What is a hole in a locally metric category?

Magnitude homology and iterated enrichment

Emily Roff The Categorical Late Lunch 11th August 2021

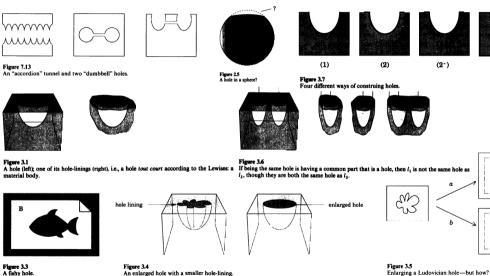
Plan

- 1. What is a hole?
- 2. What is a locally metric category?
- 3. Magnitude homology: our hole-detecting technology
 - Categorifying magnitude
 - Iterating magnitude homology
 - Deloopings, suspensions and "spheres"
- 4. What is a hole in a locally metric category?

Part I

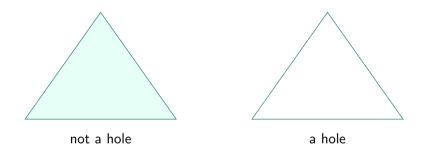
What is a hole?

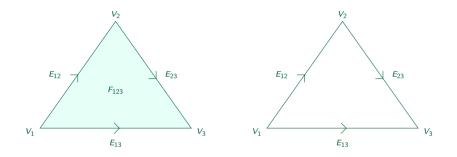
Holes



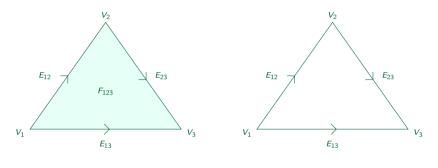
Casati and Varzi (1994)

(2+)

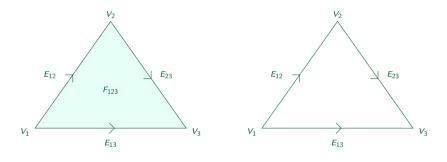




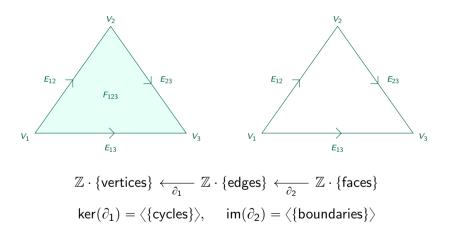
A hole is a cycle of edges that is <u>not</u> the boundary of a face.



 $\mathbb{Z} \cdot \{\mathsf{edges}\}$



$$\mathbb{Z} \cdot \{ \text{vertices} \} \xleftarrow[\partial_1]{} \mathbb{Z} \cdot \{ \text{edges} \} \xleftarrow[\partial_2]{} \mathbb{Z} \cdot \{ \text{faces} \}$$



 $\text{ker}(\partial_1)/\text{im}(\partial_2)\sim$ "cycles that are not boundaries" = "holes"

Chain complexes and homology

A chain complex A is a sequence of objects and morphisms

$$A_0 \xleftarrow{\partial_1} A_1 \xleftarrow{\partial_2} A_2 \xleftarrow{\partial_3} A_3 \xleftarrow{\partial_4} \cdots$$

in an abelian category \mathbb{A} , such that $\operatorname{im}(\partial_{i+1}) \hookrightarrow \operatorname{ker}(\partial_i)$ for all *i*.

We refer to elements of ker(∂_i) as cycles and elements of im(∂_{i+1}) as boundaries.

Chain complexes and homology

A chain complex A is a sequence of objects and morphisms

$$A_0 \xleftarrow{\partial_1} A_1 \xleftarrow{\partial_2} A_2 \xleftarrow{\partial_3} A_3 \xleftarrow{\partial_4} \cdots$$

in an abelian category \mathbb{A} , such that $\operatorname{im}(\partial_{i+1}) \hookrightarrow \operatorname{ker}(\partial_i)$ for all *i*.

We refer to elements of ker(∂_i) as cycles and elements of im(∂_{i+1}) as boundaries.

The **homology** of A is a sequence $H_{\bullet}(A)$ of objects in A defined by

$$H_i(A) = rac{\ker(\partial_i)}{\operatorname{im}(\partial_{i+1})}.$$

There is a category $Ch(\mathbb{A})$ of chain complexes in \mathbb{A} , and $H_{\bullet} : Ch(\mathbb{A}) \to \mathbb{A}^{\mathbb{N}}$ is a functor.

Homology theories

Roughly, a homology theory on a category C is a composite of functors*

$$\mathbf{C} \xrightarrow{\mathcal{A}(-)} \mathsf{Ch}(\mathbb{A}) \xrightarrow{\mathcal{H}_{\bullet}} \mathbb{A}^{\mathbb{N}}$$

*When C = Top the Eilenberg-Steenrod axioms provide a more precise definition.

Homology theories

Roughly, a homology theory on a category C is a composite of functors*

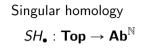
$$\mathsf{C} \xrightarrow{\mathcal{A}(-)} \mathsf{Ch}(\mathbb{A}) \xrightarrow{\mathcal{H}_{\bullet}} \mathbb{A}^{\mathbb{N}}$$

Very roughly, $H_iA(X)$ tells us about "the holes of dimension *i*" in an object X of **C**. But $H_{\bullet}A(X)$ as a whole often tells us much more.

$$SH_k(T) = \begin{cases} \mathbb{Q} & k = 0 \\ \mathbb{Q}^2 & k = 1 \\ \mathbb{Q} & k = 2 \\ 0 & k > 2 \end{cases}$$
 two unshrinkable loops and $1 - 2 + 1 = 0 = \chi(T)$

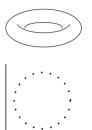
*When **C** = **Top** the Eilenberg-Steenrod axioms provide a more precise definition.

Singular homology $SH_{\bullet}: \mathbf{Top} \to \mathbf{Ab}^{\mathbb{N}}$



Persistent homology

 $PH_{\bullet}: \mathbf{Data} \to \mathbf{Vect}^{\mathbb{R} \times \mathbb{N}}$



Singular homology $SH_{\bullet}: \mathbf{Top} \to \mathbf{Ab}^{\mathbb{N}}$

Persistent homology PH_{\bullet} : Data \rightarrow Vect^{$\mathbb{R}\times\mathbb{N}$}

Magnitude homology

 $MH_{\bullet}: \mathbf{Met} \to \mathbf{Ab}^{\mathbb{R} \times \mathbb{N}}$

Singular homology $SH_{\bullet}: \mathbf{Top} \to \mathbf{Ab}^{\mathbb{N}}$

Persistent homology PH_{\bullet} : Data \rightarrow Vect^{$\mathbb{R}\times\mathbb{N}$}

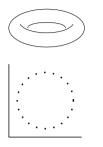
Magnitude homology

 $MH_{\bullet}: \mathbf{Met} \to \mathbf{Ab}^{\mathbb{R} \times \mathbb{N}}$

 $GH_{ullet}: \mathbf{Gp} \to \mathbf{Ab}^{\mathbb{N}}$

Singular homology $SH_{\bullet}: \mathbf{Top} \to \mathbf{Ab}^{\mathbb{N}}$

Persistent homology PH_{\bullet} : Data \rightarrow Vect^{$\mathbb{R}\times\mathbb{N}$}



"I know what holes are; how can I detect them?"

Magnitude homology $MH_{\bullet} : \mathbf{Met} \to \mathbf{Ab}^{\mathbb{R} \times \mathbb{N}}$

Group homology

 $GH_{\bullet}: \mathbf{Gp} \to \mathbf{Ab}^{\mathbb{N}}$

 $(GH_1(G) = G_{ab})$

"I have a well-motivated homology theory; what does it think a hole is? What info does it carry?"

Part II

What is a locally metric category?

Locally metric categories

A (generalized) metric space is a category enriched in $([0, \infty], +)$.

In the category $\ensuremath{\textbf{Met}}$ of generalized metric spaces

- morphisms are distance-decreasing functions;
- there is a symmetric monoidal structure \otimes_1 given by the $\ell_1\text{-product}.$

Locally metric categories

A (generalized) metric space is a category enriched in $([0, \infty], +)$.

In the category Met of generalized metric spaces

- morphisms are distance-decreasing functions;
- there is a symmetric monoidal structure \otimes_1 given by the ℓ_1 -product.

A locally metric category is a category enriched in (Met, \otimes_1) :

- its hom sets are generalized metric spaces;
- its composition satisfies $d(g \circ f, g' \circ f') \leq d(g, g') + d(f, f')$.

Examples include **Met** itself and **Ban**₁: Banach spaces and operators of norm ≤ 1 . Every metric space gives rise to a **Met**-category in (at least) two ways.

Approximate category theory

Sometimes we might want to think about categories "with fuzz". For example:

If our morphisms are processes with probabilistic outcomes.

If we want to infer categorical structure from noisy data.

Approximate category theory

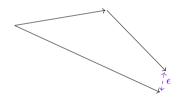
Sometimes we might want to think about categories "with fuzz". For example:

If our morphisms are processes with probabilistic outcomes.

In a locally metric category, we can speak of

- parallel morphisms being ϵ -close
- diagrams commuting up to ϵ
- ϵ -limits and ϵ -colimits
- -see e.g. Tholen & Rosický (2018).

If we want to infer categorical structure from noisy data.



Approximate category theory

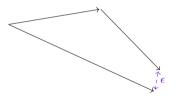
Sometimes we might want to think about categories "with fuzz". For example:

If our morphisms are processes with probabilistic outcomes.

In a locally metric category, we can speak of

- parallel morphisms being ϵ -close
- diagrams commuting up to ϵ
- ϵ -limits and ϵ -colimits
- -see e.g. Tholen & Rosický (2018).

If we want to infer categorical structure from noisy data.



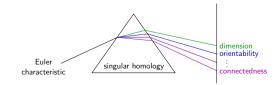
To deal with an "up-to- ϵ " composition rule requires something more general, e.g. an ϵ -approximate categorical structure—see Aliouche & Simpson (2014).

Part III

Magnitude homology: our hole-detecting technology

Examples (Leinster, Willerton, Meckes, Carbery, Gimperlein, ...)
Finite categories: magnitude is a generalized Euler characteristic
Finite metric spaces: magnitude is "effective number of points"
Compact metric spaces: magnitude knows volume, surface area, Euler characteristic...

Examples (Leinster, Willerton, Meckes, Carbery, Gimperlein, ...)
Finite categories: magnitude is a generalized Euler characteristic
Finite metric spaces: magnitude is "effective number of points"
Compact metric spaces: magnitude knows volume, surface area, Euler characteristic...

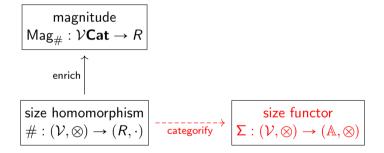


magnitude homolog

Examples (Leinster, Willerton, Meckes, Carbery, Gimperlein, ...)
Finite categories: magnitude is a generalized Euler characteristic
Finite metric spaces: magnitude is "effective number of points"
Compact metric spaces: magnitude knows volume, surface area, Euler characteristic...

Idea Magnitude homology should be a functor $MH_{\bullet}: \mathcal{V}\mathbf{Cat} \to \mathbb{A}^{\mathbb{N}}$ such that

$$\chi(\textit{MH}_{ullet}(\mathbf{X})) = \sum_{i} (-1)^{i} \mathsf{rk}(\textit{MH}_{i}(\mathbf{X})) = \mathsf{Mag}(\mathbf{X}).$$
 magnitude



Suppose R is a ring and

• ${\mathcal V}$ is a semicartesian monoidal category with a size homomorphism

 $\#:(\mathsf{ob}(\mathcal{V}),\otimes)\to(R,\cdot)$

Suppose R is a ring and

• $\ensuremath{\mathcal{V}}$ is a semicartesian monoidal category with a size homomorphism

```
\#:(\mathsf{ob}(\mathcal{V}),\otimes)\to(R,\cdot)
```

• \mathbbm{A} is a closed symmetric monoidal abelian category with a rank function

$$\mathsf{rk}:\mathsf{ob}(\mathbb{A})\to R$$

Suppose R is a ring and

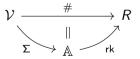
• $\ensuremath{\mathcal{V}}$ is a semicartesian monoidal category with a size homomorphism

```
\#: (\mathsf{ob}(\mathcal{V}), \otimes) \to (R, \cdot)
```

• \mathbbm{A} is a closed symmetric monoidal abelian category with a rank function

$$\mathsf{rk}:\mathsf{ob}(\mathbb{A})\to R$$

• $\Sigma: \mathcal{V} \to \mathbb{A}$ is a strong symmetric monoidal functor such that



Suppose R is a ring and

• $\ensuremath{\mathcal{V}}$ is a semicartesian monoidal category with a size homomorphism

```
\#:(\mathsf{ob}(\mathcal{V}),\otimes)\to(R,\cdot)
```

• \mathbbm{A} is a closed symmetric monoidal abelian category with a rank function

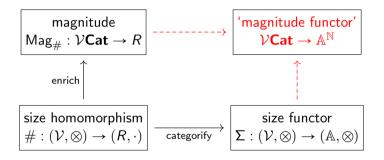
$$\mathsf{rk}:\mathsf{ob}(\mathbb{A})\to R$$

• $\Sigma: \mathcal{V} \to \mathbb{A}$ is a strong symmetric monoidal functor such that



Then we say Σ is a **size functor** categorifying #.

Categorifying magnitude



Magnitude homology

$$\mathcal{V}\mathsf{Cat} \xrightarrow{MB^{\Sigma}} [\triangle^{\mathsf{op}}, \mathbb{A}] \xrightarrow{C} \mathrm{Ch}(\mathbb{A}) \xrightarrow{H_{\bullet}} \mathbb{A}^{\mathbb{N}}$$

$$\mathcal{V}\mathsf{Cat} \xrightarrow{\mathsf{MB}^{\Sigma}} [\triangle^{\mathsf{op}}, \mathbb{A}] \xrightarrow{\mathsf{C}} \mathrm{Ch}(\mathbb{A}) \xrightarrow{\mathsf{H}_{\bullet}} \mathbb{A}^{\mathbb{N}}$$

Definition (Leinster & Shulman, 2017)

The magnitude nerve of a \mathcal{V} -category **X** is given for $n \in \mathbb{N}$ by

$$MB_n^{\Sigma}(\mathbf{X}) = \bigoplus_{x_0,...,x_n \in \mathbf{X}} \Sigma \mathbf{X}(x_0, x_1) \otimes \cdots \otimes \Sigma \mathbf{X}(x_{n-1}, x_n)$$

with face maps δ^i induced by composition in **X** and degeneracies σ^i by identities.

$$\mathcal{V}\mathsf{Cat} \xrightarrow{\mathsf{MB}^{\Sigma}} [\triangle^{\mathsf{op}}, \mathbb{A}] \xrightarrow{\mathsf{C}} \mathrm{Ch}(\mathbb{A}) \xrightarrow{\mathsf{H}_{\bullet}} \mathbb{A}^{\mathbb{N}}$$

Definition (Leinster & Shulman, 2017)

The magnitude nerve of a \mathcal{V} -category **X** is given for $n \in \mathbb{N}$ by

$$MB_n^{\Sigma}(\mathbf{X}) = \bigoplus_{x_0,\ldots,x_n \in \mathbf{X}} \Sigma \mathbf{X}(x_0,x_1) \otimes \cdots \otimes \Sigma \mathbf{X}(x_{n-1},x_n)$$

Example If $\mathcal{V} = \mathbf{Set}$ and $\Sigma : \mathbf{Set} \to \mathbf{Ab}$ is the free abelian group functor, then

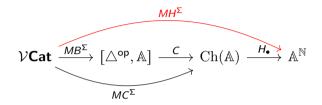
$$MB_n^{\Sigma}(\mathbf{X}) = \mathbb{Z} \cdot \{x_0 \to x_1 \to \cdots \to x_n \text{ in } \mathbf{X}\}.$$

$$\mathcal{V}\mathsf{Cat} \xrightarrow{\mathsf{MB}^{\Sigma}} [\triangle^{\mathsf{op}}, \mathbb{A}] \xrightarrow{\mathsf{C}} \mathrm{Ch}(\mathbb{A}) \xrightarrow{\mathsf{H}_{\bullet}} \mathbb{A}^{\mathbb{N}}$$
$$\xrightarrow{\mathsf{MC}^{\Sigma}}$$

Definition (Leinster & Shulman, 2017) The magnitude complex of **X** has $MC_n^{\Sigma}(\mathbf{X}) = MB_n^{\Sigma}(\mathbf{X})$, with boundary maps

$$\partial_n : MC_n^{\Sigma}(\mathbf{X}) \to MC_{n-1}^{\Sigma}(\mathbf{X})$$

given by $\partial_n = \sum_{i=0}^n (-1)^i \delta^i$.



Definition (Leinster & Shulman, 2017)

The magnitude complex of **X** has $MC_n^{\Sigma}(\mathbf{X}) = MB_n^{\Sigma}(\mathbf{X})$, with boundary maps

$$\partial_n : MC_n^{\Sigma}(\mathbf{X}) \to MC_{n-1}^{\Sigma}(\mathbf{X})$$

given by $\partial_n = \sum_{i=0}^n (-1)^i \delta^i$.

The magnitude homology of **X** is the homology of $MC^{\Sigma}(\mathbf{X})$.

Magnitude homology categorifies magnitude

Theorem (Leinster & Shulman, 2017) Under finiteness conditions, MH^{Σ} categorifies magnitude:

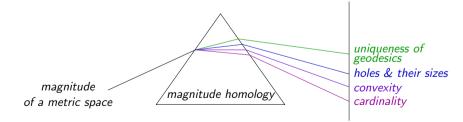
 $\chi(\mathit{MH}^{\Sigma}(\mathbf{X})) = \mathsf{Mag}_{\#}(\mathbf{X}).$

Magnitude homology categorifies magnitude

Theorem (Leinster & Shulman, 2017) Under finiteness conditions, MH^{Σ} categorifies magnitude:

 $\chi(\mathit{MH}^{\Sigma}(\mathbf{X})) = \mathsf{Mag}_{\#}(\mathbf{X}).$

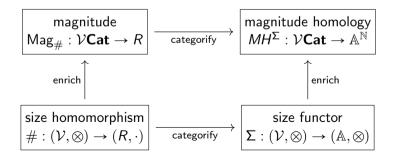
Theorem (Leinster & Shulman, 2017; Kaneta & Yoshinaga, 2018)



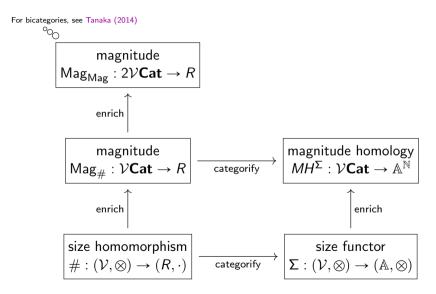
Part IV

Iterating magnitude homology

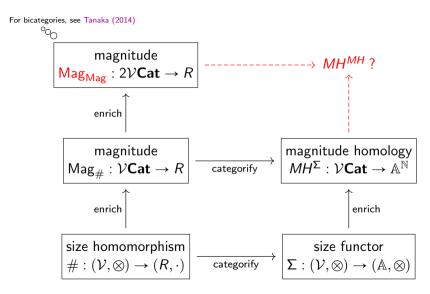
Iterating magnitude



Iterating magnitude



Iterating magnitude



The magnitude nerve as a size functor

Proposition

The magnitude nerve is a strong symmetric monoidal functor

$$MB^{\Sigma} : (\mathcal{V}Cat, \otimes_{\mathcal{V}}) \to ([\triangle^{op}, \mathbb{A}], \otimes_{pw}).$$

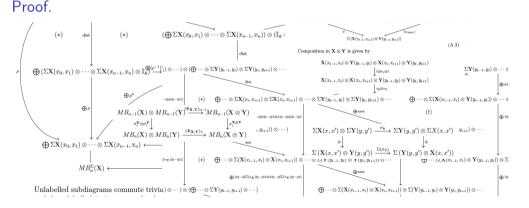
Proof.

The magnitude nerve as a size functor

Proposition

The magnitude nerve is a strong symmetric monoidal functor

 $MB^{\Sigma}: (\mathcal{V}\mathsf{Cat}, \otimes_{\mathcal{V}}) \to ([\triangle^{\mathsf{op}}, \mathbb{A}], \otimes_{\mathit{pw}}).$



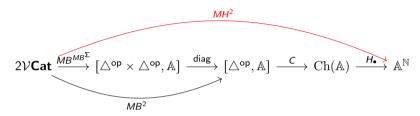
Iterating magnitude homology

$$2\mathcal{V}\mathsf{Cat} \xrightarrow{\mathsf{MB}^{\mathsf{MB}^{\Sigma}}} [\triangle^{\mathsf{op}} \times \triangle^{\mathsf{op}}, \mathbb{A}] \xrightarrow{\mathsf{diag}} [\triangle^{\mathsf{op}}, \mathbb{A}] \xrightarrow{\mathsf{C}} \mathrm{Ch}(\mathbb{A}) \xrightarrow{\mathsf{H}_{\bullet}} \mathbb{A}^{\mathbb{N}}$$
$$\xrightarrow{\mathsf{MB}^{2}}$$

Definition The (iterated) magnitude nerve of a VCat-category X is

$$MB^2(\mathbf{X}) = \operatorname{diag}\left(MB^{MB^{\Sigma}}(\mathbf{X})\right).$$

Iterating magnitude homology



Definition

The (iterated) magnitude nerve of a VCat-category X is

$$MB^2(\mathbf{X}) = \operatorname{diag}\left(MB^{MB^{\Sigma}}(\mathbf{X})\right).$$

The (iterated) magnitude homology of X is

$$MH^2_{\bullet}(\mathbf{X}) = H_{\bullet}C(MB^2(\mathbf{X})).$$

MH^2 categorifies iterated magnitude

Lemma

For any 2-category **X**, $MH^2(\mathbf{X})$ is the homology of the classifying space $B\mathbf{X}$. Proof is via the description of the Duskin nerve in Bullejos & Cegarra (2003).

MH² categorifies iterated magnitude

Lemma

For any 2-category **X**, $MH^2(\mathbf{X})$ is the homology of the classifying space $B\mathbf{X}$. Proof is via the description of the Duskin nerve in Bullejos & Cegarra (2003).

Theorem For any finite enough 2-category **X** we have $\chi(MH^2(\mathbf{X})) = Mag_{Mag}(\mathbf{X})$. Proof Tanaka (2014) showed $\chi(B\mathbf{X}) = Mag_{Mag}(\mathbf{X})$. Combine with the lemma.

MH^2 categorifies iterated magnitude

Lemma

For any 2-category **X**, $MH^2(\mathbf{X})$ is the homology of the classifying space $B\mathbf{X}$. Proof is via the description of the Duskin nerve in Bullejos & Cegarra (2003).

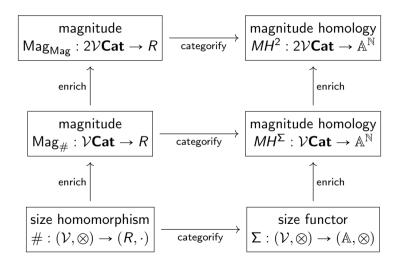
Theorem For any finite enough 2-category **X** we have $\chi(MH^2(\mathbf{X})) = Mag_{Mag}(\mathbf{X})$. Proof Tanaka (2014) showed $\chi(B\mathbf{X}) = Mag_{Mag}(\mathbf{X})$. Combine with the lemma.

Theorem

For any finite enough locally metric category **X** we have $\chi(MH^2(\mathbf{X})) = Mag_{Mag}(\mathbf{X})$.

Proof uses facts about spectral sequences, plus simple linear algebra.

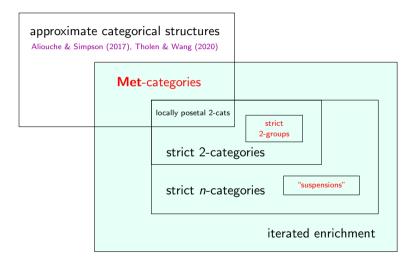
MH² categorifies iterated magnitude



Some classes of examples

approximate categorical structures Aliouche & Simpson (2017), Tholen & Wang (2020)			
	Met-categories		
		locally posetal 2-cats	strict
		strict 2-cate	2-groups ogories
		strict <i>n</i> -categories "suspensions"	
			iterated enrichment

Some classes of examples



Part V

Deloopings, suspensions and "spheres"

Let G be a group and N a normal subgroup of G. The **delooping** of N and G is a 2-category $\mathbb{B}(N \triangleleft G)$:

Let G be a group and N a normal subgroup of G.

- there's a single 0-cell, •
- 1-cells are elements of G

Let G be a group and N a normal subgroup of G.

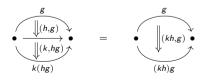
- there's a single 0-cell, •
- 1-cells are elements of G
- 2-cells are elements of $N \times G$

Let G be a group and N a normal subgroup of G.

- there's a single 0-cell, •
- 1-cells are elements of G
- 2-cells are elements of $N \times G$

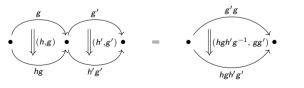
Let G be a group and N a normal subgroup of G.

- there's a single 0-cell, •
- 1-cells are elements of G
- 2-cells are elements of $N \times G$
- 'vertical composition' is multiplication in \boldsymbol{N}



Let G be a group and N a normal subgroup of G.

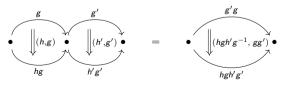
- there's a single 0-cell, •
- 1-cells are elements of G
- 2-cells are elements of $N \times G$
- 'vertical composition' is multiplication in N
- 'horizontal composition' is multiplication in $N \rtimes G$.



Let G be a group and N a normal subgroup of G.

The **delooping** of *N* and *G* is a 2-category $\mathbb{B}(N \lhd G)$:

- there's a single 0-cell, •
- 1-cells are elements of G
- 2-cells are elements of $N \times G$
- 'vertical composition' is multiplication in N
- 'horizontal composition' is multiplication in $N \rtimes G$.

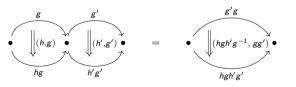


Recall that group homology says

 $H_0(G) = \mathbb{Z}$ and $H_1(G) = G_{ab}$.

Let G be a group and N a normal subgroup of G. The **delooping** of N and G is a 2-category $\mathbb{B}(N \triangleleft G)$:

- there's a single 0-cell, •
- 1-cells are elements of G
- 2-cells are elements of $N \times G$
- 'vertical composition' is multiplication in N
- 'horizontal composition' is multiplication in $N \rtimes G$.



Recall that group homology says

 $H_0(G) = \mathbb{Z}$ and $H_1(G) = G_{ab}$.

Proposition

Let Σ : **Set** \rightarrow **Ab** be the free abelian group functor. Then

 $MH_0^2(\mathbb{B}(N \lhd G)) = \mathbb{Z}$ and $MH_1^2(\mathbb{B}(N \lhd G)) = (G/N)_{ab}.$

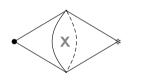
Suspensions and "spheres"

Let **X** be any strict (n-1)-category.

Definition

The suspension of **X** is a strict *n*-category Γ **X** with

- $ob(\Gamma X) = \{\bullet, *\}$
- $\Gamma X(\bullet,*) \simeq X$
- $\Gamma X(*, \bullet) \simeq \emptyset$
- $\Gamma \mathbf{X}(\bullet, \bullet) \simeq \mathbf{1} \simeq \Gamma \mathbf{X}(*, *).$



Suspensions and "spheres"

Let **X** be any strict (n-1)-category.

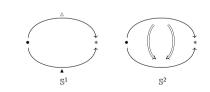
Definition

The suspension of **X** is a strict *n*-category Γ **X** with

- $ob(\Gamma X) = \{\bullet, *\}$
- $\Gamma X(\bullet,*) \simeq X$
- $\Gamma \mathbf{X}(*, \bullet) \simeq \emptyset$
- $\Gamma X(\bullet, \bullet) \simeq \mathbf{1} \simeq \Gamma X(*, *).$

Example

Set $\mathbb{S}^0 = \{ \Delta, \blacktriangle \}$. For each n > 0 let $\mathbb{S}^n = \Gamma \mathbb{S}^{n-1}$. Then \mathbb{S}^n is the strict *n*-category with two parallel *k*-cells in every dimension $k \leq n$.





Suspensions and "spheres"

Let **X** be any strict (n-1)-category.

Definition

The **suspension** of **X** is a strict *n*-category Γ **X** with

- $ob(\Gamma X) = \{\bullet, *\}$
- $\Gamma X(\bullet,*) \simeq X$
- $\Gamma X(*, \bullet) \simeq \emptyset$
- $\Gamma \mathbf{X}(\bullet, \bullet) \simeq \mathbf{1} \simeq \Gamma \mathbf{X}(*, *).$

• (x) *

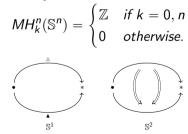
Example

Set $\mathbb{S}^0 = \{ \Delta, \blacktriangle \}$. For each n > 0 let $\mathbb{S}^n = \Gamma \mathbb{S}^{n-1}$. Then \mathbb{S}^n is the strict *n*-category with two parallel *k*-cells in every dimension $k \leq n$.

Proposition

 MH^n_{\bullet} behaves with respect to suspension of (n-1)-cats as singular homology behaves with respect to topological suspension.

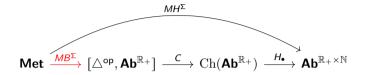
Corollary



Part VI

What is a hole in a locally metric category?

The magnitude nerve of a metric space



For a metric space X the magnitude nerve is given in degrees $n \in \mathbb{N}$ and $\ell \in \mathbb{R}_+$ by

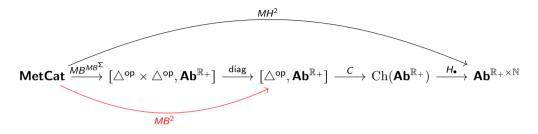
$$\mathbb{Z} \cdot \left\{ (p_0,\ldots,p_n) \, | \, \mathsf{each} \, \, p_i \in X \, \, \mathsf{and} \, \, \sum_{i=0}^{n-1} d(p_i,p_{i+1}) = \ell
ight\}.$$

The face maps are given on generators by

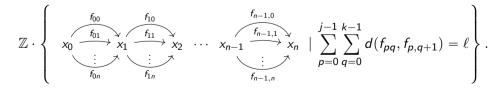
$$\delta_n^i(p_0,\ldots,p_n)=(p_0,\ldots,p_{i-1},p_{i+1},\ldots,p_n)$$

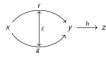
if $d(p_{i-1}, p_i) + d(p_i, p_{i+1}) = d(p_{i-1}, p_{i+1})$, and $\delta_n^i(p_0, \dots, p_n) = 0$ otherwise.

The magnitude nerve of a locally metric category

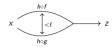


For a **Met**-category **X** the magnitude nerve is given in degrees $n \in \mathbb{N}$ and $\ell \in \mathbb{R}_+$ by

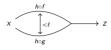




- A pair is reducible if
 - $\ensuremath{\,\bullet\,}$ we can tighten it by composing with another arrow
 - if (f,g) can't be tightened, call it tight

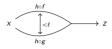


- A pair is reducible if
 - we can tighten it by composing with another arrow
 - if (f,g) can't be tightened, call it tight



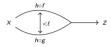
- A pair is reducible if
 - we can tighten it by composing with another arrow
 - if (f,g) can't be tightened, call it tight

- or we can bridge it with an arrow strictly between f and g
 - if (f,g) can't be bridged, call it adjacent

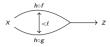


- A pair is reducible if
 - we can tighten it by composing with another arrow
 - if (f,g) can't be tightened, call it tight

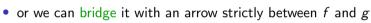
- or we can bridge it with an arrow strictly between f and g
 - if (f,g) can't be bridged, call it adjacent



- A pair is reducible if
 - we can tighten it by composing with another arrow
 - if (f,g) can't be tightened, call it tight
 - or we can bridge it with an arrow strictly between f and g
 - if (f,g) can't be bridged, call it adjacent
 - or we can split it into two strictly smaller pairs
 - if (f,g) can't be split, call it simple.

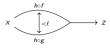


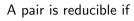
- A pair is reducible if
 - we can tighten it by composing with another arrow
 - if (f,g) can't be tightened, call it tight



- if (f,g) can't be bridged, call it adjacent
- or we can split it into two strictly smaller pairs
 - if (f,g) can't be split, call it simple.

A gap of width ℓ in X is an equivalence class of irreducible pairs of arrows:





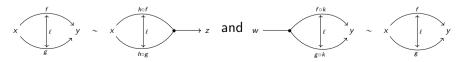
• we can tighten it by composing with another arrow

- or we can bridge it with an arrow strictly between f and g
 - if (f,g) can't be bridged, call it adjacent

• if (f,g) can't be tightened, call it tight

- or we can split it into two strictly smaller pairs
 - if (f,g) can't be split, call it simple.

A gap is a class of simple, tight, adjacent pairs under the equivalence relation gen'd by



The magnitude homology of a locally metric category

Theorem

Let X be a locally metric category in which all the hom-spaces are separated.

In real grading 0, the magnitude homology of **X** is the homology of its underlying ordinary category \underline{X} :

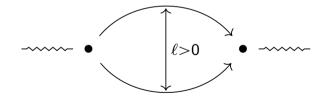
$$MH^0_{ullet}(\mathbf{X})\cong H_{ullet}(\underline{\mathbf{X}}).$$

In real gradings $\ell > 0$, the first three magnitude homology groups are given by

$$MH_k^{\ell}(\mathbf{X}) \cong \begin{cases} 0 & k = 0, 1 \\ \mathbb{Z} \cdot \{gaps \text{ of width } \ell \text{ in } \mathbf{X} \} & k = 2. \end{cases}$$

Conclusion

A hole in a locally metric category is a **gap**: a class of pairs of parallel arrows that cannot be pulled tighter; cannot be bridged; and cannot be split into smaller gaps.



References

Holes

• Casati and Varzi. Holes and Other Superficialities. MIT Press (1994).

Magnitude and magnitude homology

- Hepworth and Willerton. Categorifying the magnitude of a graph. *Homology*, *Homotopy and Applications* 19 (2017).
- Kaneta and Yoshinaga. Magnitude homology of metric spaces and order complexes. arXiv:1803.04247 (2018).
- Leinster and Shulman. Magnitude homology of enriched categories and metric spaces. *Algebraic and Geometric Topology* (to appear).
- Tanaka. The Euler characteristic of a bicategory and the product formula for fibered bicategories. arXiv:1410.0248 (2014).

References

Homology theories for 2-categories

- Bullejos and Cegarra. On the geometry of 2-categories and their classifying spaces. *K-Theory* 29 (2003).
- Ellis. Homology of 2-types. Journal of the LMS 46 (1992).

Approximate categorical structures and Met-enrichment

- Aliouche and Simpson. Approximate categorical structures. *Theory and Applications of Categories* 32 (2017).
- Tholen and Rosický. Approximate injectivity. *Applied Categorical Structures* 26 (2018).
- Tholen and Wang. Metagories. *Topology and its Applications* 273 (2020).