theorem.

Ruben Van Belle

Probability monads as codensity monads

bounded Lipschitz monad

Let X be a compact metric space.

Define

 $TX := \{ \mathbb{P} \mid \mathbb{P} \text{ is a Radon probability measure on } X \}$

$$d_{bl}(\mathbb{P},\mathbb{Q}) := \sup\left\{ \left| \int_X f \mathrm{d}\mathbb{P} - \int_X f \mathrm{d}\mathbb{Q} \right| \mid f:X o [0,1] ext{ is a 1-Lipschitz function}
ight\}$$

This is a metric on TX (the **bounded Lipschitz metric**). The metric space TX is compact.

We have a functor T: **CompMet** \rightarrow **CompMet**. (Where **CompMet** is the category of compact metric spaces and 1-Lipschitz functions.)

bounded Lipschitz monad

Let X be a compact metric space.

Define

 $TX := \{ \mathbb{P} \mid \mathbb{P} \text{ is a Radon probability measure on } X \}$

$$d_{bl}(\mathbb{P},\mathbb{Q}):=\sup\left\{\left|\int_X f\mathrm{d}\mathbb{P}-\int_X f\mathrm{d}\mathbb{Q}
ight|\mid f:X
ightarrow [0,1] ext{ is a 1-Lipschitz function}
ight\}$$

This is a metric on TX (the **bounded Lipschitz metric**). The metric space TX is compact.

We have a functor T: **CompMet** \rightarrow **CompMet**. (Where **CompMet** is the category of compact metric spaces and 1-Lipschitz functions.)

• We can define a unit η and a multiplication μ as before.

bounded Lipschitz monad

Let X be a compact metric space.

Define

 $TX := \{ \mathbb{P} \mid \mathbb{P} \text{ is a Radon probability measure on } X \}$

$$d_{bl}(\mathbb{P},\mathbb{Q}):=\sup\left\{\left|\int_X f\mathrm{d}\mathbb{P}-\int_X f\mathrm{d}\mathbb{Q}
ight|\mid f:X
ightarrow [0,1] ext{ is a 1-Lipschitz function}
ight\}$$

This is a metric on TX (the **bounded Lipschitz metric**). The metric space TX is compact.

We have a functor T: **CompMet** \rightarrow **CompMet**. (Where **CompMet** is the category of compact metric spaces and 1-Lipschitz functions.)

• We can define a unit η and a multiplication μ as before.

Proposition

The triple (T, η, μ) is a monad (the **bounded Lipschitz monad**).

bounded Lipschitz monad as codensity monad

Let A be a finite set and define $GA := \{(p_a)_a \in [0,1]^A \mid \sum_{a \in A} p_a = 1\}$. For $p, q \in GA$ define

$$d_{GA}(p,q) := \sup \left\{ \left| \sum_{a \in A'} p_a - \sum_{a \in A'} q_a \right| \mid A' \subseteq A \right\}.$$

The map d_{GA} is a metric on GA and the obtained metric space is compact. We have functor $G : \mathbf{Set}_f \to \mathbf{CompMet}$.

bounded Lipschitz monad as codensity monad

Let A be a finite set and define $GA := \{(p_a)_a \in [0,1]^A \mid \sum_{a \in A} p_a = 1\}$. For $p, q \in GA$ define

$$d_{GA}(p,q) := \sup \left\{ \left| \sum_{a \in A'} p_a - \sum_{a \in A'} q_a \right| \mid A' \subseteq A \right\}.$$

The map d_{GA} is a metric on GA and the obtained metric space is compact. We have functor $G : \mathbf{Set}_f \to \mathbf{CompMet}$.

Theorem

The codensity monad of G is the bounded Lipschitz monad.

Proof.

The proof is the same as for compact Hausdorff space but we need to verify that every map in the proof is 1-Lipschitz. $\hfill \Box$

bounded Lipschitz monad as codensity monad

Let A be a finite set and define $GA := \{(p_a)_a \in [0,1]^A \mid \sum_{a \in A} p_a = 1\}$. For $p, q \in GA$ define

$$d_{GA}(p,q) := \sup \left\{ \left| \sum_{a \in A'} p_a - \sum_{a \in A'} q_a \right| \mid A' \subseteq A \right\}.$$

The map d_{GA} is a metric on GA and the obtained metric space is compact. We have functor $G : \mathbf{Set}_f \to \mathbf{CompMet}$.

Theorem

The codensity monad of G is the bounded Lipschitz monad.

Proof.

The proof is the same as for compact Hausdorff space but we need to verify that every map in the proof is 1-Lipschitz. $\hfill \Box$

Remark: We could also have used the category of compact metric spaces and Lipschitz maps. Then TX would be isomorphic to the Kantorovich space.

Let C be the category of countable sets and maps $f : A \to B$ such that $f^{-1}(B')$ is finite or cofinite for every finite set B' of B. For a countable set A denote GA for the subspace

$$\{(p_a)_a \in [0,1]^A \mid \sum_{a \in A} p_a = 1\} \subseteq [0,1]^A.$$

We have a functor $G : C \rightarrow \mathbf{Top}$.

Theorem

The codensity monad of G is a the monad of probability Baire measures.