Strict monoidal categories are monoids in what category?

Jesse Sigal

LFCS School of Informatics

CLL, 27 October 2021

Introduction

- I was creating a presentation of a strict symmetric monoidal category (specifically a PRO), but was unhappy with my axiom schemas.
- While generalizing strict SMCs, I came across this characterization which happened to be exactly what I needed! The approach examined here is due to Soichiro Fujii.¹
- There is another approach characterizing strict monoidal categories as monads in the bicategory of spans on the category of monoids.

¹S. Fujii, 'A unified framework for notions of algebraic theory', Theory and Applications of Categories, vol. 34, pp. 1246–1316, Nov. 2019.

Key idea

- For a strict monoidal category *M*, the homset *M*(−,=): N^{op} × N → Set is a lax monoidal functor which is also a monoid with respect to profunctor composition ◇ in a manner respecting the lax structure.
- Conversely, a lax endo-profunctor on N which is a monoid with respect to \$\phi\$ is induces an identity-on-objects functor from N which strictly preserves the monoidal structure.

Lax monoidal functors

Definition

Let $(\mathcal{A}, \otimes_{\mathcal{A}}, I_{\mathcal{A}})$ and $(\mathcal{B}, \otimes_{\mathcal{B}}, I_{\mathcal{B}})$ be monoidal categories. A *lax monoidal functor* $F : \mathcal{A} \to \mathcal{B}$ is a functor from \mathcal{A} to \mathcal{B} (also denoted F) as well as

$$\eta_{\mathsf{F}} \colon I_{\mathcal{B}} \to \mathsf{F}(I_{\mathcal{A}}) \qquad \mu_{\mathsf{F}} \colon \mathsf{F}(X) \otimes_{\mathcal{B}} \mathsf{F}(Y) \to \mathsf{F}(X \otimes_{\mathcal{A}} Y)$$

such that the following diagrams commute:

Monoidal natural transformation

Definition

Let $(\mathcal{A}, \otimes_{\mathcal{A}}, I_{\mathcal{A}})$ and $(\mathcal{B}, \otimes_{\mathcal{B}}, I_{\mathcal{B}})$ be monoidal categories and (F, η_F, μ_F) and (G, η_G, μ_G) be lax monoidal functors from \mathcal{A} to \mathcal{B} . A monoidal natural transformation $\theta \colon F \Rightarrow G$ is a natural transformation from F to G (also denoted θ) such that the following diagrams commute:

$MonCAT_{lax}(N^{op} \times N, Set)$

Definition

For monoidal categories $(\mathcal{A}, \otimes_{\mathcal{A}}, I_{\mathcal{A}})$ and $(\mathcal{B}, \otimes_{\mathcal{B}}, I_{\mathcal{B}})$, we write **MonCAT**_{lax} $(\mathcal{A}, \mathcal{B})$ for the category which has lax monoidal functors from \mathcal{A} to \mathcal{B} as objects and monoidal natural transformations as morphisms.

Proposition

The functor $\mathsf{hom}_N\colon N^{\mathsf{op}}\times N\to\mathsf{Set}$ is lax monoidal with

 $\eta \colon 1 \to \mathsf{hom}_{\mathsf{N}}(0,0), \, * \mapsto \mathsf{id}$

$$\mu \colon \mathsf{hom}_{\mathsf{N}}(a_1, b_1) imes \mathsf{hom}_{\mathsf{N}}(a_2, b_2) o \mathsf{hom}_{\mathsf{N}}(a_1 + a_2, b_1 + b_2)
onumber \ (f_1, f_2) \mapsto f_1 + f_2$$

Profunctor composition is lax compatible

Definition

Let $S, T: N^{op} \times N \rightarrow Set$, then we define the *profunctor composition* of S and T by

$$(S \diamond T)(a,c) := \int^b T(a,b) \times S(b,c)$$

Lemma

Suppose S, T: $N^{op} \times N \rightarrow Set$ are lax monoidal. Then $S \diamond T$ is lax monoidal with

$$\eta_{S\diamond T}\colon 1 o 1 imes 1 imes 1 imes 0,0) imes \mathcal{T}(0,0) o \int^b \mathcal{T}(0,b) imes \mathcal{S}(b,0)\cong (S\diamond T)(0,0)$$

$$\mu_{S \diamond T} \colon \left(\int^{b_1} T(a_1, b_1) \times S(b_1, c_1) \right) \times \left(\int^{b_2} T(a_2, b_2) \times S(b_2, c_2) \right)$$

$$\cong \int^{b_1, b_2} T(a_1, b_1) \times S(b_1, c_1) \times T(a_2, b_2) \times S(b_2, c_2)$$

$$\cong \int^{b_1, b_2} T(a_1, b_1) \times T(a_2, b_2) \times S(b_1, c_1) \times S(b_2, c_2)$$

$$\xrightarrow{\int \mu_T \times \mu_S} \int^{b_1, b_2} T(a_1 + a_2, b_1 + b_2) \times S(b_1 + b_2, c_1 + c_2)$$

$$\cong \int^{b_1, b_2, x, y} T(a_1 + a_2, x) \times \hom_N(x, b_1 + b_2) \times \hom_N(b_1 + b_2, y) \times S(y, c_1 + c_2)$$

$$\xrightarrow{\int \operatorname{id} \times \circ \times \operatorname{id}} \int^{x, y} T(a_1 + a_2, x) \times \hom_N(x, y) \times S(y, c_1 + c_2)$$

$$\cong \int^b T(a_1 + a_2, b) \times S(b, c_1 + c_2)$$

Bringing it all together

Lemma

The associator and unitors for profunctor composition are monoidal natural transformations.

Lemma

 $(MonCAT_{lax}(N^{op} \times N, Set), \diamond, hom_N)$ is a monoidal category.

Theorem

Monoids in (MonCAT_{lax}($N^{op} \times N$, Set), \diamond , hom_N) are equivalent to PROs.

The upside: My generalization replaces Set, and thus clearly explains in what sense it is actually a generalization!