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What is a probability distribution?

A probability distribution on a finite set A:

p : A→ [0, 1] such that
∑
a∈A

p(a) = 1.

Example: a fair coin.

A probability distribution on a countable set A:

p : A→ [0, 1] such that
∑
a∈A

p(a) = 1.

Example: the Poisson distribution.

Probability distributions on other sets such as R or C([0,∞),R).
→ We need to use measure theory.

Idea: Using category theory we will construct probability measures as an extension
of probability measures on finite or countable spaces.
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Codensity monads

A monad on a category C is given by:

an endofunctor T : C → C ,

a natural transformation η : 1C → T (the unit),

a natural transformation µ : TT → T (the multiplication)

such that the following diagrams commute:

T TT T TTT TT

T TT T

Tη

µ
1T

ηT

1T
µT

Tµ

µ

µ
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Suppose we have a functor R : D → C that has a left adjoint. The adjunction

C D
L

R
induces a monad on C :

Endofunctor: RL,

Unit: η : 1C → RL,

Multiplication: RεL : RLRL→ RL.
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Suppose we have a functor G : D → C such that the right Kan extension along
itself exists. Then G induces a monad (the codensity monad of G ):

Endofunctor: TG := RanGG

D C

C
G

G

TG

γ

Unit:

D C

C
G 1C

G

1G =

D C

C
G

G

TG

1C

γ
η

Multiplication:

D C

C
G TGTG

G

TGγ =

D C

C
G

G

TG

TGTG

µ
γ
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Examples:

Let C D
L

R
be adjoint functors. The codensity monad of R is the

monad induced by the adjunction.

The codensity monad of the inclusion functor Setf → Set is the ultrafilter
monad.
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Giry monad

Let X be a measurable space.

Define

GX := {P | P is a probability measure on X}

ΣGX := σ(evA | A is a measurable subset of X ).

Here evA : GX → [0, 1] is defined by P 7→ P(A).
Let f : X → Y be a measurable map. There is a measurable map
Gf : GX → GY defined by

P 7→ P ◦ f −1.

→ We obtain a functor G : Mble→Mble.
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There is a measurable map ηX : X → GX defined by

x 7→ δx .

→ This induces a natural transformation η : 1Mble → G.
There is a measurable map µX : GGX → GX defined by

µX (P)(A) :=

∫
GX

λ(A)P(dλ)

for all P ∈ GGX and measurable subsets A of X .
→ This induces a natural transformation µ : GG → G.

Proposition (Giry)

The triple (G, η, µ) is a monad (the Giry monad).
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The Giry monad as codensity monad

Let A be a countable set. The measurable subspace

{(pa)a ∈ [0, 1]A |
∑
a∈A

pa = 1} ⊆ [0, 1]A

is denoted by GA.
Every map of countable sets f : A→ B induces a measurable map Gf : GA→ GB
defined by

(pa)a 7→

 ∑
a∈f−1(b)

pa


b

.

This gives us a functor G : Setc →Mble.
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Theorem
The codensity monad of G is the Giry monad.

Proof.
We will show that

GX ∼= (RanGG )(X ) ∼= lim(X ↓ G U−→ Setc
G−→Mble).

For a measurable map f : X → GA define pf : GX → GA by

P 7→
(∫

X

fadP
)

a

.

Then (GX , (pf )f ) forms a cone over the diagram.
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Theorem
The codensity monad of G is the Giry monad.

Proof.

Suppose we have another cone (Y , (qf )f ) over the diagram.

For f ∈Mble(X , [0, 1]) define f̂ : X → G2 by f̂ (x) := (1− f (x), f (x)).

For y ∈ Y define Iy : Mble(X , [0, 1])→ [0, 1] by

f 7→ qf̂ (y)1
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Theorem
The codensity monad of G is the Giry monad.

Proof.

Let a countable collection (fa)a∈A such that f :=
∑

a∈A fa ≤ 1.
Claim: Iy (f ) =

∑
a∈A Iy (fa) Define the following:

B := A ∪ {∗}
Let s : B → 2 be the map such that s(b) = 0 if and only if b = ∗.
For a ∈ A let sa : B → 2 be the map such that s(b) = 1 if and only if b = a.

Let h : X → GB be the map such that h(x)a = fa(x) for all a ∈ A and
h(x)∗ = 1− f (x).
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Theorem
The codensity monad of G is the Giry monad.

Proof.
We have commutative diagrams:

X GB

G2

h

f̂
Gs ⇒

Y GB

G2

qh

qf̂
Gs

For every a in A we have the commutative diagrams:

X GB

G2

h

f̂a
Gsa ⇒

Y GB

G2

qh

qf̂a
Gsa
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Theorem
The codensity monad of G is the Giry monad.

Proof.
We find that

Iy (f ) = qf̂ (y)1 = (Gs ◦ qh(y))1 =
∑
a∈A

qh(y)a

and
Iy (fa) = qf̂a(y)1 = (Gsa ◦ qh(y))1 = qh(y)a.

Therefore it follows that Iy (f ) =
∑

a∈A Iy (fa).
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Theorem
The codensity monad of G is the Giry monad.

Proof.
The map Iy has the following properties:

For a countable collection (fa)a such that f :=
∑

a∈A fa ≤ 1 we have that

Iy (f ) =
∑
a∈A

Iy (fa).

We have that Iy (1) = 1.

This implies that there exists a unique probability measure Py on X such that
Iy (f ) =

∫
X
f dPy for all f ∈Mble(X , [0, 1]).

The assignment y 7→ Py defines a measurable map q : Y → GX . This is
morphism of cones and every other morphism of cones has to be equal q.
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Remarks

Let i : Setf → Setc be the inclusion functor. The codensity monad of Gi is a
probability monad of finitely additive probability measures.

Integration operators vs. probability measures:
→ In the proof we can see that RanGG (X ) is the space of all integration
operators on X , which we then identified with probability measures.
→ Let j : Setc →Mble be the functor that sends a countable set A to the
measurable space (A,P(A)). Then RanjG (X ) would be a more direct
construction of the space of probability measures on X .

The Giry monad is the codensity monad of the inclusion of the category of
convex sets in Mble (Avery).
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Radon monad

Let X be a compact Hausdorff space. A Borel probability measure P on X is
called a Radon probability measure if for every Borel measurable subset A we have
that P(A) = sup{P(K ) | K ⊆ A and K is compact}.

Define

RX := {P | P is a Radon probability measure on X}

TRX := τ(evf | f ∈ CH(X , [0, 1]))

Here evf : RX → [0, 1] is defined by P 7→
∫
X
f dP.

This defines a functor R : CH→ CH.
Remarks:
→ It can be shown that RX is a compact Hausdorff space.
→ The pushforward of a Radon probability measure along a continuous
function is again a Radon probabiliy measure.
→ Note that TRX is the topology of weak convergence of probability
measures.

Ruben Van Belle Probability monads as codensity monads August 2021 12 / 17



Radon monad

Let X be a compact Hausdorff space. A Borel probability measure P on X is
called a Radon probability measure if for every Borel measurable subset A we have
that P(A) = sup{P(K ) | K ⊆ A and K is compact}.

Define

RX := {P | P is a Radon probability measure on X}

TRX := τ(evf | f ∈ CH(X , [0, 1]))

Here evf : RX → [0, 1] is defined by P 7→
∫
X
f dP.

This defines a functor R : CH→ CH.

Remarks:
→ It can be shown that RX is a compact Hausdorff space.
→ The pushforward of a Radon probability measure along a continuous
function is again a Radon probabiliy measure.
→ Note that TRX is the topology of weak convergence of probability
measures.

Ruben Van Belle Probability monads as codensity monads August 2021 12 / 17



Radon monad

Let X be a compact Hausdorff space. A Borel probability measure P on X is
called a Radon probability measure if for every Borel measurable subset A we have
that P(A) = sup{P(K ) | K ⊆ A and K is compact}.

Define

RX := {P | P is a Radon probability measure on X}

TRX := τ(evf | f ∈ CH(X , [0, 1]))

Here evf : RX → [0, 1] is defined by P 7→
∫
X
f dP.

This defines a functor R : CH→ CH.
Remarks:
→ It can be shown that RX is a compact Hausdorff space.
→ The pushforward of a Radon probability measure along a continuous
function is again a Radon probabiliy measure.
→ Note that TRX is the topology of weak convergence of probability
measures.

Ruben Van Belle Probability monads as codensity monads August 2021 12 / 17



The assignment x 7→ δx defines a natural transformation η : 1CH → R.

For P ∈ RRX we have that

µX (P) :=

∫
RX

λ(·)P(dλ)

is a Radon probability measure on X . The assignment P 7→ µX (P) defines a
natural transformation µ : RR → R.

Proposition (Swirszcz)

The triple (R, η, µ) is a monad (the Radon monad).
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Radon monad as codensity monad

Let A be a finite set. The (compact) subspace

{(pa)a ∈ [0, 1]A |
∑
a∈A

pa = 1} ⊆ [0, 1]A

is denoted by GA.
This gives us a functor G : Setf → CH.

Theorem
The codensity monad of G is the Radon monad.

Proof.
Let X be a compact Hausdorff space.

TG (X ) ∼= {I : CH(X , [0, 1])→ [0, 1] | I (f + g) = I (f ) + I (g) and I (1) = 1}
∼= {I : CH(X ,R)→ R | I is positive and linear and I (1) = 1}
∼= RX

In the last step we used the Riesz-Markov representation theorem.
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bounded Lipschitz monad

Let X be a compact metric space.

Define

TX := {P | P is a Radon probability measure on X}

dbl(P,Q) := sup

{∣∣∣∣∫
X

f dP−
∫
X

f dQ
∣∣∣∣ | f : X → [0, 1] is a 1-Lipschitz function

}
This is a metric on TX (the bounded Lipschitz metric).The metric space
TX is compact.
We have a functor T : CompMet→ CompMet. (Where CompMet is the
category of compact metric spaces and 1-Lipschitz functions.)

We can define a unit η and a multiplication µ as before.

Proposition

The triple (T , η, µ) is a monad (the bounded Lipschitz monad).
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bounded Lipschitz monad as codensity monad

Let A be a finite set and define GA := {(pa)a ∈ [0, 1]A |
∑

a∈A pa = 1}. For
p, q ∈ GA define

dGA(p, q) := sup


∣∣∣∣∣∣
∑
a∈A′

pa −
∑
a∈A′

qa

∣∣∣∣∣∣ | A′ ⊆ A

 .

The map dGA is a metric on GA and the obtained metric space is compact. We
have functor G : Setf → CompMet.

Theorem
The codensity monad of G is the bounded Lipschitz monad.

Proof.
The proof is the same as for compact Hausdorff space but we need to verify that
every map in the proof is 1-Lipschitz.

Remark: We could also have used the category of compact metric spaces and
Lipschitz maps. Then TX would be isomorphic to the Kantorovich space.
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Baire monad

Let C be the category of countable sets and maps f : A→ B such that f −1(B ′) is
finite or cofinite for every finite set B ′ of B.
For a countable set A denote GA for the subspace

{(pa)a ∈ [0, 1]A |
∑
a∈A

pa = 1} ⊆ [0, 1]A.

We have a functor G : C → Top.

Theorem
The codensity monad of G is a the monad of probability Baire measures.
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