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Three homological perspectives on directed graphs

Hepworth and Willerton,
Leinster and Shulman
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Muranov and Yau
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Hepworth and R.,
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Magnitude Homology Path Homology Reachability Homology

enriched
category theory

geometric analysis,
differential geometry

All satisfy an excision theorem, an exactness theorem, and a Künneth theorem.
Path homology and reachability homology are also ‘homotopy-invariant’.

All disagree on even very primitive classes of directed graphs.
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Directed cycles
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Z5

To magnitude homology, all the directed cycles are distinguishable.

To path homology, Z2 looks ‘contractible’ and all the rest look ‘circle-like’.

To reachability homology, every directed cycle looks ‘contractible’.
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1. Reachability homology

2. ‘Degrees’ of homotopy equivalence

3. The magnitude-path spectral sequence



Directed graphs

Definition A directed graph X consists of

‚ a set of vertices V pX q

‚ a set of edges E pX q Ď V pX q ˆ V pX q.

A map of graphs X Ñ Y is a function
V pX q Ñ V pY q that preserves or contracts edges.

These form the category DiGraph.

‚

‚

‚

‚

‚

Definition The reachability relation on V pX q is the preorder PrepX q with

x ď x 1 ðñ there is a path x “ x0 Ñ x1 Ñ ¨ ¨ ¨ Ñ xn “ x 1 in X .

The shortest path metric on V pX q is the generalized metric

dpx , x 1q “ mintn | there is a path x “ x0 Ñ x1 Ñ ¨ ¨ ¨ Ñ xn “ x 1 in X u.
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Reachability homology

DiGraph PreOrd sSet sAb ChpAbq AbNPre

RC˚p´q
RH˚p´q

Nerve Z¨´ N H˚

Definition (Hepworth & R., 2023) The reachability complex of a digraph X is

RCkpX q “ Z ¨ tpx0, x1, . . . , xkq | xi´1 ň xi for every iu

with Bpx0, . . . , xkq “
ř

p´1qi px0, . . . , pxi , . . . , xkq. The reachability homology of X is

RH˚pX q “ H˚pRCpX qq.

Reachability homology has very strong homological properties.
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The excision theorem

Theorem (Carranza et al , 2022)

Path homology satisfies an excision theorem with respect to cofibrations

Definition The reach of A Ď X is the induced subgraph rA with

V prAq “ tx P V pX q | there exists a path from A to xu.

A cofibration is an inclusion A � X such that:

‚ There are no edges from X zA to A.

‚ For each x P V prAq there is πpxq P V pAq such that, for all
v P A, we have dpv , xq “ dpv , πpxqq ` dpπpxq, xq .

‚
‚

‚
‚
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x

A

‚
‚
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‚
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‚

‚
‚

Theorem (Hepworth & R., 2023) Reachability homology can do better! It satisfies
an excision theorem with respect to long cofibrations
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The excision theorem

Excision Theorem (Hepworth & R., 2023)

A Y

X X YA Y
x

Suppose that in this pushout the map A � X is a long
cofibration. Then map induced on relative homology

RH˚pX ,Aq Ñ RH˚pX YA Y ,Y q

is an isomorphism.

Proof idea.

A long cofibration A � X is precisely a map of graphs that induces a Dwyer map
PrepAq Ñ PrepX q in PreOrd. The theorem follows easily from facts about Dwyer
maps proved by Thomason in Cat as a closed model category (1980).
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Homotopy invariance

Definition Let f , g : X Ñ Y be maps of graphs.

We say there’s a long homotopy
from f to g , and write f ù g , if for all x P X there is a path from f pxq to gpxq in Y .

Homotopy Invariance Theorem If f ù g , then RH˚pf q “ RH˚pgq.

Proof. The long homotopy condition says that for all x P X we have f pxq ď gpxq in
PrepY q. So there’s a natural transformation Prepf q ñ Prepgq, and thus a simplicial
homotopy between the maps induced on the nerve.

Example Every directed cycle is long-homotopy equivalent to a point:
the inclusion of any vertex v admits a long homotopy to the identity.

‚
‚

‚
‚

‚v

This is much stronger than the homotopy-invariance enjoyed by path homology.
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Summary so far

‚ It’s easy to prove strong homological properties for RH˚p´q. But it’s a very
insensitive theory: arguably its homotopy invariance is too strong.

Idea

Homotopy equivalence for digraphs is not a matter of fact, but a matter of degree.
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‘Degrees’ of homotopy equivalence

Definition Let f , g : X Ñ Y be maps of graphs.

Fix r P N. We say there is an r-homotopy from f to g , and write f ùr g , if

dpf pxq, gpxqq ď r for all x P X .

We say directed graphs X and Y are r-homotopy equivalent, and write X »r Y , if
there exist maps f : X Õ Y : g such that

‚ g ˝ f is related to IdX by a zig-zag of r -homotopies, and

‚ f ˝ g is related to IdY by a zig-zag of r -homotopies.

We say X is r-contractible if X »r ‚.

‚
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‚

‚

‚

‚

1
2

3

4

v

Example The directed n-cycle is r -contractible for every r ě n ´ 1.
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Proposition Fix n P N. Then

#

for r ă n ´ 1 we have Zn fir Zm whenever m ‰ n;

for r ě n ´ 1 we have Zn »r ‚.



Summary so far

‚ It’s easy to prove strong homological properties for RH˚p´q. But it’s a very
insensitive theory.

‚ For directed graphs, homotopy equivalence is a matter of degree: for each r P N
we can think about r -homotopy equivalence, getting weaker as r grows. The
resulting nested homotopy types are studied in more detail in Ivanov (2023).

Question

Pick your preferred degree of homotopy equivalence—say degree r .

Is there a homology theory that can help us to
distinguish directed graphs up to r -homotopy equivalence?
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Filtering reachability chains by length

The reachability complex can be equivalently described as:

RCkpX q “ Z ¨ tpx0, x1, . . . , xkq | xi´1 ‰ xi and xi´1 ď xi for every iu

with differential Bpx0, . . . , xkq “
ř

p´1qi px0, . . . , pxi , . . . , xkq.

Example pw , y , zq is a generator of RC2pZ5q.

RC˚pX q can be filtered by the length of its generators:

‚

‚

‚

‚

‚

1

2

w

y

z

F`pRCkpX qq “ Z ¨

#

px0, x1, . . . , xkq | xi´1 ‰ xi for every i , and
k

ÿ

i“1

dpxi´1, xi q ď `

+

.

Thanks to the triangle inequality, B respects the filtration.

Example pw , y , zq is a generator of F3pRC2pZ5qq, but not of F2pRC2pZ5qq.
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The magnitude-path spectral sequence

Definition (Di et al , 2023) The magnitude-path spectral sequence (MPSS) of a
digraph X is the spectral sequence E ‚pX q associated to pRC˚pX q,F˚q.

Observation (Hepworth & Willerton, 2015)

E 0pX q is the magnitude chain complex MC˚˚pX q.

Theorem (Asao, 2022)

E 2pX q contains the path homology of X .

Definition (Hepworth & R., 2024)

E 2pX q is the bigraded path homology PH˚˚pX q.

MC00 MC11 MC22 MC33

MC01 MC12 MC23

MC02 MC13

MC03

By construction E ‚pX q ñ RH˚pX q under mild conditions on X .
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Infinitely many homology theories!

Functoriality

For each r ě 0, page E r p´q of the MPSS is a functor DiGraph Ñ AbNˆN.

Homotopy Invariance (Asao, 2023)

For each r ě 0, page E r`1p´q of the MPSS is invariant under r -homotopy equivalence.

Theorems (Hepworth & R., 2024)

‚ Every page satisfies an excision theorem with respect to cofibrations.

‚ Every page satisfies a Künneth theorem with respect to the box product.

‚ Like simplicial homology, every page preserves filtered colimits.*

In particular, these results hold for magnitude homology & bigraded path homology.

* This result appeared first in Di et al (2023); we give a more explanatory proof.
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Example

Directed cycles

‚‚ Z2 ‚

‚

‚

Z3 ‚

‚

‚

‚

Z4 ‚

‚

‚

‚

‚

Z5

Theorem (Hepworth & R., 2024)

E r pZmq is trivial for every m ď r , and E r pZmq fl E r pZnq for r ď m ă n.

In particular, bigraded path homology distinguishes the directed m-cycles for all m ě 2.



Towards a ‘nested’ formal homotopy theory for directed graphs

A cofibration category is ‘one half of a model category’.
It is a category equipped with weak equivalences and cofibrations, satisfying axioms.

Theorem (Hepworth & R., 2024)

DiGraph carries a cofibration category structure in which

‚ weak equivalences are maps inducing isomorphisms on bigraded path homology;

‚ cofibrations are those defined in Carranza et al (2022).

This structure is strictly finer than that for path homology given by Carranza et al :
for instance, it distinguishes all the directed cycles Zn for n ě 2.

Proof. Combines all the homological properties of bigraded path homology.

We expect a similar structure for every page of the MPSS.
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Summary

‚ It’s easy to prove strong homological properties for reachability homology. But it’s
a very insensitive theory.

‚ For directed graphs, homotopy equivalence is a matter of degree: for each r P N
we can think about r -homotopy equivalence, getting weaker as r grows.

‚ The magnitude-path spectral sequence provides a spectrum of homology theories
for directed graphs, interpolating between magnitude homology and reachability
homology. For each r P N, page r ` 1 of the MPSS is r -homotopy invariant.

‚ Page E 2 is bigraded path homology. It shares the homotopy invariance of path
homology, but is strictly finer: it distinguishes directed cycles of different lengths.

‚ There is a cofibration category structure on DiGraph whose weak equivalences
are maps inducing isomorphisms on bigraded path homology. We expect to be
able to describe such a structure for every page of the MPSS.
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Thank you.
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Example

Spheres
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Definition For each n ě 0, let Sn be the face poset of the cell-decomposition of the
n-sphere into hemispheres. Let S8 be the colimit of S0 ãÑ S1 ãÑ ¨ ¨ ¨ ãÑ Sn ãÑ ¨ ¨ ¨.



Example

Spheres

Theorem (Hepworth & R., 2024)

Let n ě 1. Then PHk,`pSnq “ 0 for k ‰ `, while

PHk,kpSnq –

#

R if k “ 0, n

0 otherwise.

Proof sketch. Sn is the pushout of the maps
ConepSn´1q� Sn´1 Ñ ‚. Write down the
Mayer–Vietoris sequence and use the fact that

‚

‚

‚

‚

‚

‚

‚
‚

‚
‚

‚

‚

‚

‚

‚

‚

‚

‚

‚

‚

ConepSn´1q »1 ‚ to see that PHk,`pSnq – PHk´1,`pSn´1q. Now induct on n.



Filtered colimits and the infinite sphere

Question The infinite topological sphere is contractible. What about S8?

Theorem (Hepworth & R., 2024; Di et al , 2023)

Every page of the MPSS is a finitary functor: it preserves filtered colimits.

Corollary Bigraded path homology sees S8 as contractible:

PHk,`pS8q “

#

R k “ ` “ 0

0 otherwise.

Proof. Since PH˚,˚p´q is finitary, we have

PHk,`pS8q “ PHk,`pcolim NpSnqq – colim NpPHk,`pSnqq.

For each n, the map i˚ : PHk,`pSnq Ñ PHk,`pSn`1q is zero except when k “ ` “ 0.


