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Part I

Magnitude



The magnitude of a finite metric space

Let pX , dq be a finite metric space. The X ˆ X matrix ZX defined by

ZX px , yq “ e´dpx ,yq

is called the similarity matrix of X . A weight vector for X is v P RX such that

ZXvpxq “ 1 for all x P X .

Definition (Leinster, 2010*) If X possesses a weight vector, the magnitude of X is

|X | “
ÿ

xPX

vpxq

for any weight vector v. (This value is independent of the choice of v.)

Lemma If ZX is invertible then |X | “
ř

x ,yPX Z´1X px , yq.

*All references are to arXiv dates. A reference list can be found at the end of these slides.
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The magnitude function of a finite metric space

Let pX , dq be a metric space. For each t P r0,8q we denote by tX the space pX , tdq.

The magnitude function of a finite space X is

| ´ X | : r0,8q Ñ R
t ÞÑ |tX |.

The parameter t controls the scale of the metric in X .
The magnitude function tells us the ‘effective number
of points’ in X as the scale varies. Its growth rate tells
us about the ‘effective dimension’ of X at different
scales (Willerton, 2012).

Question Can a magnitude function be defined for larger metric spaces?
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Positive definite spaces

Definition (Meckes, 2010) A metric space X is positive definite if, for all finite
subspaces Y Ď X , the matrix ZY is positive definite.

Examples Spheres with geodesic metric, hyperbolic space, subsets of Euclidean space.

Proposition (Leinster, 2010) Let X be a finite positive definite space. Then

|X | “ sup
p
ř

xPX vpxqq2

vTZXv

where the supremum is over v ‰ 0 in RX . (Proof Cauchy–Schwarz inequality. )

Corollary For any finite positive definite space X we have |X | “ supt|Y | | Y Ď X u.

Idea Let this formulation define the magnitude of larger metric spaces.
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The magnitude of a compact metric space

Proposition (Leinster & Meckes, 2016)

The quantity SpX q “ supt|Y | | finite Y Ď X u is lower semicontinuous as a function on
the class of positive definite metric spaces with the Gromov–Hausdorff topology.

So there is a canonical way to extend magnitude to compact positive definite spaces:

Definition (Leinster & Meckes, 2016)

Let X be a compact positive definite metric space. The magnitude of X is

|X | “ supt|Y | | finite Y Ď X u.

The magnitude function of X is the the function t ÞÑ |tX |.
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Magnitude via weight measures

Given a compact metric space X , let MpX q “ tfinite Borel measures on X u.

For t ě 0, define ZX ptq : MpX q Ñ C pX q by

ZX ptqpµqpxq “
1

t

ż

X
e´tdpx ,yqdµpyq.

Definition (Willerton, 2010)

A weight measure for tX is a solution µt to the equation tZX ptqpµtq “ 1.

Proposition (Meckes, 2010)

If tX is positive definite and admits a weight measure, then |tX | “ µtpX q.
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The magnitude function carries geometric information

Theorem (Barceló & Carbery, 2015)

Let X Ă Rn be a nonempty compact set. Then |tX | Ñ 1 as t Ñ 0 and

|tX |

tn
Ñ

VolpX q

n!ωn
as t Ñ `8.

Theorem (Gimperlein & Goffeng, 2017)

Let X Ă Rn be a compact, smooth domain, with n odd. Then

|tX | „
1

n!ωn

8
ÿ

j“0

cj t
n´j as t Ñ `8

where c0, c1 and c2 record the volume, surface area, and total mean curvature of X .
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Magnitude via weight distributions

Gimperlein, Goffeng & Louca show that when X Ă Rn is a compact domain, ZX ptq is a
pseudodifferential operator which extends to a certain space H of distributions on X .*

Proposition (Gimperlein, Goffeng & Louca, 2022, via Meckes, 2015)

Let X Ď Rn be a compact domain. Then

|tX | “ xut , 1yX

where ut P H is the unique distributional solution to tZX ptqputq “ 1 on X .

They construct an approximate inverse to ZX ptq and thus can compute magnitude as

|tX | “
1

t
xZX ptq

´1p1q, 1yX .

*Specifically, the Sobolev space 9H´
n`1
2 pX q.
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Recent geometric results

Theorem (Gimperlein & Goffeng, 2021)

For a smooth, compact domain X in odd dimensions, the asymptotics of |tX |
determine the Willmore energy of the boundary BX .

Theorems (Gimperlein, Goffeng & Louca, 2022)

‚ For nice enough domains, magnitude satisfies an
asymptotic inclusion-exclusion principle.

‚ You can ‘magnitude the shape of a ball’!

‚ When n “ 2 or n is odd, magnitude characterizes
domains with constant mean curvature.

. . . and lots more exciting stuff!



Open questions

What is the geometric content of the magnitude function?

In general, |tX | does not determine X up to
isometry. Meckes has showed that these two spaces
have the same magnitude function Ñ

‚ If X and Y are such that |tX | and |tY | coincide, what can we say about them?

‚ Can you magnitude the shape of convex drums? Star-shaped drums?

‚ Can one compute the magnitude function exactly for interesting domains?

‚ The magnitude function extends to a meromorphic function on the complex plane.
Do the poles of this function carry geometric information?

‚ What can be said about the small-t asymptotics of |tX |?



Part II

Diversity



Ecological connections

Let X be a (finite) set of biological species and d a
metric on X recording differences among species.

An ecological community comprising members of
species in X can be modelled by a probability
distribution p on X , where ppxq is the relative

abundance of species x in the community.

Bird illustrations from the RSPB.

https://www.rspb.org.uk/
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Typicality and diversity

The matrix ZX records the similarity between each pair of species in X . So

pZXpqpxq “
ÿ

yPX

e´dpx ,yqppyq

tells us the expected similarity between a member of species x and an individual
chosen at random from p. Call this the typicality of members of species x in p.

Idea A community in which the average member is highly typical is homogenous.

Definition (temporary!) The diversity of a probability distribution p on X is

1
ř

xPX pZXpqpxqppxq
.

The denominator is the mean typicality of members of the community modelled by p.
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Maximizing diversity

Question How diverse is the most diverse community a given space X can support?

Since
1

ř

xPX pZXpqpxqppxq
“

1

pTZXp

we’re looking for

MaxDivpX q “ sup
1

pTZXp

where the sup is over probability distributions p.

Recall
For a positive definite space X ,

|X | “ sup
p
ř

xPX vpxqq2

vTZXv

where the sup is over v P RX .

Theorem Let X be a finite positive definite space admitting a non-negative weight
vector v. Then p “ v{|X | maximizes diversity on X , and MaxDivpX q “ |X |.
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An uncountable family of diversity indices

Leinster & Cobbold observe that the weighted arithmetic mean of atypicality is not the
only way to quantify diversity. We should consider weighted power means of all orders!
Their approach unifies many diversity indices used in practice by ecologists.

Definition (Leinster & Roff, 2019, following Leinster & Cobbold, 2012)

Let X be a compact metric space and µ a probability measure on X . For q P r0,8q
not equal to 1, the diversity of order q of µ is

Dqpµq “

˜

ż
ˆ
ż

e´dpx ,yqdµpxq

˙q´1

dµpyq

¸1{p1´qq

.

At q “ 1,8 this expression takes its limiting values.

Examples D2pµq is 1{(the expected proximity of a µ-random pair of points).
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The parameter q matters!

Leinster & Cobbold, Measuring Diversity. . . , Ecology 93 (2012)



A maximization theorem

Theorem (Leinster & Roff, 2019)

Let X be a non-empty compact metric space.

1. There exists a probability measure µ on X that maximizes Dq for all q at once.

2. The maximum diversity DmaxpX q “ supµDqpµq is independent of q P r0,8s.

Theorem (Leinster & Roff, 2019)

Let X be a non-empty positive definite compact metric space admitting a positive
weight measure µ. Then DmaxpX q “ |X |.

These results extend those proved for finite spaces by Leinster & Meckes in 2015.
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Open questions

What do diversity-maximizing measures look like?

What do weight distributions look like?

Even in the finite setting, diversity-maximizing measures are typically not uniform.

Weight measures and diversity-maximizing measures on finite spaces have been used in
boundary-detection algorithms (e.g. Bunch et al, 2021).

But in the compact setting, even on very familiar spaces, we know little about them!



Part III

Homology



Combinatorial connections

Let pA,ďq be a finite poset.

The incidence algebra IpAq is the algebra of

functions Aˆ A
f
ÝÑ Q satisfying f pa, bq “ 0 unless

a ď b. Multiplication in IpAq is by convolution.

The zeta function of A is ζ P IpAq defined by

ζpa, bq “

#

1 a ď b

0 otherwise.

If ζ is invertible, ζ´1 is the Möbius function of A. Graphic from Wikipedia.

Theorem Let A be the poset of simplices in a finite simplicial complex S . Then
ÿ

a,bPA

ζ´1pa, bq “ χpSq.

https://en.wikipedia.org/wiki/Simplicial_complex
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The Euler characteristic of a category

More generally, let C be a finite category. Write obpCq for its set of objects.

The zeta matrix of C is the obpCq ˆ obpCq matrix ZC defined by

ZCpa, bq “ #tarrows aÑ b in Cu.

If ZC is invertible over Q, call Z´1C the Möbius matrix of C.

Theorem (Leinster, 2006)

If ZC is invertible, then

ÿ

a,bPobpCq

Z´1pa, bq “ χpBCq

where BC is the classifying space of C.
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Theorem (Leinster, 2006)
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where BC is the classifying space of C.
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Categorifying magnitude

Euler
characteristic

singular homology

dimension
orientability
...

connectedness



Categorifying magnitude

magnitude magnitude homology

?
?
?
?



Novikov series

Let ZrqR`s “ ta0q
`0 ` ¨ ¨ ¨ ` anq

`n | ai P Z, `i P r0,8qu. This ring carries a valuation—

vppq “ the minimal exponent with non-zero coefficient in p

—and thus a metric: dpp, rq “ e´vpp´rq. It’s also an integral domain.

Cauchy completing and taking the field of fractions yields a square

ZrqR`s ZrrqR`ss

QpqRq QppqRqq

c1

f1 f2

c2

The field QppqRqq is the field of Novikov series: generalized formal Laurent series.
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Formal magnitude for finite spaces

Let X be a finite metric space. Its formal similarity matrix is defined by

Z px , yq “ qdpx ,yq.

Lemma Every formal similarity matrix is invertible over QppqRqq.

Proof.
All diagonal entries in Z are 1 and off-diagonal entries are q` for some ` ą 0. So detpZ q
is a generalized polynomial with constant term 1 and thus a unit in ZrrqRss.

The formal magnitude of X is the Novikov series MagpX q “
ř

x ,yPX Z´1px , yq.

Theorem

For every finite metric space X and all t P r0,8q we have |tX | “ MagpX q|q“e´t .
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A combinatorial formula for the coefficients

Theorem (Leinster, 2014*)

Let X be a finite metric space. Then MagpX q “
ř

`Pr0,8q a`q
` where

a` “
8
ÿ

k“0

p´1qk#tpx0, . . . , xkq | xi P X , xi ‰ xi`1 and dpx0, x1q` ¨ ¨ ¨`dpxk´1, xkq “ `u.

Idea (Hepworth & Willerton, 2015)

Each coefficient in MagpX q is the Euler characteristic of a chain complex.

* In fact it’s proved here for graphs, but the statement holds for general finite metric spaces.
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Magnitude homology

Definition (Leinster & Shulman, 2017, following Hepworth & Willerton, 2015)

The magnitude chain complex of a metric space X is a real-graded chain complex of
vector spaces. In grading ` P r0,8q and degree k P N it’s given by

MC `kpX q “ Z ¨ tpx0, . . . , xkq | xi ‰ xi`1 and dpx0, x1q ` ¨ ¨ ¨ ` dpxk´1, xkq “ `u.

The magnitude homology of X is defined by MH`
kpX q “ HkpMC `‚pX qq.

Theorem (Leinster & Shulman, 2017)

For finite metric spaces, magnitude homology recovers formal magnitude:

χpMH˚‚ pX qq :“
ÿ

iě0

p´1qi rkpMH˚i pX qq “ MagpX q.
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Geometric content of magnitude homology

Applied to metric spaces, MH˚‚ carries geometric, rather than topological information.

Theorem (Leinster & Shulman, 2017) Let X be a closed subset of Euclidean space.
Then MH˚1 pX q vanishes if and only if X is convex.

Theorem (Kaneta & Yoshinaga, 2018)
Let X be a closed subset of Euclidean space
which is not convex. Then MH˚1 pX q records
the ‘diameter’ of the largest ‘dent’ in X .

Theorem (Asao, 2022)
The magnitude homology of a graph is closely
related to its path homology.
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Magnitude via magnitude homology

We are beginning to prove new results about magnitude using magnitude homology.

‚

‚

‚ ‚ ‚ ‚

‚ ‚ ‚ ‚
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‚

For example. . .
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‚ ‚ ‚ ‚

‚ ‚ ‚ ‚

‚
Theorem (Roff, 2022)

Let X and Y be graphs which differ by a sycamore twist. Then MagpX q “ MagpY q.

The Proof is homological—related to, but independent from, an excision theorem.
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Open question

Can we categorify the magnitude function for compact metric spaces?

The magnitude homology of a compact space does not recover its magnitude function.

Problem is: we don’t know how to extend formal magnitude to compact spaces.

Things that don’t work:

‚ Taking suprema: QppqRqq is an ordered field, but not Dedekind complete!

‚ Taking limits: Magp´q is not continuous with respect to the valuation metric!
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Open question

Can we categorify the magnitude function for compact metric spaces?

The magnitude homology of a compact space does not recover its magnitude function.

Problem is: we don’t know how to extend formal magnitude to compact spaces.

Things that might work:

‚ Treat QppqRqq as a space of distributions (Hepworth).

‚ Treat QppqRqq as the stalk at zero of a certain sheaf of functions (me).

‚ Mimic Meckes’s ‘weighting space’ approach over QppqRqq (me).



Summary

‚ What is the geometric content of the magnitude function?

‚ If X and Y are such that |tX | „ |tY |, what can we say about them?

‚ Can you magnitude the shape of a convex drum?

‚ Do the poles of the magnitude function carry interesting information?

‚ What can be said about the small-t asymptotics of |tX |?

‚ What do diversity-maximizing measures and weight distributions look like?

‚ How should the formal magnitude of a compact space be defined?



Thank you.
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