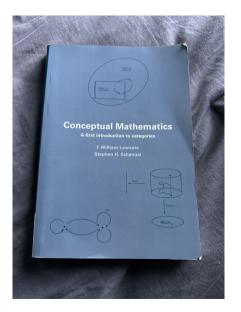
Entropy, Diversity and Magnitude

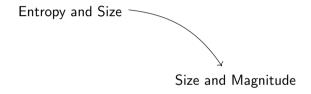
Emily Roff University of Edinburgh

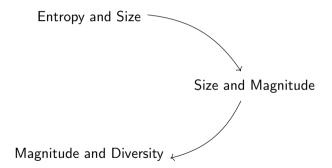
Count Me In Research Experiences for Undergraduates July 2024, Edinburgh

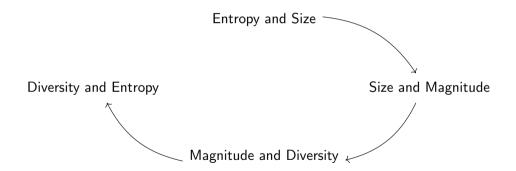
Slides at https://www.maths.ed.ac.uk/~emilyroff/CountMeIn.pdf

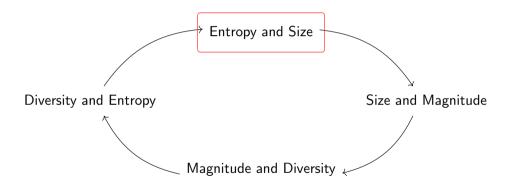


Entropy and Size

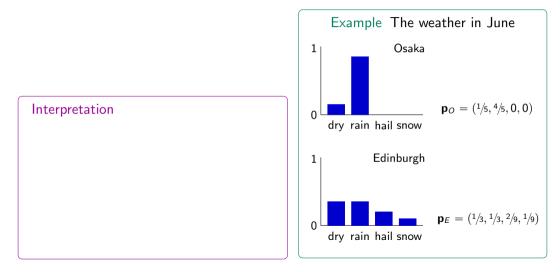








Fix a finite set X, and let $\mathcal{P}(X)$ denote the set of probability distributions on X.



Fix a finite set X, and let $\mathcal{P}(X)$ denote the set of probability distributions on X.

The **Shannon entropy** of $\mathbf{p} \in \mathcal{P}(X)$ is Example The weather in June $H(\mathbf{p}) = \sum_{\substack{x \in X \\ x \in X}} \mathbf{p}(x) \log \left(\frac{1}{\mathbf{p}(x)}\right).$ Osaka 1 $\mathbf{p}_O = (\frac{1}{5}, \frac{4}{5}, 0, 0)$ Interpretation dry rain hail snow Edinburgh 1 $\mathbf{p}_E = (\frac{1}{3}, \frac{1}{3}, \frac{2}{9}, \frac{1}{9})$ dry rain hail snow

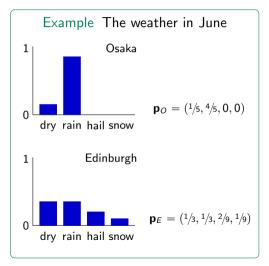
Fix a finite set X, and let $\mathcal{P}(X)$ denote the set of probability distributions on X.

The **Shannon entropy** of $\mathbf{p} \in \mathcal{P}(X)$ is

$$H(\mathbf{p}) = \sum_{\substack{x \in X \\ \mathbf{p}(x) \neq 0}} \mathbf{p}(x) \log \left(\frac{1}{\mathbf{p}(x)}\right).$$

Interpretation

log(1/p(x)) is the 'surprisal' of event x occurring: it's 0 if p(x) = 1, and the less likely x is, the larger the surprisal.



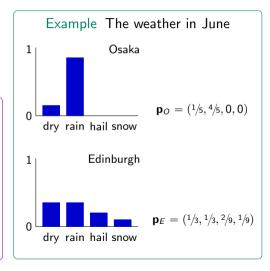
Fix a finite set X, and let $\mathcal{P}(X)$ denote the set of probability distributions on X.

The **Shannon entropy** of $\mathbf{p} \in \mathcal{P}(X)$ is

$$H(\mathbf{p}) = \sum_{\substack{x \in X \\ \mathbf{p}(x) \neq 0}} \mathbf{p}(x) \log \left(\frac{1}{\mathbf{p}(x)}\right).$$

Interpretation

- log(1/p(x)) is the 'surprisal' of event x occurring: it's 0 if p(x) = 1, and the less likely x is, the larger the surprisal.
- H(**p**) is the average surprisal or expected suprisal of events in X according to **p**.



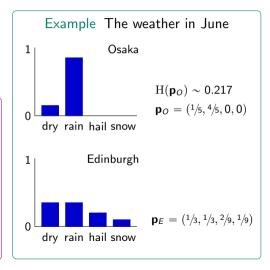
Fix a finite set X, and let $\mathcal{P}(X)$ denote the set of probability distributions on X.

The **Shannon entropy** of $\mathbf{p} \in \mathcal{P}(X)$ is

$$\mathbf{H}(\mathbf{p}) = \sum_{\substack{x \in \mathbf{X} \\ \mathbf{p}(x) \neq 0}} \mathbf{p}(x) \log \left(\frac{1}{\mathbf{p}(x)}\right).$$

Interpretation

- log(1/p(x)) is the 'surprisal' of event x occurring: it's 0 if p(x) = 1, and the less likely x is, the larger the surprisal.
- H(**p**) is the average surprisal or expected suprisal of events in *X* according to **p**.



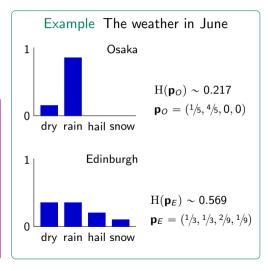
Fix a finite set X, and let $\mathcal{P}(X)$ denote the set of probability distributions on X.

The **Shannon entropy** of $\mathbf{p} \in \mathcal{P}(X)$ is

$$H(\mathbf{p}) = \sum_{\substack{x \in X \\ \mathbf{p}(x) \neq 0}} \mathbf{p}(x) \log \left(\frac{1}{\mathbf{p}(x)}\right).$$

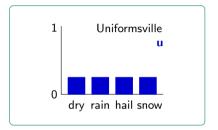
Interpretation

- log(1/p(x)) is the 'surprisal' of event x occurring: it's 0 if p(x) = 1, and the less likely x is, the larger the surprisal.
- H(**p**) is the average surprisal or expected suprisal of events in X according to **p**.



Shannon entropy is maximized by the uniform distribution, **u**. Its entropy is

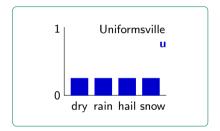
$$\mathrm{H}(\mathbf{u}) = \sum_{x \in \mathbf{X}} \mathbf{u}(x) \log\left(\frac{1}{\mathbf{u}(x)}\right)$$



Shannon entropy is maximized by the uniform distribution, **u**. Its entropy is

$$\begin{split} \mathrm{H}(\mathbf{u}) &= \sum_{x \in X} \mathbf{u}(x) \log \left(\frac{1}{\mathbf{u}(x)} \right) \\ &= \sum_{x \in X} \frac{1}{\# X} \log \left(\# X \right) \end{split}$$

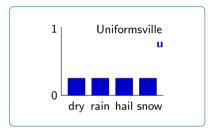
1



Shannon entropy is maximized by the uniform distribution, **u**. Its entropy is

$$H(\mathbf{u}) = \sum_{x \in X} \mathbf{u}(x) \log\left(\frac{1}{\mathbf{u}(x)}\right)$$
$$= \sum_{x \in X} \frac{1}{\#X} \log\left(\#X\right)$$
$$= \log\left(\#X\right).$$

1



Shannon entropy is maximized by the uniform distribution, **u**. Its entropy is

$$H(\mathbf{u}) = \sum_{x \in X} \mathbf{u}(x) \log \left(\frac{1}{\mathbf{u}(x)}\right)$$

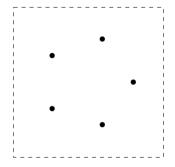
= $\sum_{x \in X} \frac{1}{\#X} \log (\#X)$
= $\log (\#X)$.

Alternatively This is telling us that the cardinality of X is determined by

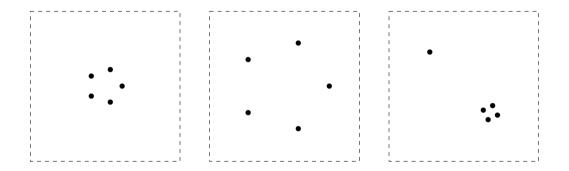
$$#X = \max_{\mathbf{p}\in\mathcal{P}(X)} (\exp \mathrm{H}(\mathbf{p})).$$

This is a very simple variational principle for the size of a finite set.

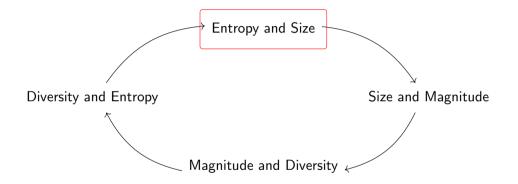
Size

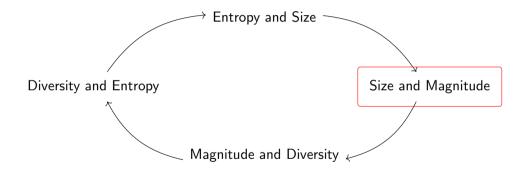


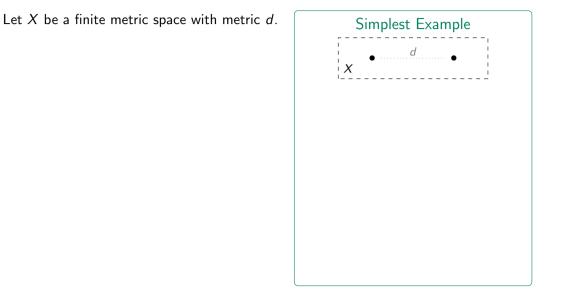
Size



Are these the same size?



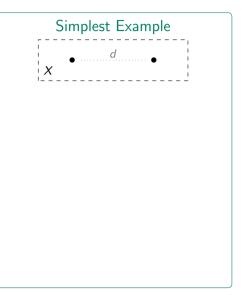




Let X be a finite metric space with metric d. Recipe for Magnitude (Leinster, 2010) 1. Write down the $X \times X$ matrix Z with

 $Z(x,y)=e^{-d(x,y)}.$

This is the **similarity matrix** of *X*.

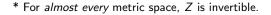


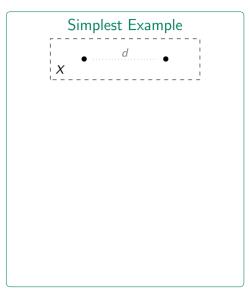
Let X be a finite metric space with metric d. Recipe for Magnitude (Leinster, 2010) 1. Write down the $X \times X$ matrix Z with

 $Z(x,y)=e^{-d(x,y)}.$

This is the **similarity matrix** of X.

2. Invert Z, if you can.*



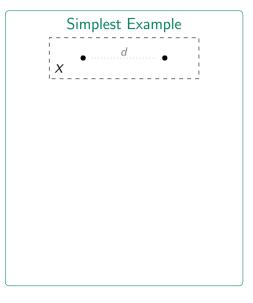


Let X be a finite metric space with metric d. Recipe for Magnitude (Leinster, 2010) 1. Write down the $X \times X$ matrix Z with

 $Z(x,y)=e^{-d(x,y)}.$

This is the **similarity matrix** of X.

- 2. Invert Z, if you can.*
- 3. Add up all the entries of Z^{-1} .



Let X be a finite metric space with metric d. Recipe for Magnitude (Leinster, 2010) 1. Write down the $X \times X$ matrix Z with

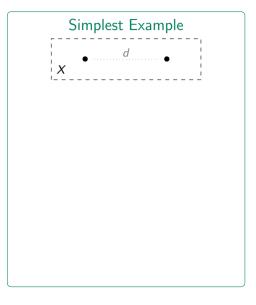
 $Z(x,y)=e^{-d(x,y)}.$

This is the **similarity matrix** of X.

- 2. Invert Z, if you can.*
- 3. Add up all the entries of Z^{-1} .

The magnitude of X is the real number

 $|X| = \sum_{x,y\in X} Z^{-1}(x,y).$



Let X be a finite metric space with metric d. Recipe for Magnitude (Leinster, 2010) 1. Write down the $X \times X$ matrix Z with

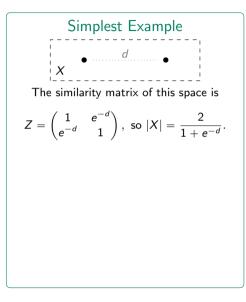
 $Z(x,y)=e^{-d(x,y)}.$

This is the **similarity matrix** of X.

- 2. Invert Z, if you can.*
- 3. Add up all the entries of Z^{-1} .

The magnitude of X is the real number

 $|X| = \sum_{x,y \in X} Z^{-1}(x,y).$



Let X be a finite metric space with metric d. Recipe for Magnitude (Leinster, 2010) 1. Write down the $X \times X$ matrix Z with

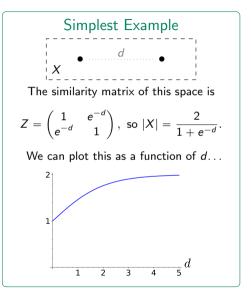
 $Z(x,y)=e^{-d(x,y)}.$

This is the **similarity matrix** of X.

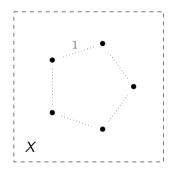
- 2. Invert Z, if you can.*
- 3. Add up all the entries of Z^{-1} .

The **magnitude** of X is the real number

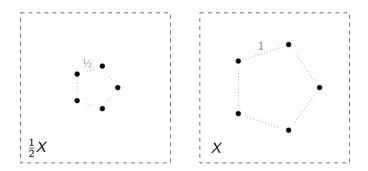
$$|X| = \sum_{x,y\in X} Z^{-1}(x,y).$$



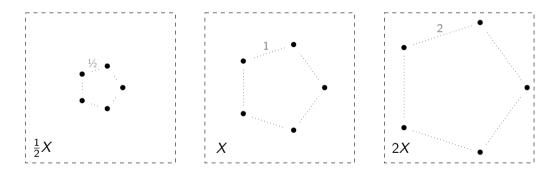
Given a metric space (X, d), for each $t \in (0, \infty)$ we denote by tX the space (X, td).



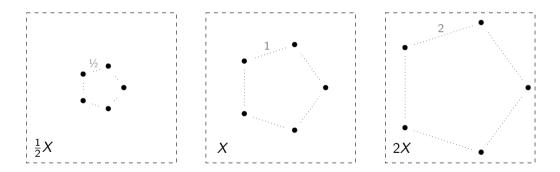
Given a metric space (X, d), for each $t \in (0, \infty)$ we denote by tX the space (X, td).



Given a metric space (X, d), for each $t \in (0, \infty)$ we denote by tX the space (X, td).

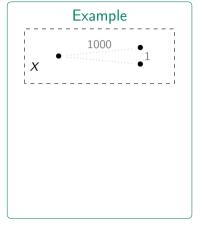


Given a metric space (X, d), for each $t \in (0, \infty)$ we denote by tX the space (X, td).



Think of t as controlling our **viewpoint**: it lets us zoom in and out on X.

The **magnitude function** of a finite metric space X is the function $(0, \infty) \rightarrow \mathbb{R}$ defined by $t \mapsto |tX|$.

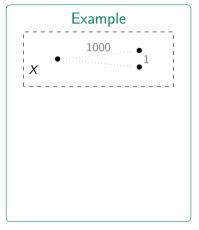


The **magnitude function** of a finite metric space X is the function $(0, \infty) \rightarrow \mathbb{R}$ defined by $t \mapsto |tX|$.

Basic Theorems

• (Leinster, 2010) For every finite metric space,

$$\lim_{t\to\infty}|tX|=\#X.$$



The **magnitude function** of a finite metric space X is the function $(0, \infty) \rightarrow \mathbb{R}$ defined by $t \mapsto |tX|$.

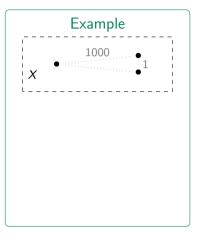
Basic Theorems

• (Leinster, 2010) For every finite metric space,

$$\lim_{t\to\infty}|tX|=\#X.$$

• (R.+Yoshinaga, 2023) For *almost* every finite space,

$$\lim_{t\to 0} |tX| = 1.$$



The **magnitude function** of a finite metric space X is the function $(0, \infty) \rightarrow \mathbb{R}$ defined by $t \mapsto |tX|$.

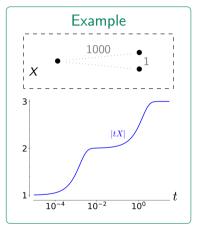
Basic Theorems

• (Leinster, 2010) For every finite metric space,

$$\lim_{t\to\infty}|tX|=\#X.$$

• (R.+Yoshinaga, 2023) For almost every finite space,

$$\lim_{t\to 0} |tX| = 1.$$



The Effective Number of Points in a Space

The **magnitude function** of a finite metric space X is the function $(0, \infty) \rightarrow \mathbb{R}$ defined by $t \mapsto |tX|$.

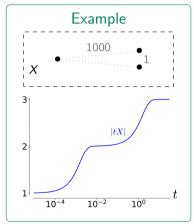
Basic Theorems

• (Leinster, 2010) For every finite metric space,

$$\lim_{t\to\infty}|tX|=\#X.$$

• (R.+Yoshinaga, 2023) For *almost* every finite space,

$$\lim_{t\to 0} |tX| = 1.$$



Slogan Magnitude records the effective number of points in X as the scale varies.

ldea 1

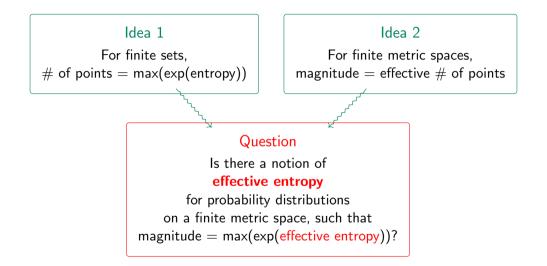
For finite sets, # of points = max(exp(entropy))

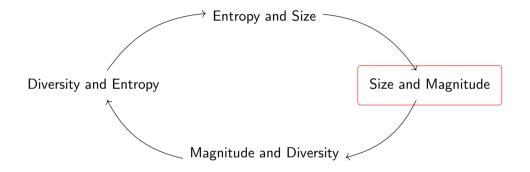
ldea 1

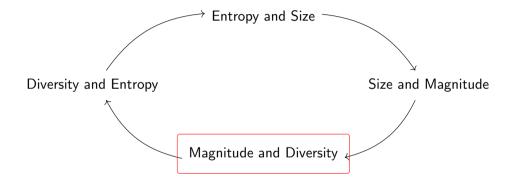
For finite sets, # of points = max(exp(entropy))

Idea 2

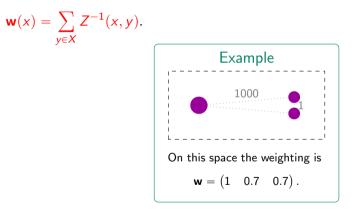
For finite metric spaces, magnitude = effective # of points







Definition The weighting on a finite metric space X is the vector $\mathbf{w} \in \mathbb{R}^X$ defined by

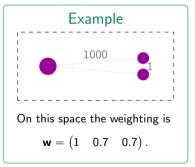


Definition The weighting on a finite metric space X is the vector $\mathbf{w} \in \mathbb{R}^X$ defined by

$$\mathbf{w}(x) = \sum_{y \in X} Z^{-1}(x, y).$$

Key Properties

1. The weighting is the vector of row sums in Z^{-1} , so $|X| = \sum_{x \in X} \mathbf{w}(x)$



Definition The weighting on a finite metric space X is the vector $\mathbf{w} \in \mathbb{R}^X$ defined by

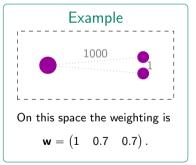
$$\mathbf{w}(x) = \sum_{y \in X} Z^{-1}(x, y).$$

Key Properties

1. The weighting is the vector of row sums in Z^{-1} , so $|X| = \sum_{x \in X} \mathbf{w}(x)$

$$= \sum_{x \in X} \mathbf{w}(x)$$

and $Z\mathbf{w} = \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix}$



Definition The weighting on a finite metric space X is the vector $\mathbf{w} \in \mathbb{R}^X$ defined by

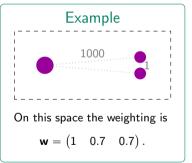
$$\mathbf{w}(x) = \sum_{y \in X} Z^{-1}(x, y).$$

Key Properties

1. The weighting is the vector of row sums in Z^{-1} , so $|X| = \sum_{x \in X} \mathbf{w}(x)$

and
$$Z\mathbf{w} = \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix}$$

so $|X| = \mathbf{w}^T Z \mathbf{w}$.



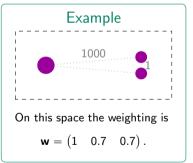
Definition The weighting on a finite metric space X is the vector $\mathbf{w} \in \mathbb{R}^X$ defined by

$$\mathbf{w}(x) = \sum_{y \in X} Z^{-1}(x, y).$$

Key Properties

1. The weighting is the vector of row sums in Z^{-1} , so

$$\begin{split} |X| &= \sum_{x \in X} \mathbf{w}(x) \\ \text{and } Z \mathbf{w} &= \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix} \\ \text{so } |X| &= \mathbf{w}^T Z \mathbf{w}. \end{split}$$



2. If $\mathbf{w}(x) \ge 0$ for all $x \in X$ then $\frac{1}{|X|} \cdot \mathbf{w}$ is a probability distribution on X.

Let X be such that Z is positive definite, meaning $\mathbf{v}^T Z \mathbf{v} > 0$ for all $\mathbf{v} \in \mathbb{R}^X \setminus \{\mathbf{0}\}$.

In this case Z is *certain* to be invertible.

Let X be such that Z is positive definite, meaning $\mathbf{v}^T Z \mathbf{v} > 0$ for all $\mathbf{v} \in \mathbb{R}^X \setminus \{\mathbf{0}\}$.

Proposition Then the magnitude of X is given by

$$|X| = \sup_{\substack{\mathbf{v} \in \mathbb{R}^{X} \\ \mathbf{v} \neq \mathbf{0}}} \frac{\left(\sum_{x \in X} \mathbf{v}(x)\right)^{2}}{\mathbf{v}^{T} Z \mathbf{v}}$$

In this case Z is *certain* to be invertible.

and a vector **v** attains the supremum if and only if **v** = $\alpha \cdot \mathbf{w}$ for the weighting **w** on X and some $\alpha \in \mathbb{R} \setminus \{0\}$.

Let X be such that Z is positive definite, meaning $\mathbf{v}^T Z \mathbf{v} > 0$ for all $\mathbf{v} \in \mathbb{R}^X \setminus \{\mathbf{0}\}$.

Proposition Then the magnitude of X is given by

$$|X| = \sup_{\substack{\mathbf{v} \in \mathbb{R}^{X} \\ \mathbf{v} \neq \mathbf{0}}} \frac{\left(\sum_{x \in X} \mathbf{v}(x)\right)^{2}}{\mathbf{v}^{T} Z \mathbf{v}}$$

and a vector **v** attains the supremum if and only if $\mathbf{v} = \alpha \cdot \mathbf{w}$ for the weighting **w** on X and some $\alpha \in \mathbb{R} \setminus \{0\}$. In this case Z is *certain* to be invertible.

Proof idea. Since Z is positive definite it defines an inner product on \mathbb{R}^X , so we can apply the Cauchy–Schwartz inequality.

Let X be such that Z is positive definite, meaning $\mathbf{v}^T Z \mathbf{v} > 0$ for all $\mathbf{v} \in \mathbb{R}^X \setminus \{\mathbf{0}\}$.

Proposition Then the magnitude of X is given by

$$|X| = \sup_{\substack{\mathbf{v} \in \mathbb{R}^{X} \\ \mathbf{v} \neq \mathbf{0}}} \frac{\left(\sum_{x \in X} \mathbf{v}(x)\right)^{2}}{\mathbf{v}^{T} Z \mathbf{v}}$$

and a vector **v** attains the supremum if and only if **v** = $\alpha \cdot \mathbf{w}$ for the weighting **w** on X and some $\alpha \in \mathbb{R} \setminus \{0\}$.

Corollary If the weighting on X is non-negative, then

$$|X| = \max_{\mathbf{p}\in\mathcal{P}(X)} \frac{1}{\mathbf{p}^T Z \mathbf{p}} .$$

In this case Z is *certain* to be invertible.

Proof idea. Since Z is positive definite it defines an inner product on \mathbb{R}^X , so we can apply the Cauchy–Schwartz inequality.

Let X be such that Z is positive definite, meaning $\mathbf{v}^T Z \mathbf{v} > 0$ for all $\mathbf{v} \in \mathbb{R}^X \setminus \{\mathbf{0}\}$.

Proposition Then the magnitude of X is given by

$$|X| = \sup_{\substack{\mathbf{v} \in \mathbb{R}^{X} \\ \mathbf{v} \neq \mathbf{0}}} \frac{\left(\sum_{x \in X} \mathbf{v}(x)\right)^{2}}{\mathbf{v}^{T} Z \mathbf{v}}$$

and a vector **v** attains the supremum if and only if **v** = $\alpha \cdot \mathbf{w}$ for the weighting **w** on X and some $\alpha \in \mathbb{R} \setminus \{0\}$.

Corollary If the weighting on X is non-negative, then

$$|X| = \max_{\mathbf{p}\in\mathcal{P}(X)} \frac{1}{\mathbf{p}^{\mathsf{T}}Z\mathbf{p}}.$$

In this case Z is *certain* to be invertible.

Proof idea. Since Z is positive definite it defines an inner product on \mathbb{R}^X , so we can apply the Cauchy–Schwartz inequality.

Proof. The supremum in the Proposition is attained by the probability distribution $\frac{1}{|X|} \cdot \mathbf{w}$.

Let X be such that Z is positive definite, meaning $\mathbf{v}^T Z \mathbf{v} > 0$ for all $\mathbf{v} \in \mathbb{R}^X \setminus \{\mathbf{0}\}$.

Proposition Then the magnitude of X is given by

$$|X| = \sup_{\substack{\mathbf{v} \in \mathbb{R}^{X} \\ \mathbf{v} \neq \mathbf{0}}} \frac{\left(\sum_{x \in X} \mathbf{v}(x)\right)^{2}}{\mathbf{v}^{T} Z \mathbf{v}}$$

and a vector **v** attains the supremum if and only if $\mathbf{v} = \alpha \cdot \mathbf{w}$ for the weighting **w** on X and some $\alpha \in \mathbb{R} \setminus \{0\}$.

Corollary If the weighting on X is non-negative, then

$$|X| = \max_{\mathbf{p} \in \mathcal{P}(X)} \frac{1}{\mathbf{p}^T Z \mathbf{p}}.$$

Question What does this value tell us about p?

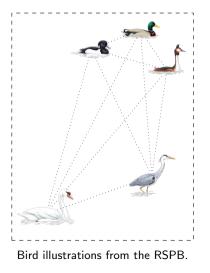
In this case Z is *certain* to be invertible.

Proof idea. Since Z is positive definite it defines an inner product on \mathbb{R}^X , so we can apply the Cauchy–Schwartz inequality.

Proof. The supremum in the Proposition is attained by the probability distribution $\frac{1}{|X|} \cdot \mathbf{w}$.

Change of Scene!

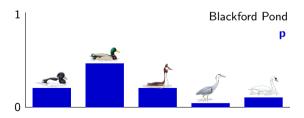
Let's suppose X is a set of biological species, and the metric d on X records differences among species.

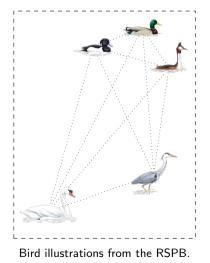


Change of Scene!

Let's suppose X is a set of biological species, and the metric d on X records differences among species.

An ecological community comprising members of species in X can be modelled by a probability distribution **p** on X, where **p**(x) is the relative abundance of species x in the community.

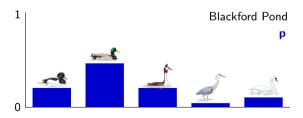


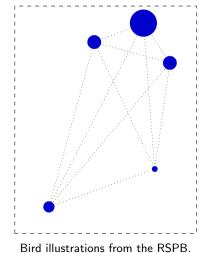


Change of Scene!

Let's suppose X is a set of biological species, and the metric d on X records differences among species.

An ecological community comprising members of species in X can be modelled by a probability distribution **p** on X, where **p**(x) is the relative abundance of species x in the community.





Quantity	Interpretation	
Z(a, b)	The similarity between species a and b	
$(Z\mathbf{p})(\mathbf{a})$		$ //X_{V} $
$\mathbf{p}^T Z \mathbf{p}$		
$1/\mathbf{p}^{\mathcal{T}} Z \mathbf{p}$		•

Quantity	Interpretation	
Z(a, b)	The similarity between species a and b	
$(Z\mathbf{p})(\mathbf{a})$	The typicality of species a in community p	
$\mathbf{p}^T Z \mathbf{p}$		
$1/\mathbf{p}^{\mathcal{T}} Z \mathbf{p}$		

Interpretation / For each species $a \in X$,

$$(Z\mathbf{p})(a) = \sum_{b \in X} \mathbf{p}(b)e^{-d(a,b)}$$

tells us the expected similarity between a member of species a and a random member of the community: the typicality of a in **p**.

Quantity	Interpretation		
Z(a, b)	The similarity between species a and b		
$(Z\mathbf{p})(a)$	$The_{\mathbf{z}}typicality$ of species <i>a</i> in community p		- <i>17</i> XV-
$\mathbf{p}^T Z \mathbf{p}$	The homogeneity, of community ${f p}$		
$1/\mathbf{p}^{T}Z\mathbf{p}$			
Interpretation For each species $a \in X$, $(Z\mathbf{p})(a) = \sum_{b \in X} \mathbf{p}(b)e^{-d(a,b)}$ tells us the expected similarity between a member of species a and a random member of the community: the typicality of a in \mathbf{p} .		So $\mathbf{p}^T Z \mathbf{p} = \sum_a \mathbf{p}(a)$ average typicality of n munity: the homogen	nembers of the com-

Quantity	Interpretation		
Z(a, b)	The similarity between species a and b		
$(Z\mathbf{p})(a)$	The _x typicality of species <i>a</i> in community p		
$\mathbf{p}^T Z \mathbf{p}$	The homogeneity, of community ${f p}$		
$1/\mathbf{p}^{T}Z\mathbf{p}$	The diversity of	çommunity p	
Interpretation For each species $a \in X$, $(Z\mathbf{p})(a) = \sum_{b \in X} \mathbf{p}(b)e^{-d(a,b)}$ tells us the expected similarity between a member of species <i>a</i> and a random member of the community: the typicality of <i>a</i> in p .		So $\mathbf{p}^T Z \mathbf{p} = \sum_a \mathbf{p}(a)$ average typicality of n munity: the homogen And the less homogen is, the more diverse w	nembers of the com- neity of p .

Progress

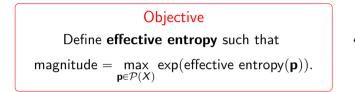
$\label{eq:objective} \begin{array}{l} \mbox{Objective} \\ \mbox{Define effective entropy such that} \\ \mbox{magnitude} = \max_{\ensuremath{\mathbf{p}} \in \mathcal{P}(X)} \exp(\mbox{effective entropy}(\ensuremath{\mathbf{p}})). \end{array}$

So Far

If X has positive-definite similarity matrix and non-negative weighting, then

$$|X| = \max_{\mathbf{p} \in \mathcal{P}(X)} \frac{1}{\mathbf{p}^T Z \mathbf{p}} = \max_{\mathbf{p} \in \mathcal{P}(X)} (\text{diversity}(\mathbf{p})).$$

Progress



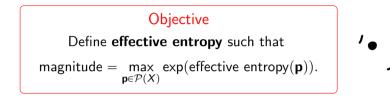
"I really don't see what diversity has to do with entropy."

So Far

If X has positive-definite similarity matrix and non-negative weighting, then

$$|X| = \max_{\mathbf{p} \in \mathcal{P}(X)} \frac{1}{\mathbf{p}^T Z \mathbf{p}} = \max_{\mathbf{p} \in \mathcal{P}(X)} (\text{diversity}(\mathbf{p})).$$

Progress



"I really don't see what diversity has to do with entropy."

"I'm an ecologist, and that's *not* what / mean by diversity!"

So Far If X has positive-definite similarity matrix and non-negative weighting, then $|X| = \max_{\mathbf{p} \in \mathcal{P}(X)} \frac{1}{\mathbf{p}^T Z \mathbf{p}} = \max_{\mathbf{p} \in \mathcal{P}(X)} (\text{diversity}(\mathbf{p})).$

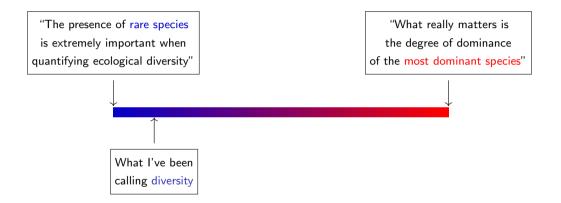
A Spectrum of Perspectives on Diversity

"The presence of rare species is extremely important when quantifying ecological diversity"

A Spectrum of Perspectives on Diversity

"The presence of rare species is extremely important when quantifying ecological diversity" "What really matters is the degree of dominance of the most dominant species"

A Spectrum of Perspectives on Diversity

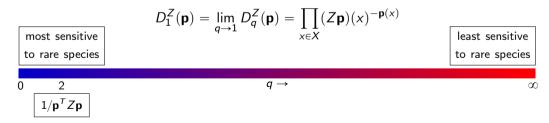


A Spectrum of Diversity Indices

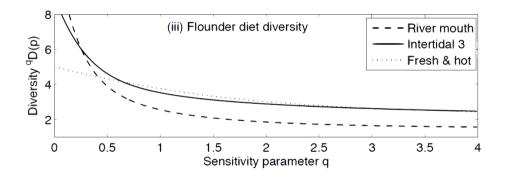
Definition (Leinster & Cobbold, 2012) Let X be a finite metric space. For each $q \in \mathbb{R}_{\geq 0} \setminus \{1\}$, the diversity of order q of $\mathbf{p} \in \mathcal{P}(X)$ is the real number

$$D_q^{Z}(\mathbf{p}) = \left(\sum_{x \in X} \mathbf{p}(x)(Z\mathbf{p})(x)^{q-1}\right)^{\frac{1}{1-q}}$$

The diversity of order 1 is defined to make $D_q^Z(\mathbf{p})$ continuous in q:



Example Diversity Profiles



Leinster & Cobbold, Measuring Diversity..., Ecology 93 (2012)

Theorem (Leinster & Meckes, 2015)

Let X be a finite metric space. Then:

- 1. There exists a probability distribution on X that maximizes $D_q^Z(-)$ for all $q \ge 0$.
- 2. The value $\max_{\mathbf{p}} D_q^Z(\mathbf{p})$ is independent of q.

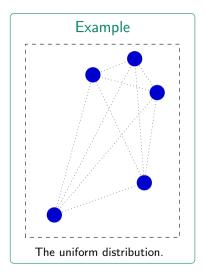
The uniform distribution is usually *not* maximizing. Instead, maximizing distributions are **balanced**: they make all points in X equally typical.

Theorem (Leinster & Meckes, 2015)

Let X be a finite metric space. Then:

- 1. There exists a probability distribution on X that maximizes $D_q^Z(-)$ for all $q \ge 0$.
- 2. The value $\max_{\mathbf{p}} D_q^Z(\mathbf{p})$ is independent of q.

The uniform distribution is usually *not* maximizing. Instead, maximizing distributions are **balanced**: they make all points in X equally typical.

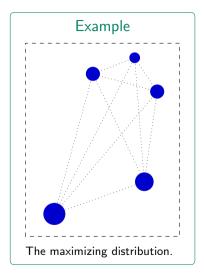


Theorem (Leinster & Meckes, 2015)

Let X be a finite metric space. Then:

- 1. There exists a probability distribution on X that maximizes $D_q^Z(-)$ for all $q \ge 0$.
- 2. The value $\max_{\mathbf{p}} D_q^Z(\mathbf{p})$ is independent of q.

The uniform distribution is usually *not* maximizing. Instead, maximizing distributions are **balanced**: they make all points in X equally typical.



Theorem (Leinster & Meckes, 2015)

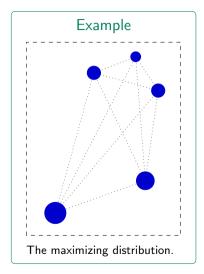
Let X be a finite metric space. Then:

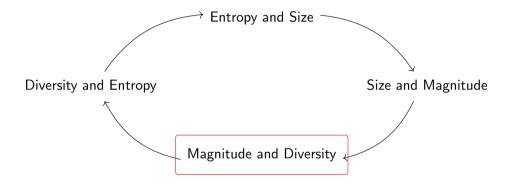
- 1. There exists a probability distribution on X that maximizes $D_q^Z(-)$ for all $q \ge 0$.
- 2. The value $\max_{\mathbf{p}} D_q^Z(\mathbf{p})$ is independent of q.

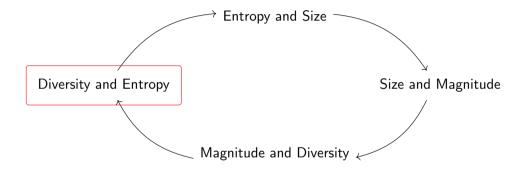
The uniform distribution is usually *not* maximizing. Instead, maximizing distributions are **balanced**: they make all points in X equally typical.

Corollary Suppose X is such that Z is positive definite and the weighting \mathbf{w} is non-negative. Then

$$|X| = \max_{\mathbf{p}\in\mathcal{P}(X)} D_q^Z(\mathbf{p}) \text{ for } \underline{\text{every }} q \ge 0.$$







Let
$$Z_t(x,y) = e^{-td(x,y)}$$
; then $\lim_{t\to\infty} Z_t = \begin{pmatrix} 1 & 0 \\ & \ddots \\ 0 & 1 \end{pmatrix}$.

Let
$$Z_t(x,y) = e^{-td(x,y)}$$
; then $\lim_{t\to\infty} Z_t = \begin{pmatrix} 1 & 0 \\ & \ddots \\ 0 & 1 \end{pmatrix}$.

Theorem (Leinster, 2010) For every finite space X,

$$\lim_{t\to\infty}|tX|=\#X$$

Intuition By sending t to ∞ , we zoom in so close that we forget the metric on X: all its points look isolated.

Let
$$Z_t(x,y) = e^{-td(x,y)}$$
; then $\lim_{t\to\infty} Z_t = \begin{pmatrix} 1 & 0 \\ & \ddots \\ 0 & 1 \end{pmatrix}$.

Theorem (Leinster, 2010) For every finite space X,

$$\lim_{t\to\infty}|tX|=\#X$$

Intuition By sending t to ∞ , we zoom in so close that we forget the metric on X: all its points look isolated.

Theorem For every probability distribution \mathbf{p} on X,

 $\lim_{t\to\infty}\log D_1^{Z_t}(\mathbf{p})=\mathrm{H}(\mathbf{p}).$

Let
$$Z_t(x,y) = e^{-td(x,y)}$$
; then $\lim_{t\to\infty} Z_t = \begin{pmatrix} 1 & 0 \\ & \ddots \\ 0 & 1 \end{pmatrix}$.

Theorem (Leinster, 2010) For every finite space X,

$$\lim_{t\to\infty}|tX|=\#X$$

Intuition By sending t to ∞ , we zoom in so close that we forget the metric on X: all its points look isolated.

Theorem For every probability distribution \mathbf{p} on X,

 $\lim_{t\to\infty}\log D_1^{Z_t}(\mathbf{p})=\mathrm{H}(\mathbf{p}).$

Proof idea.
$$D_1^Z(\mathbf{p})$$
 is
continuous in Z, so
$$\lim_{t \to \infty} \log D_1^{Z_t}(\mathbf{p})$$
$$= \log D_1^{\mathbb{I}}(\mathbf{p})$$
$$= \log \left(\prod \mathbf{p}(x)^{-\mathbf{p}(x)} \right)$$
$$= H(\mathbf{p}).$$

Let
$$Z_t(x,y) = e^{-td(x,y)}$$
; then $\lim_{t\to\infty} Z_t = \begin{pmatrix} 1 & 0 \\ & \ddots \\ 0 & 1 \end{pmatrix}$.

Theorem (Leinster, 2010) For every finite space X,

$$\lim_{t\to\infty}|tX|=\#X$$

Intuition By sending t to ∞ , we zoom in so close that we forget the metric on X: all its points look isolated.

Theorem For every probability distribution \mathbf{p} on X,

 $\lim_{t\to\infty}\log D_1^{Z_t}(\mathbf{p})=\mathrm{H}(\mathbf{p}).$

Idea log $D_1^Z(\mathbf{p})$ is the 'effective Shannon entropy' of \mathbf{p} .

Proof idea.
$$D_1^Z(\mathbf{p})$$
 is
continuous in Z, so
$$\lim_{t \to \infty} \log D_1^{Z_t}(\mathbf{p})$$
$$= \log D_1^{\mathbb{I}}(\mathbf{p})$$
$$= \log \left(\prod \mathbf{p}(x)^{-\mathbf{p}(x)} \right)$$
$$= H(\mathbf{p}).$$

The Main Theorem A Variational Principle for Magnitude

Definition The effective entropy of order q of $\mathbf{p} \in \mathcal{P}(X)$ is $H_a^Z(\mathbf{p}) = \log D_a^Z(\mathbf{p})$.

The Main Theorem A Variational Principle for Magnitude

Definition

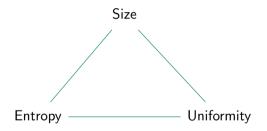
The effective entropy of order q of $\mathbf{p} \in \mathcal{P}(X)$ is $\mathrm{H}_{q}^{Z}(\mathbf{p}) = \log D_{q}^{Z}(\mathbf{p})$.

Theorem

Suppose X has positive definite similarity matrix and non-negative weighting. Then

$$|X| = \max_{\mathbf{p} \in \mathcal{P}(X)} (\exp(\mathrm{H}_q^Z(\mathbf{p})))$$
 for every $q \ge 0$.

Summary



Summary

Thank you.

References

- Leinster. The magnitude of metric spaces. arXiv:1012.5857, 2010; *Documenta Mathematica* 18, 2013.
- Leinster and Cobbold. Measuring diversity: the importance of species similarity. *Ecology* 93, 2012.
- Leinster and Meckes. Maximizing diversity in biology and beyond. arXiv:1512.06314, 2015; *Entropy* 18, 2016.
- Leinster and Roff. The maximum entropy of a metric space. arXiv:1908.11184, 2019; *The Quarterly Journal of Mathematics* 72(4), 2021.
- Roff and Yoshinaga. The small-scale limit of magnitude and the one-point property. arXiv:2312.14497, 2023.