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What is a hole?
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Figure 7.13
An “accordion” tunnel and two “dumbbell” holes.

Figure 28
A hole in a sphere?
Four dnlknnt ways of construing holes.
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Figure 33 Figure 34 Figure 3.5
A fishy hole. An enlarged hole with a smaller hole-lining. Enlarging a Ludovician hole—but how?

Casati and Varzi (1994)
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A hole is a cycle of edges that is not the boundary of a face.
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The archetypal hole

Va Vo

Fi23

Vs Vi
Ei3 Ei3

Z - {vertices} A Z - {edges} A Z - {faces}

ker(01) = ({cycles}), im(d2) = {{boundaries})

ker(01)/im(02) ~ “cycles that are not boundaries” = “holes”

V3



Chain complexes and homology

A chain complex A is a sequence of objects and morphisms

04

Ao < Al A2 < A3

in an abelian category A, such that im(0;41) < ker(d;) for all i.

We refer to elements of ker(0;) as cycles and elements of im(¢dj41) as boundaries.



Chain complexes and homology

A chain complex A is a sequence of objects and morphisms

04

Ao < Al A2 < A3

in an abelian category A, such that im(0;41) < ker(d;) for all i.

We refer to elements of ker(0;) as cycles and elements of im(¢dj41) as boundaries.

The homology of A is a sequence H,.(A) of objects in A defined by

ker(0;)

A =

There is a category Ch(A) of chain complexes in A, and H, : Ch(A) — AN is a functor.



Homology theories
Roughly, a homology theory on a category C is a composite of functors*

c 29, cha) e AN

*When C = Top the Eilenberg-Steenrod axioms provide a more precise definition.



Homology theories
Roughly, a homology theory on a category C is a composite of functors*

He

A0, — AN

C Ch(A)

Very roughly, H;A(X) tells us about “the holes of dimension /" in an object X of C.
But H,A(X) as a whole often tells us much more.
/one connected component

Q k=0

2 41— two unshrinkable loops

SH(T) =10
B _——— T is two-dimensional

0 k>?2

and1—-2+1=0=x(T)

*When C = Top the Eilenberg-Steenrod axioms provide a more precise definition.



Examples

Singular homology @
SH, : Top — Ab"



Examples
Singular homology @
SH, : Top — Ab"

Persistent homology

PH, : Data — Vect®*N




Singular homology
SH, : Top — Ab"

Persistent homology

PH, : Data — Vect®*N

Magnitude homology
MH, : Met — Ab®*N

Examples

=

S




Singular homology
SH, : Top — Ab"

Persistent homology

PH, : Data — Vect®*N

Magnitude homology
MH, : Met — Ab®*N

Group homology
GH. : Gp — Ab"

Examples

=

S

[ GHi(G) = Gap |




Examples
Singular homology @
SH, : Top — Ab"

Persistent homology

PH, : Data — Vect®*N

“l know what holes are;
how can | detect them?”

Magnitude homology

MH. : Met — AbRXN @ “l have a well-motivated
homology theory; what

does it think a hole is?
Group homology el What info does it carry?”

GH. : Gp — AbY [ GHL(6) = G




Part |l

What is a locally metric category?



Locally metric categories

A (generalized) metric space is a category enriched in ([0, 0], +).

In the category Met of generalized metric spaces
® morphisms are distance-decreasing functions;

® there is a symmetric monoidal structure ®; given by the ¢1-product.



Locally metric categories

A (generalized) metric space is a category enriched in ([0, o0], +).

In the category Met of generalized metric spaces
® morphisms are distance-decreasing functions;

® there is a symmetric monoidal structure ®; given by the ¢1-product.

A locally metric category is a category enriched in (Met, ®1):
® its hom sets are generalized metric spaces;
* its composition satisfies d(go f,g’ o f') < d(g,g’) + d(f,f).

Examples include Met itself and Ban;: Banach spaces and operators of norm < 1.

Every metric space gives rise to a Met-category in (at least) two ways.



Approximate category theory

Sometimes we might want to think about categories “with fuzz”. For example:

If our morphisms are processes If we want to infer categorical
with probabilistic outcomes. structure from noisy data.
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e-limits and e-colimits
—see e.g. Tholen & Rosicky (2018).



Approximate category theory

Sometimes we might want to think about categories “with fuzz”. For example:

If our morphisms are processes If we want to infer categorical
with probabilistic outcomes. structure from noisy data.

In a locally metric category, we can speak of

parallel morphisms being e-close

diagrams commuting up to €

e-limits and e-colimits
—see e.g. Tholen & Rosicky (2018).

o
m

To deal with an “up-to-€¢” composition rule requires something more general, e.g. an
e-approximate categorical structure—see Aliouche & Simpson (2014).
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Magnitude homology:
our hole-detecting technology
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Compact metric spaces: magnitude knows volume, surface area, Euler characteristic. . .
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~—{ dimension
orientability

Euler

characteristic connectedness



Size and magnitude

notion of ‘size’
for objects in V

magnitude

notion of ‘size’
for V-categories

Examples (Leinster, Willerton, Meckes, Carbery, Gimperlein, ...)
Finite categories: magnitude is a generalized Euler characteristic

Finite metric spaces: magnitude is “effective number of points”

Compact metric spaces: magnitude knows volume, surface area, Euler characteristic. . .

Idea Magnitude homology should be a functor
MH, : VCat — AN such that

X(MH(X)) = > (—1)tk(MH;(X)) = Mag(X). mosniuce

i

'magnitude homology

N




Categorifying size

magnitude
Mag, : VCat — R

enrich]

size homomorphism

#: (V7®) - (R7)

categorify

size functor

Y (V,®) — (A®)
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Categorifying size

Suppose R is a ring and

® ) is a semicartesian monoidal category with a size homomorphism
# : (ob(V),®) — (R, )
® A is a closed symmetric monoidal abelian category with a rank function
rk : ob(A) — R
® ¥ :V — Ais a strong symmetric monoidal functor such that
1% _* R

\II/

Then we say ¥ is a size functor categorifying #.



Categorifying magnitude

magnitude | N ‘magnitude functor’
Mag, : VCat — R VCat — AN
enrichT i
size homomorphism size functor

#:(V,®) > (R,)| ctegority | : (V,®) — (A, Q)
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Magnitude homology

H,

VCat ME, [A%P A] —C5 Ch(A) — AN

Definition (Leinster & Shulman, 2017)
The magnitude nerve of a V-category X is given for n € N by

MBE(X)= @ IX(x0,x1)® - ®IX(Xp—1, Xn)

X05-+-,XnEX

with face maps ¢’ induced by composition in X and degeneracies o' by identities.



Magnitude homology

H,

VCat ME, [A%P A] —C5 Ch(A) — AN

Definition (Leinster & Shulman, 2017)
The magnitude nerve of a V-category X is given for n € N by

MBE(X)= @ IX(x0,x1)® - ®IX(Xp_1, Xn)

X05-+-,XnEX
Example If V = Set and ¥ : Set — Ab is the free abelian group functor, then

MBE(X) =Z - {xg — x1 — --- — x, in X}.



Magnitude homology

VCat MB%, (a0 A] S Ch(A) Py AN

\—/

MC*

Definition (Leinster & Shulman, 2017)
The magnitude complex of X has MC>(X) = MBZX(X), with boundary maps

On 1 MCE(X) — MCE | (X)

given by 9, = D7 (—1)"8".



Magnitude homology

MH*

/\H.

VCat -MEZ, (AP A] —C 5 Ch(A) —5 AN

\_/r

MC*

Definition (Leinster & Shulman, 2017)
The magnitude complex of X has MC>(X) = MBZX(X), with boundary maps

On 1 MCE(X) — MCE | (X)

given by 9, = D7 (—1)"8".
The magnitude homology of X is the homology of MCZ(X).



Magnitude homology categorifies magnitude

Theorem (Leinster & Shulman, 2017)
Under finiteness conditions, MH* categorifies magnitude:

X(MH*(X)) = Magy (X).



Magnitude homology categorifies magnitude

Theorem (Leinster & Shulman, 2017)
Under finiteness conditions, MH* categorifies magnitude:

X(MH*(X)) = Magy (X).

Theorem (Leinster & Shulman, 2017; Kaneta & Yoshinaga, 2018)

uniqueness of

geodesics
holes & their sizes
magnitude . i
ent magnitude homology convexity
of a metric space cardinality
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[terating magnitude homology



lterating magnitude

magnitude
Magy : VCat — R

enrich]

size homomorphism

i (Va®) - (Rv )

categorify

categorify

magnitude homology
MH* : VCat — AN

Tenrich

size functor

Y (V,®) — (AR)




lterating magnitude

For bicategories, see Tanaka (2014)

0

magnitude
Magp,g - 2VCat — R

enrich]

magnitude
Magy : VCat — R

enrich]

size homomorphism

i (Va®) - (Rv )

categorify

categorify

magnitude homology
MH* : VCat — AN

Ienrich

size functor

Y (V,®) — (AR)




lterating magnitude

For bicategories, see Tanaka (2014)

*o
MagM:a:gggléiet —-R| ' MHiﬂH !
magnitude magnitud; homology
Mag, : VCat — R|  categority | MH™ : VCat — AN
enrich] Tenrich
size homomorphism size functor

#:(V,®) = (R,-) | categority ~ |3 (V,®) — (A, ®)




The magnitude nerve as a size functor
Proposition

The magnitude nerve is a strong symmetric monoidal functor

/\/’BZ : (VCat,@V) — ([AOP,A] ,®pw)-
Proof.



Proposition

The magnitude nerve as a size functor

The magnitude nerve is a strong symmetric monoidal functor

Proof.
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Iterating magnitude homology

> .
2VCat MB, [nop x pop A BB, [A0p A] —C s Ch(A) ey AN

\/’

MB2
Definition
The (iterated) magnitude nerve of a VCat-category X is

MB2(X) = diag (I\/IB’V’BX(X)> .



Iterating magnitude homology

MH?

m

2VCat MBZ, [AP x AP A] 285 [A%P A] —C 5 Ch(A) —25 AN

\/

MB?
Definition
The (iterated) magnitude nerve of a VCat-category X is

MB2(X) = diag (I\/IB’V’BX(X)> .
The (iterated) magnitude homology of X is

MH?(X) = H,C(MB?(X)).



MH? categorifies iterated magnitude

Lemma
For any 2-category X, MH?(X) is the homology of the classifying space BX.

Proof is via the description of the Duskin nerve in Bullejos & Cegarra (2003). 0J
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MH? categorifies iterated magnitude

Lemma
For any 2-category X, MH?(X) is the homology of the classifying space BX.

Proof is via the description of the Duskin nerve in Bullejos & Cegarra (2003). 0J

Theorem
For any finite enough 2-category X we have x(MH?(X)) = Magpag (X).

Proof Tanaka (2014) showed x(BX) = Magy,5(X). Combine with the lemma. O

Theorem
For any finite enough locally metric category X we have x(MH?(X)) = Magpag (X).

Proof uses facts about spectral sequences, plus simple linear algebra. O



MH? categorifies iterated magnitude

magnitude
Magp,g - 2VCat — R

enrich]

magnitude
Mag, : VCat — R

enrichw\

size homomorphism

#: (V7®) - (Ra')

categorify

categorify

categorify

magnitude homology
MH? : 2V Cat — AN

Ien rich

magnitude homology
MH?* : VCat — AN

Tenrich

size functor

Y (V,®) — (A®)




Some classes of examples

approximate categorical structures
Aliouche & Simpson (2017), Tholen & Wang (2020)

Met-categories

locally posetal 2-cats

strict

2-groups

strict 2-categories

strict n-categories

iterated enrichment
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Deloopings, suspensions and “spheres”
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Deloopings

Let G be a group and N a normal subgroup of G.
The delooping of N and G is a 2-category B(N < G):

® there's a single O-cell, o

e 1-cells are elements of G

e 2-cells are elements of N x G

e ‘vertical composition’ is multiplication in N

® ‘horizontal composition’ is multiplication in N x G.

g g g'e
. ﬂ(hag) . (hg') e = o ﬂ(hgh’g’l«,gg’ﬂ

NN
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Recall that group homology says

Ho(G) = Z and Hl(G) = Gab-



Deloopings

Let G be a group and N a normal subgroup of G. Recall that group homology says
The delooping of N and G is a 2-category B(N < G): Ho(G) = Z and Hi(G) = Gup.
® there's a single O-cell, o

e 1-cells are elements of G p i
roposition

Let ¥ : Set — Ab be the free
abelian group functor. Then

e 2_cells are elements of N x G

e ‘vertical composition’ is multiplication in N

‘horizontal composition’ is multiplication in N x G.
¢ g'e MHZ(B(N < G)) =Z

(H.g") = . ﬂ(hgh’g’l«,gg’ﬂ and
MHE(B(N < G)) = (G/N),,

(hg) ]

)
%

hgh'g’



Suspensions and “spheres”

Let X be any strict (n — 1)-category.

Definition

The suspension of X is a strict n-category ['X with
o Ob(rX) = {07 *}

° [X(o,%) ~X

o [X(x,0) ~

° [X(o,0) ~ 1~ X(x,x).

)




Suspensions and “spheres”

Let X be any strict (n — 1)-category.

Definition

The suspension of X is a strict n-category ['X with
® ob(I'X) = {e, =}

° I-X(o, *) ~ X

° rX(*, o) ~

° rX(.,.) ~1~ I_X(*,*)

Example

Set S® = {A, A}. For each n >0 let S" = S"1,
Then S" is the strict n-category with two parallel
k-cells in every dimension k < n.

0

S

*

SZ



Suspensions and “spheres”

Let X be any strict (n — 1)-category.

Definition

The suspension of X is a strict n-category ['X with

Ob(rX) = {o, *}

X(e, %) ~ X

X (x,0) ~

° rX(o, o) ~1~ I_X(*,*)

Example

Set S® = {A, A}. For each n >0 let S" = S"1,
Then S" is the strict n-category with two parallel

k-cells in every dimension k < n.

Proposition

MH] behaves with respect to
suspension of (n — 1)-cats as
singular homology behaves with
respect to topological suspension.

Corollary

7 ifk=0
MHP(S") = { ! 1

0 otherwise.

9

0
.
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What is a hole in a locally metric category?



The magnitude nerve of a metric space

MH*

Met 5% [A%P, Ab®+] —Cs Ch(AbR+) oy ApRexN

For a metric space X the magnitude nerve is given in degrees n€ N and £ € R, by

n—1
Z - {(p07 .. -7pn) | each pi € X and Z d(piapf-i-l) = E} .
i=0
The face maps are given on generators by

5;.,(,00, .. '7pn) = (pOa <oy Pi—15 Pit1, - - 7pn)

if d(pi_1,p;) + d(pi,pis1) = d(pi—1,pi+1), and 8! (po, ..., pn) = 0 otherwise.



The magnitude nerve of a locally metric category

MH?

MetCat VB, [A0p 5 Aop. AbE+] 928, [p0p ApE+] €y CL(ABR+) ey ApRexN
[ ; ] [A°P, ] ( )

\/

MB?

For a Met-category X the magnitude nerve is given in degrees n€ N and £ € R, by

foo fio fa—1.0 .
o N S VT e
Z - X0 X T X2 ot Xpe1 7 Xn | Z Z d(fpq, fp,q+1) =L
\\:_/\ \\_/\ u p=04g=0
fon fin fnfl,n
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A gap of width ¢ in X is an equivalence class of irreducible pairs of arrows: .
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Gaps

A gap of width 7 in X is an equivalence class of irreducible pairs of arrows: T}y

hof G

®_> A pair is reducible if

hog ® we can tighten it by composing with another arrow
¢ » if (f,g) can't be tightened, call it tight
x@y ® or we can bridge it with an arrow strictly between f and g

» if (f,g) can't be bridged, call it adjacent

® or we can split it into two strictly smaller pairs
TN T . , . . .
x <tz <ty » if (f,g) can't be split, call it simple.
N N

A gap is a class of simple, tight, adjacent pairs under the equivalence relation gen'd by

f hof fok

X@y ~ x®z and W@y ~ x@y

g hog gok



The magnitude homology of a locally metric category

Theorem
Let X be a locally metric category in which all the hom-spaces are separated.

In real grading 0, the magnitude homology of X is the homology of its underlying
ordinary category X:

MH?(X) = H,(X).

In real gradings ¢ > 0, the first three magnitude homology groups are given by

Z - {gaps of width ¢ in X} k = 2.



Conclusion

A hole in a locally metric category is a gap: a class of pairs of parallel arrows that
cannot be pulled tighter; cannot be bridged; and cannot be split into smaller gaps.
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