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Part I

What is a hole?



Holes

Casati and Varzi (1994)
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A hole is a cycle of edges that is not the boundary of a face.

kerpB1q “ xtcyclesuy, impB2q “ xtboundariesuy

kerpB1q{impB2q „ “cycles that are not boundaries” “ “holes”
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Chain complexes and homology

A chain complex A is a sequence of objects and morphisms

A0 A1 A2 A3 ¨ ¨ ¨
B1 B2 B3 B4

in an abelian category A, such that impBi`1q ãÑ kerpBi q for all i .

We refer to elements of kerpBi q as cycles and elements of impBi`1q as boundaries.

The homology of A is a sequence H‚pAq of objects in A defined by

Hi pAq “
kerpBi q

impBi`1q
.

There is a category ChpAq of chain complexes in A, and H‚ : ChpAq Ñ AN is a functor.



Chain complexes and homology

A chain complex A is a sequence of objects and morphisms

A0 A1 A2 A3 ¨ ¨ ¨
B1 B2 B3 B4

in an abelian category A, such that impBi`1q ãÑ kerpBi q for all i .

We refer to elements of kerpBi q as cycles and elements of impBi`1q as boundaries.

The homology of A is a sequence H‚pAq of objects in A defined by

Hi pAq “
kerpBi q

impBi`1q
.

There is a category ChpAq of chain complexes in A, and H‚ : ChpAq Ñ AN is a functor.



Homology theories

Roughly, a homology theory on a category C is a composite of functors*

C ChpAq ANAp´q H‚

Very roughly, HiApX q tells us about “the holes of dimension i” in an object X of C.
But H‚ApX q as a whole often tells us much more.

SHkpT q “

$

’

’

’

’

&

’

’

’

’

%

Q k “ 0

Q2 k “ 1

Q k “ 2

0 k ą 2

one connected component

two unshrinkable loops

T is two-dimensional

and 1´ 2` 1 “ 0 “ χpT q

*When C “ Top the Eilenberg-Steenrod axioms provide a more precise definition.
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Examples

Singular homology

SH‚ : TopÑ AbN

Persistent homology

PH‚ : DataÑ VectRˆN

Magnitude homology

MH‚ : MetÑ AbRˆN

Group homology

GH‚ : GpÑ AbN

ε

GH1pG q “ Gab

“I know what holes are;

how can I detect them?”

“I have a well-motivated
homology theory; what

does it think a hole is?
What info does it carry?”
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Part II

What is a locally metric category?



Locally metric categories

A (generalized) metric space is a category enriched in pr0,8s,`q.

In the category Met of generalized metric spaces

‚ morphisms are distance-decreasing functions;

‚ there is a symmetric monoidal structure b1 given by the `1-product.

A locally metric category is a category enriched in pMet,b1q:

‚ its hom sets are generalized metric spaces;

‚ its composition satisfies dpg ˝ f , g 1 ˝ f 1q ď dpg , g 1q ` dpf , f 1q.

Examples include Met itself and Ban1: Banach spaces and operators of norm ď 1.

Every metric space gives rise to a Met-category in (at least) two ways.
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Approximate category theory

Sometimes we might want to think about categories “with fuzz”. For example:

If our morphisms are processes

with probabilistic outcomes.

If we want to infer categorical

structure from noisy data.

In a locally metric category, we can speak of

‚ parallel morphisms being ε-close

‚ diagrams commuting up to ε

‚ ε-limits and ε-colimits

—see e.g. Tholen & Rosický (2018).
ε

To deal with an “up-to-ε” composition rule requires something more general, e.g. an
ε-approximate categorical structure—see Aliouche & Simpson (2014).



Approximate category theory

Sometimes we might want to think about categories “with fuzz”. For example:

If our morphisms are processes

with probabilistic outcomes.

If we want to infer categorical

structure from noisy data.

In a locally metric category, we can speak of

‚ parallel morphisms being ε-close

‚ diagrams commuting up to ε

‚ ε-limits and ε-colimits

—see e.g. Tholen & Rosický (2018).
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Part III

Magnitude homology:

our hole-detecting technology



Size and magnitude

notion of ‘size’
for objects in V magnitude

notion of ‘size’
for V-categories

Examples (Leinster, Willerton, Meckes, Carbery, Gimperlein, . . . )

Finite categories: magnitude is a generalized Euler characteristic

Finite metric spaces: magnitude is “effective number of points”

Compact metric spaces: magnitude knows volume, surface area, Euler characteristic. . .

Idea Magnitude homology should be a functor
MH‚ : VCatÑ AN such that

χpMH‚pXqq “
ÿ

i

p´1qi rkpMHi pXqq “ MagpXq.
Euler

characteristic
singular homology

dimension
orientability
...

connectedness
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Categorifying size

magnitude
Mag# : VCatÑ R

size homomorphism
# : pV,bq Ñ pR, ¨q

size functor
Σ : pV,bq Ñ pA,bqcategorify

enrich



Categorifying size

Suppose R is a ring and

‚ V is a semicartesian monoidal category with a size homomorphism

# : pobpVq,bq Ñ pR, ¨q

‚ A is a closed symmetric monoidal abelian category with a rank function

rk : obpAq Ñ R

‚ Σ : V Ñ A is a strong symmetric monoidal functor such that

V R

A

#

Σ rk

Then we say Σ is a size functor categorifying #.
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Categorifying magnitude

magnitude
Mag# : VCatÑ R

‘magnitude functor’
VCatÑ AN

size homomorphism
# : pV,bq Ñ pR, ¨q

size functor
Σ : pV,bq Ñ pA,bqcategorify

enrich



Magnitude homology

VCat r4op,As ChpAq ANMBΣMBΣMBΣ

MCΣMCΣ

MHΣ

C H‚

Definition (Leinster & Shulman, 2017)

The magnitude nerve of a V-category X is given for n P N by

MBΣ
n pXq “

à

x0,...,xnPX

ΣXpx0, x1q b ¨ ¨ ¨ b ΣXpxn´1, xnq

Example If V “ Set and Σ : SetÑ Ab is the free abelian group functor, then

MBΣ
n pXq “ Z ¨ tx0 Ñ x1 Ñ ¨ ¨ ¨ Ñ xn in Xu.
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x0,...,xnPX

ΣXpx0, x1q b ¨ ¨ ¨ b ΣXpxn´1, xnq

with face maps δi induced by composition in X and degeneracies σi by identities.
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Magnitude homology

VCat r4op,As ChpAq ANMBΣMBΣMBΣ

MCΣMCΣ

MHΣ

C H‚

Definition (Leinster & Shulman, 2017)

The magnitude complex of X has MCΣ
n pXq “ MBΣ

n pXq, with boundary maps

Bn : MCΣ
n pXq Ñ MCΣ

n´1pXq

given by Bn “
řn

i“0p´1qiδi .

The magnitude homology of X is the homology of MCΣpXq.



Magnitude homology

VCat r4op,As ChpAq ANMBΣMBΣMBΣ

MCΣMCΣ

MHΣ

C H‚

Definition (Leinster & Shulman, 2017)

The magnitude complex of X has MCΣ
n pXq “ MBΣ

n pXq, with boundary maps

Bn : MCΣ
n pXq Ñ MCΣ

n´1pXq

given by Bn “
řn

i“0p´1qiδi .

The magnitude homology of X is the homology of MCΣpXq.



Magnitude homology categorifies magnitude

Theorem (Leinster & Shulman, 2017)

Under finiteness conditions, MHΣ categorifies magnitude:

χpMHΣpXqq “ Mag#pXq.

Theorem (Leinster & Shulman, 2017; Kaneta & Yoshinaga, 2018)

magnitude
of a metric space

magnitude homology

uniqueness of
geodesics
holes & their sizes
convexity
cardinality
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Part IV

Iterating magnitude homology



Iterating magnitude

magnitude
MagMag : 2VCatÑ R

MHMH ?

magnitude
Mag# : VCatÑ R

magnitude homology
MHΣ : VCatÑ AN

size homomorphism
# : pV,bq Ñ pR, ¨q

size functor
Σ : pV,bq Ñ pA,bq

categorify

enrich

categorify

enrich enrich

For bicategories, see Tanaka (2014)
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The magnitude nerve as a size functor

Proposition

The magnitude nerve is a strong symmetric monoidal functor

MBΣ : pVCat,bVq Ñ pr4op,As ,bpw q.

Proof.
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Iterating magnitude homology

2VCat r4op ˆ4op,As r4op,As ChpAq ANMBMBΣ

MB2MB2

MH2

diag C H‚

Definition
The (iterated) magnitude nerve of a VCat-category X is

MB2pXq “ diag
´

MBMBΣ
pXq

¯

.

The (iterated) magnitude homology of X is

MH2
‚ pXq “ H‚C pMB2pXqq.
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MH2 categorifies iterated magnitude

Lemma
For any 2-category X, MH2pXq is the homology of the classifying space BX.

Proof is via the description of the Duskin nerve in Bullejos & Cegarra (2003).

Theorem
For any finite enough 2-category X we have χpMH2pXqq “ MagMagpXq.

Proof Tanaka (2014) showed χpBXq “ MagMagpXq. Combine with the lemma.

Theorem
For any finite enough locally metric category X we have χpMH2pXqq “ MagMagpXq.

Proof uses facts about spectral sequences, plus simple linear algebra.
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Some classes of examples

approximate categorical structures
Aliouche & Simpson (2017), Tholen & Wang (2020)

Met-categoriesMet-categories

locally posetal 2-cats

iterated enrichment

strict n-categories

strict 2-categories

strict

2-groups

strict

2-groups

“suspensions”“suspensions”
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Part V

Deloopings, suspensions and “spheres”



Deloopings

Let G be a group and N a normal subgroup of G .

The delooping of N and G is a 2-category BpN C G q:

‚ there’s a single 0-cell, ‚

‚ 1-cells are elements of G

‚ 2-cells are elements of N ˆ G

‚ ‘vertical composition’ is multiplication in N

‚ ‘horizontal composition’ is multiplication in N ¸G .

‚ ‚ “ ‚ ‚
ph,gq

pkh,gq

g

hg

kphgq

pk,hgq

g

pkhqg

Recall that group homology says

H0pG q “ Z and H1pG q “ Gab.

Proposition

Let Σ : SetÑ Ab be the free
abelian group functor. Then

MH2
0 pBpN C G qq “ Z

and

MH2
1 pBpN C G qq “ pG{Nqab .
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‚ there’s a single 0-cell, ‚

‚ 1-cells are elements of G

‚ 2-cells are elements of N ˆ G

‚ ‘vertical composition’ is multiplication in N

‚ ‘horizontal composition’ is multiplication in N ¸G .
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Suspensions and “spheres”

Let X be any strict pn ´ 1q-category.

Definition
The suspension of X is a strict n-category ΓX with

‚ obpΓXq “ t‚, ˚u

‚ ΓXp‚, ˚q » X

‚ ΓXp˚, ‚q » H

‚ ΓXp‚, ‚q » 1 » ΓXp˚, ˚q.

¨

‚ ˚

¨

X

Example

Set S0 “ tM,Nu. For each n ą 0 let Sn “ ΓSn´1.
Then Sn is the strict n-category with two parallel
k-cells in every dimension k ď n.

Proposition

MHn
‚ behaves with respect to

suspension of pn ´ 1q-cats as
singular homology behaves with
respect to topological suspension.

Corollary

MHn
k pSnq “

#

Z if k “ 0, n

0 otherwise.

‚ ˚ ‚ ˚

S1 S2

M

N
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Part VI

What is a hole in a locally metric category?



The magnitude nerve of a metric space

Met r4op,AbR`s ChpAbR`q AbR`ˆNMBΣ

MHΣ

C H‚

For a metric space X the magnitude nerve is given in degrees n P N and ` P R` by

Z ¨

#

pp0, . . . , pnq | each pi P X and
n´1
ÿ

i“0

dppi , pi`1q “ `

+

.

The face maps are given on generators by

δinpp0, . . . , pnq “ pp0, . . . , pi´1, pi`1, . . . , pnq

if dppi´1, pi q ` dppi , pi`1q “ dppi´1, pi`1q, and δinpp0, . . . , pnq “ 0 otherwise.



The magnitude nerve of a locally metric category

MetCat r4op ˆ4op,AbR`s r4op,AbR`s ChpAbR`q AbR`ˆNMBMBΣ

MB2

MH2

diag C H‚

For a Met-category X the magnitude nerve is given in degrees n P N and ` P R` by

Z ¨

$

’

’

’

&

’

’

’

%

x0 x1 x2 ¨ ¨ ¨ xn´1 xn

f00

f01

...

f0n

f10

f11

...

f1n

fn´1,0

fn´1,1

...

fn´1,n

|

j´1
ÿ

p“0

k´1
ÿ

q“0

dpfpq, fp,q`1q “ `

,

/

/

/

.

/

/

/

-

.



Gaps

A gap of width ` in X is an equivalence class of irreducible pairs of arrows: x y`ą0

f

g

x y zằ`

f
h˝f

g
h˝g

h

x y`
ă`

f

gg

x z y

f

g

ă ` ă `

A pair is reducible if
‚ we can tighten it by composing with another arrow

§ if pf , gq can’t be tightened, call it tight

‚ or we can bridge it with an arrow strictly between f and g

§ if pf , gq can’t be bridged, call it adjacent

‚ or we can split it into two strictly smaller pairs

§ if pf , gq can’t be split, call it simple.

A gap is a class of simple, tight, adjacent pairs under the equivalence relation gen’d by

x y „ x ‚ z` `

f

g

h˝f

h˝g

and w ‚ y „ x y` `

f ˝k

g˝k

f

g
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f
h˝f

g
h˝g

h

x y`
ă`

f

gg

x z y

f

g

ă ` ă `

A pair is reducible if
‚ we can tighten it by composing with another arrow

§ if pf , gq can’t be tightened, call it tight

‚ or we can bridge it with an arrow strictly between f and g

§ if pf , gq can’t be bridged, call it adjacent

‚ or we can split it into two strictly smaller pairs

§ if pf , gq can’t be split, call it simple.

A gap is a class of simple, tight, adjacent pairs under the equivalence relation gen’d by

x y „ x ‚ z` `

f

g

h˝f

h˝g

and w ‚ y „ x y` `

f ˝k

g˝k

f

g



Gaps

A gap of width ` in X is an equivalence class of irreducible pairs of arrows: x y`ą0

f

g

x y zằ`
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f
h˝f

g
h˝g

h

x y`
ă`

f

gg

x z y

f

g

ă ` ă `

A pair is reducible if
‚ we can tighten it by composing with another arrow

§ if pf , gq can’t be tightened, call it tight

‚ or we can bridge it with an arrow strictly between f and g

§ if pf , gq can’t be bridged, call it adjacent

‚ or we can split it into two strictly smaller pairs

§ if pf , gq can’t be split, call it simple.

A gap is a class of simple, tight, adjacent pairs under the equivalence relation gen’d by

x y „ x ‚ z` `

f

g

h˝f

h˝g

and w ‚ y „ x y` `

f ˝k

g˝k

f

g



Gaps

A gap of width ` in X is an equivalence class of irreducible pairs of arrows: x y`ą0

f

g

x y zằ`
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The magnitude homology of a locally metric category

Theorem
Let X be a locally metric category in which all the hom-spaces are separated.

In real grading 0, the magnitude homology of X is the homology of its underlying
ordinary category X:

MH0
‚ pXq – H‚pXq.

In real gradings ` ą 0, the first three magnitude homology groups are given by

MH`
kpXq –

#

0 k “ 0, 1

Z ¨ tgaps of width ` in Xu k “ 2.



Conclusion

A hole in a locally metric category is a gap: a class of pairs of parallel arrows that
cannot be pulled tighter; cannot be bridged; and cannot be split into smaller gaps.

‚ ‚`ą0
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