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Part I

Quantifying Diversity











Spaces with similarities

Definition
Let X be a compact Hausdorff topological space.

A similarity kernel on X is a continuous function K : X × X → [0,∞)
satisfying K (x , x) > 0 for all x ∈ X .

The pair (X ,K ) is called a space with similarities.

It’s symmetric if K (x , y) = K (y , x) for all x , y ∈ X .

Example

A compact metric space with metric d has similarity kernel

K (x , y) = e−d(x ,y).

When X = Rd this is the Laplace kernel.
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Typicality functions

Definition
Let (X ,K ) be a space with similarities.

For each probability distribution µ on X , and each x ∈ X , define

(Kµ)(x) =

∫
K (x ,−) dµ ∈ [0,∞).

The function Kµ : X → [0,∞) is the typicality function of µ.

The atypicality function of µ is 1/Kµ.

Example

If X is a compact metric space, the typicality function of µ is given by

(Kµ)(x) =

∫
e−d(x ,y) dµ(y).
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Diversity

Definition
Let (X ,K ) be a space with similarities, and µ a probability distribution
on X . For q ∈ [0,∞) not equal to 1, the diversity of order q of µ is

DK
q (µ) =

(∫ (
1

Kµ

)1−q
dµ

)1/(1−q)

.

At q = 1,∞ this expression takes its limiting values.

Example

If X is a compact metric space, then

Dq(µ) =

(∫ (∫
e−d(x ,y) dµ(x)

)q−1
dµ(y)

)1/(1−q)

.
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Part II

Diversity and Entropy



Diversity on finite sets

Equip the set X = {x1, . . . , xn} with the similarity kernel K (a matrix).
Let µ = (µ1, . . . , µn) be a probability distribution on X .

The diversity of order q of µ is

DK
q (µ) =

(∑
suppµ

(Kµ)q−1i µi

)1/(1−q)

.

where Hq is the Rényi entropy of order q.

In particular,

D I
1(µ) = exp

(
−
∑

µi logµi

)
= exp(Shannon(µ)).
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Entropy in ecology

To ecologists, exp(Hq(µ)) is known as the Hill number of order q.

The Hill numbers are used as measures of ecological diversity.

Strategy Model an ecological community by a set of species X and a
distribution µ on X , representing the relative abundances of species.

Then take the Hill number

exp(Hq(µ)) = D I
q(µ)

to quantify the ‘diversity’ of the community.



Entropy in ecology

Problem The Hill numbers don’t see similarities between species.



Similarity-sensitive diversity

Solution (Cobbold and Leinster, 2012)

Record pairwise similarities of the species in a matrix, K . Define the
similarity-sensitive diversity of order q to be

DK
q (µ) =

(∑
suppµ

(Kµ)q−1i µi

)1/(1−q)

.

This is where our diversity measures originate.

For example,

DK
2 =

1

expected similarity of two individuals chosen at random

while

D I
2 =

1

probability that they’re of the same species
.
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Similarity-sensitive entropy

In the general setting of a space with similarities, we define

entropy := log(diversity).

Definition
Let (X ,K ) be a space with similarities, and µ a distribution on X . For
q ∈ [0,∞], the entropy of order q of µ is HK

q (µ) = logDK
q (µ).

Example

If X is a compact metric space, then

H1(µ) = −
∫

log

(∫
e−d(x ,y) dµ(x)

)
dµ(y).
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Part III

Maximizing Diversity and Entropy



The parameter q matters!

Leinster and Cobbold, Measuring Diversity. . . , Ecology 93 (2012)



A maximum entropy theorem

Theorem (Leinster and Roff, 2019)

Let (X ,K ) be a symmetric space with similarities.
1. There exists a probability distribution µ on X that maximises

DK
q (µ) and HK

q (µ) for all q ∈ [0,∞] at once.

2. The maximum diversity supµD
K
q (µ) and maximum entropy

supµH
K
q (µ) are independent of q ∈ [0,∞].

• If µ maximises HK
q for one q, it maximises for all q.

• In general µ need not be unique, but if K is positive-definite, it is.

• So every compact subset of Rn has a unique distribution of
maximum entropy. For almost all sets, we don’t know what it is!
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New invariants

Definition

Let (X ,K ) be a symmetric space with similarities.

The maximum diversity of X is

Dmax(X ) = sup
µ

Dq(µ) for any q.

The maximum entropy of X is

Hmax(X ) = logDmax(X ).

A distribution attaining the supremum is called maximising.



Part IV

Uniform Distributions



A maximising measure

Take a finite set X , and K = I . Then

Dmax(X ) = supD I
1 = sup(exp(Shannon))

which is uniquely attained by the uniform distribution.

This no longer holds when K 6= I .
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Balance

Maximising distributions possess a different sort of ‘evenness’, which is
responsive to the geometry of the space.

A distribution µ on X is balanced if Kµ is constant on supp(µ).

Lemma
Any maximising distribution is balanced.

Example

If an ecological community is maximally diverse, then all the species
present must be equally typical.
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Balance is not uniformity

Consider [0, r ] ⊂ R. Its maximising distribution is

µ =
δ0 + λ[0,r ] + δr

2 + r
.
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Uniform distribution

Given a metric space X and any t ∈ [0,∞), write tX for the space X
after its distances have been scaled by t.

Definition
Let X be a compact metric space. Suppose tX has a unique maximising
distribution µt for all t � 0, and that limt→∞ µt exists in P(X ).

Then the uniform distribution on X is

µX = lim
t→∞

µt .



Example

Proposition

On a finite metric space, the uniform measure is the uniform measure.
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Example

Proposition

On a compact subset of Rn with nonzero volume, the uniform measure
is normalised Lebesgue measure.
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Part V

Categorical Connections



Ordinary categories



Ordinary categories

A category A consists of

• (Objects) A set ob (A)

• (Morphisms) For each A,B ∈ ob (A) a set Hom(A,B)

• (Identities) For each A ∈ ob (A) a function {∗} → Hom(A,A)

• (Composition) For each A,B,C ∈ ob (A) a function

Hom(A,B)× Hom(B,C )→ Hom(A,C ).

Idea

Why not replace sets and functions with something more interesting?

All we really need is a ‘multiplication’ like × with a ‘unit’ like {∗}.
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Enriched categories

Let V be a category with a monoidal product ⊗ and unit I .

A V-category A consists of

• (Objects) A set ob (A)

• (Morphisms) For each A,B ∈ ob (A) an object of V, Hom(A,B)

• (Identities) For each A ∈ ob (A) an arrow in V, I → Hom(A,A)

• (Composition) For each A,B,C ∈ ob (A) an arrow in V,

Hom(A,B)⊗ Hom(B,C )→ Hom(A,C ).

Examples

• If V = (⊥ → >,∧), a V-category is a preorder.

• If V = (Vect,⊗), a one-object V-category is an associative algebra.
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[0,∞)-categories

Let V = [0,∞). It’s a category: there’s an arrow x → y if and only if
x ≥ y . It has a monoidal product + with unit 0.

A [0,∞)-category X consists of

• (Objects) A set X

• (Morphisms) For each x , y ∈ X a number d(x , y) ∈ [0,∞)

• (Identities) For each x ∈ X an inequality 0 ≥ d(x , x)

• (Composition) For each x , y , z ∈ X an inequality,

d(x , y) + d(y , z) ≥ d(x , z).

Moral A [0,∞)-category is a generalized metric space.
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The Euler characteristic of a category

Questions

• What is the Euler characteristic of an enriched category?

• What is the Euler characteristic of a metric space?
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The magnitude (or Euler characteristic) of a metric space

Let X be a compact metric space.

Definition
A weighting on X is a signed measure ν such that Kν ≡ 1.

If X possesses a weighting ν, the magnitude of X is

χ(X ) := ν(X ).

Now let µ be a maximum entropy distribution on X .

We know it’s balanced: Kµ|supp µ ≡ c for some constant c .

So its restriction to supp µ is proportional to a weighting, µ̂ = 1
cµ.

Theorem
Dmax(X ) = χ(supp µ) for any maximising measure µ.
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