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Entropy

Fix a finite set X , and let PpX q denote the set of probability distributions on X .

The Shannon entropy of p P PpX q is

Hppq “
ÿ

xPX
ppxq‰0

ppxq log

ˆ

1

ppxq

˙

.

Interpretation

‚ logp1{ppxqq is the ‘surprisal’ of event
x occurring: it’s 0 if ppxq “ 1, and
the less likely x is, the larger the
surprisal.

‚ Hppq is the average surprisal or
expected suprisal of events in X
according to p.

Example The weather in June

1

0

Osaka

dry rain hail snow

1

0

Edinburgh

dry rain hail snow

HppOq „ 0.217

pO “ p1{5, 4{5, 0, 0q

HppE q „ 0.569

pE “ p1{3, 1{3, 2{9, 1{9q
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Entropy and Size

Shannon entropy is maximized by the uniform distribution, u. Its entropy is

Hpuq “
ÿ

xPX

upxq log

ˆ

1

upxq

˙

“
ÿ

xPX

1

#X
log p#X q

“ log p#X q .

1

0

Uniformsville
u

dry rain hail snow

Alternatively This is telling us that the cardinality of X is determined by

#X “ max
pPPpX q

pexpHppqq.

This is a very simple variational principle for the size of a finite set.
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The Magnitude of a Finite Metric Space

Let X be a finite metric space with metric d .

Recipe for Magnitude (Leinster, 2010)

1. Write down the X ˆ X matrix Z with

Z px , yq “ e´dpx ,yq.

This is the similarity matrix of X .

2. Invert Z , if you can.*

3. Add up all the entries of Z´1.

The magnitude of X is the real number

|X | “
ÿ

x ,yPX

Z´1px , yq.

* For almost every metric space, Z is invertible.

Simplest Example

‚ ‚
X

d

The similarity matrix of this space is

Z “

ˆ

1 e´d

e´d 1

˙

, so |X | “
2

1` e´d
.

We can plot this as a function of d . . .
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The Viewpoint Parameter

Given a metric space pX , dq, for each t P p0,8q we denote by tX the space pX , tdq.

1
2X

1⁄2 ‚
‚

‚
‚

‚

X

1 ‚

‚

‚

‚

‚

2X

2
‚

‚

‚

‚

‚

Think of t as controlling our viewpoint: it lets us zoom in and out on X .
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The Effective Number of Points in a Space

The magnitude function of a finite metric space X is
the function p0,8q Ñ R defined by t ÞÑ |tX |.

Basic Theorems

‚ (Leinster, 2010) For every finite metric space,

lim
tÑ8

|tX | “ #X .

‚ (R.+Yoshinaga, 2023) For almost every finite space,

lim
tÑ0

|tX | “ 1.

Example

X
‚

‚

‚1000
1

Slogan Magnitude records the effective number of points in X as the scale varies.
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Idea 1

For finite sets,
# of points = max(exp(entropy))

Idea 2

For finite metric spaces,
magnitude = effective # of points

Question

Is there a notion of
effective entropy

for probability distributions
on a finite metric space, such that

magnitude = max(exp(effective entropy))?
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The Weighting on a Metric Space

Definition The weighting on a finite metric space X is the vector w P RX defined by

wpxq “
ÿ

yPX

Z´1px , yq.

Key Properties

1. The weighting is the vector of row sums in Z´1, so

|X | “
ř

xPX wpxq

and Zw “

¨

˚

˝

1
...
1

˛

‹

‚

so |X | “ wTZw.

Example

1000
1

On this space the weighting is

w “
`

1 0.7 0.7
˘

.

2. If wpxq ě 0 for all x P X then 1
|X | ¨w is a probability distribution on X .
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Magnitude as a Maximum

Let X be such that Z is positive definite, meaning vTZv ą 0 for all v P RX zt0u.

Proposition Then the magnitude of X is given by

|X | “ sup
vPRX

v‰0

p
ř

xPX vpxqq2

vTZv

and a vector v attains the supremum if and only if
v “ α ¨w for the weighting w on X and some α P Rzt0u.

Corollary If the weighting on X is non-negative, then

|X | “ max
pPPpX q

1

pTZp
.

Question What does this value tell us about p?

In this case Z is certain
to be invertible.

Proof idea. Since Z
is positive definite it
defines an inner product
on RX , so we can apply
the Cauchy–Schwartz
inequality.

Proof. The supremum
in the Proposition is at-
tained by the probability
distribution 1

|X | ¨w.
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tained by the probability
distribution 1

|X | ¨w.
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Change of Scene!

Let’s suppose X is a set of biological species, and
the metric d on X records differences among species.

An ecological community comprising members of
species in X can be modelled by a probability
distribution p on X , where ppxq is the relative
abundance of species x in the community.

1

0

Blackford Pond

p

Bird illustrations from the RSPB.

https://www.rspb.org.uk/
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Ecological Interpretations

Quantity Interpretation

Z pa, bq The similarity between species a and b

pZpqpaq

The typicality of species a in community p

pTZp

The homogeneity of community p

1{pTZp

The diversity of community p

Interpretation For each species a P X ,

pZpqpaq “
ÿ

bPX

ppbqe´dpa,bq

tells us the expected similarity between a

member of species a and a random member

of the community: the typicality of a in p.

So pTZp “
ř

a ppaqpZpqpaq records the

average typicality of members of the com-

munity: the homogeneity of p.

And the less homogeneous a community

is, the more diverse we consider it to be
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Progress

Objective

Define effective entropy such that

magnitude “ max
pPPpX q

exppeffective entropyppqq.

“I really don’t

see what diversity

has to do with

entropy.”

“I’m an ecologist,

and that’s not

what I mean by

diversity!”

So Far

If X has positive-definite similarity matrix and
non-negative weighting, then

|X | “ max
pPPpX q

1

pTZp
“ max

pPPpX q
pdiversityppqq.
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A Spectrum of Diversity Indices

Definition (Leinster & Cobbold, 2012) Let X be a finite metric space. For each
q P Rě0zt1u, the diversity of order q of p P PpX q is the real number

DZ
q ppq “

˜

ÿ

xPX

ppxqpZpqpxqq´1

¸
1

1´q

.

The diversity of order 1 is defined to make DZ
q ppq continuous in q:

DZ
1 ppq “ lim

qÑ1
DZ
q ppq “

ź

xPX

pZpqpxq´ppxq

most sensitive

to rare species

least sensitive

to rare species

1{pTZp

0 2 q Ñ 8



Example

Diversity Profiles

Leinster & Cobbold, Measuring Diversity. . . , Ecology 93 (2012)



The Maximum Diversity Theorem

Theorem (Leinster & Meckes, 2015)

Let X be a finite metric space. Then:

1. There exists a probability distribution on X that
maximizes DZ

q p´q for all q ě 0.

2. The value maxp D
Z
q ppq is independent of q.

The uniform distribution is usually not maximizing.
Instead, maximizing distributions are balanced: they
make all points in X equally typical.

Corollary Suppose X is such that Z is positive
definite and the weighting w is non-negative. Then

|X | “ max
pPPpX q

DZ
q ppq for every q ě 0.

Example

The maximizing distribution.
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Recovering Shannon Entropy from Order-1 Diversity

Let Ztpx , yq “ e´tdpx ,yq; then limtÑ8 Zt “

ˆ

1 0
. . .

0 1

˙

.

Theorem (Leinster, 2010) For every finite space X ,

lim
tÑ8

|tX | “ #X .

Intuition By sending t to 8, we zoom in so close that
we forget the metric on X : all its points look isolated.

Theorem For every probability distribution p on X ,

lim
tÑ8

logDZt
1 ppq “ Hppq.

Idea logDZ
1 ppq is the ‘effective Shannon entropy’ of p.

Proof idea. Matrix in-
version is continuous, so
limtÑ8 Z´1

t “ I too,
and

ř

I “ #X .

Proof idea. DZ
1 ppq is

continuous in Z , so

lim
tÑ8

logDZt
1 ppq

“ logDI
1ppq

“ log
´

ź

ppxq´ppxq
¯

“Hppq.
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The Main Theorem

A Variational Principle for Magnitude

Definition

The effective entropy of order q of p P PpX q is HZ
q ppq “ logDZ

q ppq.

Theorem

Suppose X has positive definite similarity matrix and non-negative weighting. Then

|X | “ max
pPPpX q

pexppHZ
q ppqqq for every q ě 0.
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Thank you.
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